Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts

Size: px
Start display at page:

Download "Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts"

Transcription

1 Ionic Equilibria weak acids and bases salts of weak acids and bases buffer solutions solubility of slightly soluble salts

2 Arrhenius Definitions produce H + ions in the solution strong acids ionize completely H 2 O HA H + + A - weak acids partially ionize (equilibrium) H 2 O HA H + + A -

3 Bronsted Lowry Definitions an acid is a H + donor a base is a H + acceptor HA + H 2 O H 3 O + + A - "hydronium ion"

4 Measuring acidity use the ph scale ph = -log[h + ] or ph = -log[h 3 O + ]

5 Water ionizes slightly H 2 O + H 2 O H 3 O + + OH - K w = x10-14 = [H 3 O + ][OH - ] K w = x10-14 [H 3 O + ] = [OH - ] = x10-7 M ph = -log(1.000 x10-7 ) ph =

6 Relationships x10-14 = [H 3 O + ][OH - ] log of both sides -14 = log [H 3 O + ] + log [OH - ] multiply by = (-log [H 3 O + ]) + (-log [OH - ]) 14 = ph + poh (poh = -log[oh - ])

7 Summary [H 3 O + ][OH - ] = 1.00 x10-14 ph + poh = 14 ph = -log[h 3 O + ] poh = -log[oh - ] true for any aqueous solution!

8 Relationships [H 3 O + ][OH - ] = 1.00 x10-14 [H 3 O + ] [OH - ] ph = -log[h 3 O + ] poh = -log[oh - ] ph ph + poh = 14 poh

9 Examples Calculate the ph of the following [H 3 O + ] = 2.75x10-4 M [OH - ] = 8.243x10-5 M [H 3 O + ][OH - ] = 1.00 x10-14 [H 3 O + ](8.243x10-5 M) = 1.00 x10-14 [H 3 O + ] = 1.213x10-10 M

10 Calculate [H 3 O + ] Try Some Q1 ph = poh = 9.73

11 Weak Acids HCN + H 2 O H 3 O + + CN - K a = 4.0 x10-10 Ka = [H 3O + ][CN - ] [HCN]

12 Weak Bases CH 3 NH 2 HOH CH 3 NH OH - Kb = [CH 3 NH 3 +][OH-] [CH 3 NH 2 ]

13 Example Problem Calculate the ph of a 0.250M solution of HCN HCN + H 2 O H 3 O + + CN - Ka = [H 3O + ][CN - ] [HCN] K a = 4.0 x10-10 HCN H 3 O + CN - starting amounts reacting equilibrium

14 Solution Ka = [H 3O + ][CN - ] [HCN] Ka = (x)(x) (0.250-x) = x x note: a quadratic equation 4.0 x10-10 = assume x is small compared to (a reasonable assumption since K a is very small... very few products formed at equilibrium) x ph = -log[h 3 O + ]

15 % Ionization Weak acids partially ionize (by Arrhenius definition of "weak") amount ionized % ionization = x 100 starting amount % ionization = 1.0x10-5 M 0.25M From the last problem: amount ionized = 1.0x10-5 M starting amount = 0.25M x100 = % ionized (99.996% is dissolved but un-ionized!)

16 Try One Q2 A 0.100M solution of HClO is % ionized at equilibrium. Calculate K a for this acid. starting amounts reacting equilibrium HClO H 3 O + ClO -

17 Polyprotic Acids Acids with more than one "ionizable" H H 2 SO 4 H 3 PO 4 overall equation: H 2 SO H 2 O 2 H 3 O SO 4 H 2 SO 4 + H 2 O H 3 O +1 + HSO 4-1 HSO H 2 O H 3 O +1 + SO 4-2

18 K a and Polyprotic Acids H 2 S + 2 H 2 O 2 H 3 O +1 + S -2 H 2 S + H 2 O H 3 O +1 + HS -1 K a1 = 1.0 x10-7 HS -1 + H 2 O H 3 O +1 + S -2 K a2 = 1.0 x10-19

19 Conjugate Acids and Bases acid base conjugate acid conjugate base HA + H 2 O H 3 O + + A - "Weak acids form strong conjugate bases!" If K a is small, then the equilibrium is favored to the left. HA + H 2 O H 3 O + + A - this shows that A - is a strong base and easily accepts a proton

20 Hydrolysis conjugates of weak acids and bases are strong enough to react with water Ka for the weak acid HCN is 4.0 x10-10 CN - is the strong conjugate base of HCN CN - + HOH HCN + OH -

21 K hyd CN - + HOH HCN + OH - K hyd = [HCN][OH- ] [CN - ] K w = [H 3 O + ][OH - ] K a = [H 3O + ][CN - ] [HCN] K hyd = K w K a

22 Example Calculate the ph of a 0.25M solution of NaCN. NaCN is a soluble ionic comp'd and ionizes completely: NaCN Na + + CN M 0.25M 0.25M CN - is the conjugate of a weak acid and undergoes hydrolysis CN - + HOH HCN + OH - K hyd = K w K a = 1.0 x x10-10

23 Solution CN - + HOH HCN + OH - starting amounts CN - HCN OH - reacting equilibrium K hyd = [HCN][OH- ] [CN - ] assume x is small compared to 0.250

24 Finishing poh = -log[oh - ] = -log = 2.60 ph + poh = 14 ph = 11.40

25 Try One Q3 Calculate the ph of a 0.150M solution of NaBrO. K a for HBrO is 2.50x10-9

26 Buffer Solutions Can stabilize ph and resist slight additions of acid or base based on Le Chatelier's Principle weak acid or base + salt of its conjugate for example: HCN and NaCN NH 3 and NH 4 Cl

27 A Problem to Illustrate Calculate the ph of a solution that is M in HAc and M in NaAc. Ka = 1.85x10-5 HAc + H 2 O H 3 O + + Ac - Ka = [H 3O + ][Ac - ] [HAc] HAc H 3 O + Ac - starting amounts reacting equilibrium

28 Solution

29 Try One Q4 Calculate the ph of a solution made by dissolving mol NH 3 and mol NH 4 Cl into 1.00 L solution. K b for NH 3 is 1.80x10-5.

30 Adding Acid to a Buffered Solution Calculate the ph of the HAc/NaAc buffer solution (a previous problem) if mols HCl are added to a liter of the solution. add 0.010M HCl HAc + H 2 O H 3 O + + Ac -

31 Solution HAc H 3 O + Ac - starting amounts reacting equilibrium

32 Analysis of Results The buffer ph was 4.73 before adding acid. The ph changed to 4.69 (0.04 ph units) after addition of mols HCl to 1 L of buffer. If we added mols HCl to 1 L water the ph would fall from 7.00 (the ph of water) to 2.00 (0.010 mols/1 L = 1.00x10-2 M)

33 Try One Q5 For the NH 3 /NH 4 + buffer problem, calculate the ph after mols HCl are added to 1.00 L of buffer solution.

34 Henderson Hasselbach Equation HA + H 2 O H 3 O + + A - K a = [H 3 O + ][A - ] [HA] logka = log[h 3 O + ] + log [A- ] [HA] -logka = -log[h 3 O + ] - log [A- ] [HA] pka = ph - log [A- ] [HA] ph = pk a + log [A- ] [HA]

35 ph = pk a + log [A- ] [HA] An Example Calculate the ph of a solution that is 0.100M in HOCN and 0.150M in NaOCN, using the H/H equation. K a for HOCN is 3.50x10-4 pk a = -log K a = -log(3.50 x10-4 ) = 3.456

36 Try One Q6 Calculate the ph of a solution that is 0.250M in HAc and 0.150M in NaAc, using the H-H equation. Ka for HAc is 1.85x10-5.

37 Slightly Soluble Salts Compounds said to be "insoluble" in Chem 1 are really equilibria involving slightly soluble ionic compounds. BaSO 4(s) Ba +2-2 (aq) + SO 4 (aq) K sp = [Ba +2 ][SO 4-2 ]

38 A Problem to Illustrate Calculate the molar solubility of barium sulfate. K sp = 1.1x10-10 let x = molar solubility of BaSO 4 BaSO 4(s) Ba +2 (aq) SO 4-2 (aq) x x + K sp = [Ba +2 ][SO 4-2 ] K sp = (x)(x) = x x10-10 = x 2 x = 1.0 x10-5 M = solubility of BaSO 4

39 Another Example let x = molar solubility of Ag 2 CrO 4 Ag 2 CrO 4 (s) 2 Ag +1 (aq) + CrO 4-2 (aq) K sp = [Ag +1 ] 2 [CrO 4-2 ]

40 Useful Calculator Buttons y x or x y raise any number to any power x takes the "x th " root of a number

41 Try One Q7 The molar solubility of Ag 2 CO 3 is 1.27x10-4 M. Calculate Ksp for this salt.

42 Solubility and Common Ions "Ionic compounds are less soluble in a solution that contains a common ion." MX (s) M + (aq) + X - (aq)

43 Buffer Solutions are an Example of the Common Ion Effect HA (aq) H + (aq) + A - (aq) The ph of a 0.10M HAc solution is 2.87 The ph of a 0.10M HAc solution in 0.010M NaAc is 4.73

44 Solubility Examples Calculate the molar solubility of AgBr in water. AgBr Ag + + Br - Ksp = [Ag + ] [Br - ] =3.3x10-13 let x= the molar solubility of AgBr 3.3x10-13 =(x)(x)=x 2 x = 5.7x10-7 mol/l

45 Recalculate in 0.15M NaBr Ksp = [Ag + ] [Br - ] =3.3x10-13 let x= the molar solubility of AgBr 3.3x10-13 =(x)(x+0.15) 3.3x10-13 =(x)(0.15) x= 2.2 x10-12 mol/l

46 Try One Q8 Calculate the molar solubility of MgF 2 in M NaF. Ksp for MgF 2 is 6.40x10-9.

47 Fractional Precipitation Adding a precipitating reagent to a solution with more than one ion that could form insoluble compounds A solution is 1.0x10-3 M in Cl - and in Br -. Solid AgNO 3 is added gradually. Would AgBr or AgCl precipitate first? Ksp (AgBr) = 3.3x10-13 Ksp (AgCl) = 1.8x10-10

48 Solution We solve for the maximum silver ion concentration just before precipitation occurs. Ksp (AgBr) = [Ag + ] [Br - ] 3.3x10-13 =[Ag + ](1.0x10-3 ) Ksp (AgCl) = [Ag + ] [Cl - ] 1.8x10-10 =[Ag + ](1.0x10-3 ) [Ag + ]= 3.3x10-10 M [Ag + ]= 1.8x10-7 M

49 Another Question When AgCl starts to precipitate, what concentration of Br - is left in solution? Ksp (AgBr) = [Ag + ] [Br - ] From the previous slide, the [Ag + ] to initiate precipitation of AgCl must be >1.8x10-7 M 3.3x10-13 = (1.8x10-7 )[Br - ] [Br - ]= 1.8x10-6 M

50 Try One Q9 A solution is 0.15M in Pb +2 and 0.15M in Ag +1. If SO 4-2 ions are slowly added, which would precipitate first, PbSO 4 or Ag 2 SO 4? Ksp for PbSO 4 is 1.8x10-8 and for Ag 2 SO 4 is 1.7x10-5.

51 What is the [Pb +2 ] when Ag 2 SO 4 begins to precipitate?

52 Solubility and ph Calculate the ph of a saturated solution of Mg(OH) 2. K sp = 1.81x10-11 Mg(OH) 2 Mg +2 OH x 2x

53 Precipitation and ph At elevated ph, metal ions can precipitate as insoluble hydroxides At what ph will a 0.10M Ca(NO 3 ) 2 solution begin to precipitate Ca(OH) 2? Ca(OH) 2(s) Ca +2 (aq) + 2 OH -1 (aq) if the ph rises above Ca(OH) 2 will begin to precipitate

54 Try One Q10 At what ph will a 0.25M solution of MgCl 2 begin to precipitate Mg(OH) 2? Ksp = 1.5x10-11

55 One Final Note Be careful with very, very small K's in aqueous media. Recall that water self ionizes and in "neutral" water [H 3 O + ] = 1.00x10-7 M In all charts and tables where you said the starting amount of H 3 O + is "0" it is actually 1.00x10-7 M (same for OH - )

CHAPTER 7.0: IONIC EQUILIBRIA

CHAPTER 7.0: IONIC EQUILIBRIA Acids and Bases 1 CHAPTER 7.0: IONIC EQUILIBRIA 7.1: Acids and bases Learning outcomes: At the end of this lesson, students should be able to: Define acid and base according to Arrhenius, Bronsted- Lowry

More information

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Equilibri acido-base ed equilibri di solubilità. Capitolo 16 Equilibri acido-base ed equilibri di solubilità Capitolo 16 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium Sample Exercise 17.1 (p. 726) What is the ph of a 0.30 M solution of acetic acid? Be sure to use a RICE table, even though you may not need it. (2.63) What

More information

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect Chemistry: Atoms First Julia Burdge & Jason Overby 17 Acid-Base Equilibria and Solubility Equilibria Chapter 15 Acid-Base Equilibria and Solubility Equilibria Kent L. McCorkle Cosumnes River College Sacramento,

More information

REVIEW QUESTIONS Chapter 17

REVIEW QUESTIONS Chapter 17 Chemistry 102 REVIEW QUESTIONS Chapter 17 1. A buffer is prepared by adding 20.0 g of acetic acid (HC 2 H 3 O 2 ) and 20.0 g of sodium acetate (NaC 2 H 3 O 2 ) in enough water to prepare 2.00 L of solution.

More information

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Acid-Base Equilibria and Solubility Equilibria Chapter 17 PowerPoint Lecture Presentation by J. David Robertson University of Missouri Acid-Base Equilibria and Solubility Equilibria Chapter 17 The common ion effect is the shift in equilibrium caused by the addition

More information

Exam 2 Practice (Chapter 15-17)

Exam 2 Practice (Chapter 15-17) Exam 2 Practice (Chapter 15-17) 28. The equilibrium constant Kp for reaction (1) has a value of 0.112. What is the value of the equilibrium constant for reaction (2)? (1) SO2 (g) + 1/2 O2(g) SO3 (g) Kp

More information

CHEMICAL EQUILIBRIUM. Cato Maximilian Guldberg and his brother-in-law Peter Waage developed the Law of Mass Action

CHEMICAL EQUILIBRIUM. Cato Maximilian Guldberg and his brother-in-law Peter Waage developed the Law of Mass Action CHEMICAL EQUILIBRIUM Cato Maximilian Guldberg and his brother-in-law Peter Waage developed the Law of Mass Action Chemical Equilibrium Reversible Reactions: A chemical reaction in which the products can

More information

AP Chemistry Table of Contents: Ksp & Solubility Products Click on the topic to go to that section

AP Chemistry Table of Contents: Ksp & Solubility Products Click on the topic to go to that section Slide 1 / 91 Slide 2 / 91 AP Chemistry Aqueous Equilibria II: Ksp & Solubility Products Table of Contents: K sp & Solubility Products Slide 3 / 91 Click on the topic to go to that section Introduction

More information

Ionic Equilibria in Aqueous Systems

Ionic Equilibria in Aqueous Systems Ionic Equilibria in Aqueous Systems Chapter Nineteen AP Chemistry There are buffers in our blood that keep the ph of our blood at a constant level. The foods that we eat are often acidic or basic. This

More information

Secondary Topics in Equilibrium

Secondary Topics in Equilibrium Secondary Topics in Equilibrium Outline 1. Common Ions 2. Buffers 3. Titrations Review 1. Common Ions Include the common ion into the equilibrium expression Calculate the molar solubility in mol L -1 when

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria

Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria Solutions of Acids or Bases Containing a Common Ion A common ion often refers to an ion that is added by two or more species. For

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria ACIDS-BASES COMMON ION EFFECT SOLUBILITY OF SALTS Acid-Base Equilibria and Solubility Equilibria Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2 The common

More information

Unit 2 Acids and Bases

Unit 2 Acids and Bases Unit 2 Acids and Bases 1 Topics Properties / Operational Definitions Acid-Base Theories ph & poh calculations Equilibria (Kw, K a, K b ) Indicators Titrations STSE: Acids Around Us 2 Operational Definitions

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria Acid-Ionization Equilibria Acid-Base Equilibria Acid ionization (or acid dissociation) is the reaction of an acid with water to produce hydronium ion (hydrogen ion) and the conjugate base anion. (See Animation:

More information

Chapter 19. Solubility and Simultaneous Equilibria p

Chapter 19. Solubility and Simultaneous Equilibria p Chapter 19 Solubility and Simultaneous Equilibria p. 832 857 Solubility Product ) The product of molar concentrations of the constituent ions, each raised ot the power of its stoichiometric coefficients

More information

Chapter 15 Additional Aspects of

Chapter 15 Additional Aspects of Chemistry, The Central Science Chapter 15 Additional Aspects of Buffers: Solution that resists change in ph when a small amount of acid or base is added or when the solution is diluted. A buffer solution

More information

Chem 112, Fall 05 Exam 3A

Chem 112, Fall 05 Exam 3A Before you begin, make sure that your exam has all 10 pages. There are 32 required problems (3 points each, unless noted otherwise) and two extra credit problems (3 points each). Stay focused on your exam.

More information

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute)

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) CHAPTER 16: ACID-BASE EQUILIBRIA Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) A. Weak Monoprotic Acids. (Section 16.1) 1. Solution of Acetic Acid: 2. See Table

More information

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions AP Chemistry CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak electrolyte.

More information

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates For Practice 15.1 In each reaction, identify the Brønsted Lowry acid, the Brønsted Lowry base, the conjugate acid, and the conjugate

More information

Chemistry 102 Chapter 17 COMMON ION EFFECT

Chemistry 102 Chapter 17 COMMON ION EFFECT COMMON ION EFFECT Common ion effect is the shift in equilibrium caused by the addition of an ion that takes part in the equilibrium. For example, consider the effect of adding HCl to a solution of acetic

More information

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin Chap 17 Additional Aspects of Aqueous Equilibria Hsu Fu Yin 1 17.1 The Common-Ion Effect Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Sodium acetate is a strong electrolyte: NaCH

More information

Chemical Equilibrium. What is the standard state for solutes? a) 1.00 b) 1 M c) 100% What is the standard state for gases? a) 1 bar b) 1.

Chemical Equilibrium. What is the standard state for solutes? a) 1.00 b) 1 M c) 100% What is the standard state for gases? a) 1 bar b) 1. Chemical Equilibrium Equilibrium constant for the reaction: aa + bb + cc + dd + [C ] c [D ] d... equilibrium constant K = [ A] a [B ] b... [] = concentration relative to standard state molarity (M): for

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

Acid/Base Definitions

Acid/Base Definitions Acids and Bases Acid/Base Definitions Arrhenius Model Acids produce hydrogen ions in aqueous solutions Bases produce hydroxide ions in aqueous solutions Bronsted-Lowry Model Acids are proton donors Bases

More information

Acids, Bases, and ph. ACIDS, BASES, & ph

Acids, Bases, and ph. ACIDS, BASES, & ph I. Arrhenius Acids and Bases ACIDS, BASES, & ph Acid any substance which delivers hydrogen ion (H + ) _ to the solution. Base any substance which delivers hydroxide ion (OH ) to the solution. II ph ph

More information

CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13

CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13 CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13 1.What is a reversible reaction? Ans. The reaction in which both forward and backward reaction takes place simultaneously is

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base Acid-Base Equilibria 1 Will the following salts be acidic, basic or neutral in aqueous solution? 1.NH 4 Cl.NaCl.KC H O 4.NaNO A = acidic B = basic C = neutral Solutions of a Weak Acid or Base The simplest

More information

Salt Hydrolysis Problems

Salt Hydrolysis Problems Salt Hydrolysis Problems Page 169 Salt Hydrolysis Problems 1) Write the Brønsted-Lowry reaction between the base CN! and the weak acid H 2 O. CN! + H 2 O W HCN + OH! 2) Write the Brønsted-Lowry reaction

More information

Solubility and Complex-ion Equilibria

Solubility and Complex-ion Equilibria Solubility and Complex-ion Equilibria Contents and Concepts Solubility Equilibria 1. The Solubility Product Constant 2. Solubility and the Common-Ion Effect 3. Precipitation Calculations 4. Effect of ph

More information

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Chapter 15 Applications of Aqueous Equilibria (mainly acid/base & solubility)

More information

Introduction to Acids & Bases. Packet #26

Introduction to Acids & Bases. Packet #26 Introduction to Acids & Bases Packet #26 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. Review II Arrhenius postulated that: Acids produce hydrogen

More information

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution Today Solubility The easiest of all the equilibria Polyprotic Acids determining something about an unknown by reacting it with a known solution Solubility Equilibria Mg(OH)2 (s) Mg 2+ (aq) + 2OH - (aq)

More information

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA APPLICATIONS OF AQUEOUS EQUILIBRIA Operational Skills Calculating the common-ion effect on acid ionization Calculating the ph of a buffer from given volumes of solution Calculating the ph of a solution

More information

Chapter 10 - Acids & Bases

Chapter 10 - Acids & Bases Chapter 10 - Acids & Bases 10.1-Acids & Bases: Definitions Arrhenius Definitions Acids: substances that produce hydrogen ions when dissolved in H 2 O Common Strong Acids: Common Weak acids: Organic carboxylic

More information

Chapter 17: Solubility Equilibria

Chapter 17: Solubility Equilibria Previous Chapter Table of Contents Next Chapter Chapter 17: Solubility Equilibria Sections 17.1-17.2: Solubility Equilibria and the K sp Table In this chapter, we consider the equilibrium associated with

More information

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2 PX212SP14 Practice Exam II / Spring 2014 1. Which of the following statements are characteristic of acids? 1. They are proton donors. 2. They react with bases to produce a salt and water. 3. They taste

More information

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state CHEMISTRY 111 LECTURE EXAM III Material PART 1 CHEMICAL EQUILIBRIUM Chapter 14 I Dynamic Equilibrium I. In a closed system a liquid obtains a dynamic equilibrium with its vapor state Dynamic equilibrium:

More information

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect Chapter 17: Additional Aspects of Aqueous equilibria Learning goals and key skills: Describe the common ion effect. Explain how a buffer functions. Calculate the ph of a buffer solution. Calculate the

More information

CHEM J-6 June 2014

CHEM J-6 June 2014 CHEM1102 2014-J-6 June 2014 A solution is prepared that contains sodium chloride and sodium chromate (both 0.10 M). When a concentrated solution of silver nitrate is added slowly, white AgCl(s) begins

More information

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc.

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc. Chapter 17 Additional Aspects of Aqueous Equilibria 蘇正寬 chengkuan@mail.ntou.edu.tw Additional Aspects of Aqueous Equilibria 17.1 The Common-Ion Effect 17.2 Buffers 17.3 Acid Base Titrations 17.4 Solubility

More information

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2.

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2. !! www.clutchprep.com CONCEPT: ph and poh To deal with incredibly small concentration values of [H + ] and [OH - ] we can use the ph scale. Under normal conditions, the ph scale operates within the range

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion.

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion. Acid-Base Theories Arrhenius Acids and Bases (1884) Acids and Bases An acid is a substance that, when dissolved in water, increases the concentration of hydrogen ions. A base is a substance that, when

More information

Chapter 16 exercise. For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly. - (aq) + OH - (aq)

Chapter 16 exercise. For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly. - (aq) + OH - (aq) 1 Chapter 16 exercise Q1. Practice exercise page 671 Write the formula for the conjugate acid of the following, HSO 3, F, PO 4 3 and CO. HSO 3 H H 2 SO 4 F H HF PO 4 3 H HPO 4 2 CO H HCO Q2. Practice exercise

More information

5. What is the percent ionization of a 1.4 M HC 2 H 3 O 2 solution (K a = ) at 25 C? A) 0.50% B) 0.36% C) 0.30% D) 0.18% E) 2.

5. What is the percent ionization of a 1.4 M HC 2 H 3 O 2 solution (K a = ) at 25 C? A) 0.50% B) 0.36% C) 0.30% D) 0.18% E) 2. Name: Date: 1. For which of the following equilibria does K c correspond to an acid-ionization constant, K a? A) NH 3 (aq) + H 3 O + (aq) NH 4 + (aq) + H 2 O(l) B) NH 4 + (aq) + H 2 O(l) NH 3 (aq) + H

More information

Chapter 8: Applications of Aqueous Equilibria

Chapter 8: Applications of Aqueous Equilibria Chapter 8: Applications of Aqueous Equilibria 8.1 Solutions of Acids or Bases Containing a Common Ion 8.2 Buffered Solutions 8.3 Exact Treatment of Buffered Solutions 8.4 Buffer Capacity 8.5 Titrations

More information

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 17 Additional Aspects of James F. Kirby Quinnipiac University Hamden, CT Effect of Acetate on the Acetic Acid Equilibrium Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq)

More information

Ch 8 Practice Problems

Ch 8 Practice Problems Ch 8 Practice Problems 1. What combination of substances will give a buffered solution that has a ph of 5.05? Assume each pair of substances is dissolved in 5.0 L of water. (K a for NH 4 = 5.6 10 10 ;

More information

CHE 107 Spring 2017 Exam 3

CHE 107 Spring 2017 Exam 3 CHE 107 Spring 2017 Exam 3 Your Name: Your ID: Question #: 1 What is the ph of a 0.20 M solution of hydrocyanic acid at 25ºC? The Ka of HCN at 25ºC is 4.9 10 10. A. 2.08 B. 5.00 C. 3.89 D. 8.76 Question

More information

Solubility Equilibria

Solubility Equilibria Chapter 17 SOLUBILITY EQUILIBRIA (Part II) Dr. Al Saadi 1 Solubility Equilibria The concept of chemical equilibrium helps to predict how much of a specific ionic compound (salt) will dissolve in water.

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

Aqueous Equilibria Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Aqueous Equilibria Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry The Common-Ion Effect Consider a solution of acetic acid: HC 2 H 3 O 2 (aq) + H 2 O(l) H 3 O + (aq) + C 2 H 3 O 2 (aq) If

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

Chapter 8 Acid-Base Equilibria

Chapter 8 Acid-Base Equilibria Chapter 8 Acid-Base Equilibria 8-1 Brønsted-Lowry Acids and Bases 8-2 Water and the ph Scale 8-3 The Strengths of Acids and Bases 8-4 Equilibria Involving Weak Acids and Bases 8-5 Buffer Solutions 8-6

More information

Chapter 14: Acids and Bases

Chapter 14: Acids and Bases Chapter 14: Acids and Bases 14.1 The Nature of Acids and Bases Bronsted-Lowry Acid-Base Systems Bronsted acid: proton donor Bronsted base: proton acceptor Bronsted acid base reaction: proton transfer from

More information

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page find all choices before making your selection.

More information

Advanced Placement Chemistry Chapters Syllabus

Advanced Placement Chemistry Chapters Syllabus As you work through the chapter, you should be able to: Advanced Placement Chemistry Chapters 14 16 Syllabus Chapter 14 Acids and Bases 1. Describe acid and bases using the Bronsted-Lowry, Arrhenius, and

More information

CHEMISTRY - CLUTCH CH.15 - ACID AND BASE EQUILIBRIUM.

CHEMISTRY - CLUTCH CH.15 - ACID AND BASE EQUILIBRIUM. !! www.clutchprep.com CONCEPT: ACID IDENTIFICATION The most common feature of an acid is that many possess an H + ion called the. When it comes to acids there are 2 MAJOR TYPES that exist: are acids where

More information

Calorimetry, Heat and ΔH Problems

Calorimetry, Heat and ΔH Problems Calorimetry, Heat and ΔH Problems 1. Calculate the quantity of heat involved when a 70.0g sample of calcium is heated from 22.98 C to 86.72 C. c Ca= 0.653 J/g C q = 2.91 kj 2. Determine the temperature

More information

Acid-Base Equilibria. Contents and Concepts. Learning Objectives

Acid-Base Equilibria. Contents and Concepts. Learning Objectives Acid-Base Equilibria Contents and Concepts Solutions of a Weak Acid or Base 1. Acid-Ionization Equilibria. Polyprotic Acids 3. Base-Ionization Equilibria 4. Acid Base Properties of Salt Solutions Solutions

More information

CHM 2046 Test #3 Review: Chapters , 15, & 16

CHM 2046 Test #3 Review: Chapters , 15, & 16 Chapter 14 1. For the following reaction Kc = 0.513 at 500 K. N 2 O 4 (g) 2 NO 2 (g) If a reaction vessel initially contains an N 2 O 4 concentration of 0.0500 M at 500 K, what are the equilibrium concentrations

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Page 1 of 20 Chapter 16 Acid-Base Equilibria 16.1 Acids and Bases: A Brief Review Acids: taste sour and cause certain dyes to change color. Bases: taste bitter and feel soapy. Arrhenius concept o acids

More information

More About Chemical Equilibria

More About Chemical Equilibria 1 More About Chemical Equilibria Acid-Base & Precipitation Reactions Chapter 15 & 16 1 Objectives Chapter 15 Define the Common Ion Effect (15.1) Define buffer and show how a buffer controls ph of a solution

More information

( 1 ) Concept of acid / base

( 1 ) Concept of acid / base Section 6.2 Ionic Equilibrium Unit 628 ( 1 ) Concept of acid / base The best definition of acids and bases is that proposed by T.M. Lowry and also, independently by J.N. Bronsted in 1923. BronstedLowry

More information

HW 16-10: Review from textbook (p.725 #84, 87, 88(mod), 89, 95, 98, 101, 102, 110, 113, 115, 118, 120, SG#23,A)

HW 16-10: Review from textbook (p.725 #84, 87, 88(mod), 89, 95, 98, 101, 102, 110, 113, 115, 118, 120, SG#23,A) HW 6: Review from textbook (p.75 #84, 87, 88(mod), 89, 95, 98,,,, 3, 5, 8,, SG#3,A) 6.84 The pk a of the indicator methyl orange is 3.46. Over what ph range does this indicator change from 9 percent HIn

More information

Solubility and Complex Ion. Equilibria

Solubility and Complex Ion. Equilibria Solubility and Complex Ion a mineral formed by marine organisms through biological precipitation CALCITE Equilibria CaCO 3(s) Ca 2+ (aq) + CO 3 2- (aq) K = K sp = [Ca 2+ ][CO 3 2- ] = 2.8 x 10-9 K sp =

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Murphy.

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Murphy. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Murphy Chapter 17 Additional Aspects of Aqueous Equilibria Ahmad Aqel Ifseisi Assistant

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

Solubility Equilibrium

Solubility Equilibrium 2016 Ksp note.notebook Solubility Equilibrium Learning Goals: to understand what happens when a compound dissolves in water to calculate the extent of dissolution...the molar solubility to calculate the

More information

Solubility and Complex Ion Equilibria

Solubility and Complex Ion Equilibria Solubility and Complex Ion Equilibria a mineral formed by marine organisms through biological precipitation CALCITE CaCO 3(s) Ca + (aq)+ CO 3 - (aq) K K sp [Ca + ][CO 3 - ].8 x 10-9 K sp solubility product

More information

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178 Leaders: Deborah Course: CHEM 178 EXAM 2 PRACTICE KEY Instructor: Bonaccorsi/Vela Date: 3/6/18 Make sure you (also) know: Acid-base definitions Arrhenius Bronsted-Lowry Lewis Autoionization process of

More information

Chapter 18. Solubility and Complex- Ionic Equilibria

Chapter 18. Solubility and Complex- Ionic Equilibria Chapter 18 Solubility and Complex- Ionic Equilibria 1 The common ion effect Le Chatelier Why is AgCl less soluble in sea water than in fresh water? AgCl(s) Ag + + Cl Seawater contains NaCl 2 Problem: The

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

Chapter 8 Acid-Base Equilibria

Chapter 8 Acid-Base Equilibria Chapter 8 Acid-Base Equilibria 8-1 Brønsted-Lowry Acids and Bases 8-2 Water and the ph Scale 8-3 The Strengths of Acids and Bases 8-4 Equilibria Involving Weak Acids and Bases 8-5 Buffer Solutions 8-6

More information

Solubility and Complex Ion Equilibria

Solubility and Complex Ion Equilibria CALCITE Solubility and Complex Ion Equilibria a mineral formed by marine organisms through biological precipitation CaCO (s) Ca + (aq)+ CO (aq) K K sp [Ca + ][CO ].8 x 10-9 K sp solubility product constant

More information

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006 Northern Arizona University Exam #3 CHM 152, General Chemistry II Dr. Brandon Cruickshank Section 2, Spring 2006 April 21, 2006 Name ID # INSTRUCTIONS: Code the answers to the True-False and Multiple-Choice

More information

Acid - Base Equilibria 3

Acid - Base Equilibria 3 Acid - Base Equilibria 3 Reading: Ch 15 sections 8 9 Ch 16 sections 1 7 * = important homework question Homework: Chapter 15: 97, 103, 107, Chapter 16: 29*, 33*, 35, 37*, 39*, 41, 43*, 49, 55, 57, 61,

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

School of Chemistry, Howard College Campus University of KwaZulu-Natal CHEMICAL ENGINEERING CHEMISTRY 2 (CHEM171)

School of Chemistry, Howard College Campus University of KwaZulu-Natal CHEMICAL ENGINEERING CHEMISTRY 2 (CHEM171) School of Chemistry, Howard College Campus University of KwaZulu-Natal CHEMICAL ENGINEERING CHEMISTRY 2 (CHEM171) Lecture Notes 1 st Series: Solution Chemistry of Salts SALTS Preparation Note, an acid

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. chem10b 16.1-27 The ph of a 0.10 M solution of a weak base is 9.82. What is the K b for this base? A. 8.8 10-8 B. 2.1

More information

CHEMISTRY - BROWN 14E CH.16 - ACID-BASE EQUILIBRIA.

CHEMISTRY - BROWN 14E CH.16 - ACID-BASE EQUILIBRIA. !! www.clutchprep.com CONCEPT: ACID IDENTIFICATION The most common feature of an acid is that many possess an H + ion called the. When it comes to acids there are 2 MAJOR TYPES that exist: are acids where

More information

Chapter 14. Acids and Bases

Chapter 14. Acids and Bases Chapter 14 Acids and Bases Section 14.1 The Nature of Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH - ions. Brønsted Lowry: Acids are proton

More information

Classes at: - Topic: Ionic Equilibrium

Classes at: - Topic: Ionic Equilibrium PHYSICAL CHEMISTRY by: SHAILENDRA KR Classes at: - SCIENCE TUTORIALS; Opp Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No 5A/65, Opp Mahual Kothi, Alpana Market, Patna Topic:

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The effect of a catalyst on a chemical reaction is to. A) increase the entropy change

More information

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents Slide 1 / 39 AP Chemistry Slide 2 / 39 Equilibrium Part C : Solubility Equilibrium 2014-10-29 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 39 Molar Solubility Calculating

More information

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006 Northern Arizona University Exam #3 CHM 152, General Chemistry II Dr. Brandon Cruickshank Section 2, Spring 2006 April 21, 2006 Name ID # INSTRUCTIONS: Code the answers to the True-False and Multiple-Choice

More information

Modified Dr. Cheng-Yu Lai

Modified Dr. Cheng-Yu Lai Ch16 Aqueous Ionic Equilibrium Solubility and Complex Ion Equilibria Lead (II) iodide precipitates when potassium iodide is mixed with lead (II) nitrate Modified Dr. Cheng-Yu Lai Solubility-product constant

More information

Today. Complex Equilibria. Approximations when do your previous formulas fail?

Today. Complex Equilibria. Approximations when do your previous formulas fail? Today Complex Equilibria Approximations when do your previous formulas fail? In short hand notation what is dimethylamine? A. HA B. A - C. B D. BH + Amines are like ammonia with other substituents instead

More information

potassium formate? In short hand notation what is dimethylamine? Today Complex Equilibria Approximations when do your previous formulas fail?

potassium formate? In short hand notation what is dimethylamine? Today Complex Equilibria Approximations when do your previous formulas fail? In short hand notation what is dimethylamine? Today Complex Equilibria A. HA Approximations when do your previous formulas fail? B. A - C. B D. BH + Amines are like ammonia with other substituents instead

More information

Duncan. UNIT 14 - Acids & Bases. COMMON ACIDS NOTES lactic acetic phosphoric NAMING ACIDS NOTES

Duncan. UNIT 14 - Acids & Bases. COMMON ACIDS NOTES lactic acetic phosphoric NAMING ACIDS NOTES COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) 1. hydro- - HF 2. root of

More information

CHEMISTRY. Chapter 16 Acid-Base Equilibria

CHEMISTRY. Chapter 16 Acid-Base Equilibria CHEMISTRY The Central Science 8 th Edition Chapter 16 Acid-Base Equilibria Kozet YAPSAKLI Why study acids bases? bases are common in the everyday world as well as in the lab. Some common acidic products

More information

Acids and Bases Written Response

Acids and Bases Written Response Acids and Bases Written Response January 1999 4. Consider the salt sodium oxalate, Na2C2O4. a) Write the dissociation equation for sodium oxalate. (1 mark) b) A 1.0M solution of sodium oxalate turns pink

More information

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate Chapter 16 Table of Contents Chapter 16 16.1 16.2 16.3 16.4 16.5 16.6 Buffered Solutions Copyright Cengage Learning. All rights reserved 2 Models of Arrhenius: Acids produce H + ions in solution, bases

More information