116 PLTL Activity sheet / Solubility Equilibrium Set 11

Size: px
Start display at page:

Download "116 PLTL Activity sheet / Solubility Equilibrium Set 11"

Transcription

1 Predicting Solubility Solubility problems are equilibrium problems. The reactant in a solubility equilibrium is a slightly soluble salt and the equilibrium constant for the reaction is the solubility product constant, K sp. Note that since the reactant is a solid, its concentration does not appear in the K sp expression. For example, the solubility equilibrium and K sp for the salt SrF 2 (s) are SrF 2 (s) Sr 2+ (aq) + 2 F (aq) K sp = [Sr 2+ ][F ] 2 = The molar solubility of a salt in water can be formed by setting up an equilibrium table and solving for x. The solubility is the same quantity expressed in g/l (rather than M = mol/l). Example 1: Calculate (a) the molar solubility and (b) the solubility of SrF 2 (s) in water. Solution: We first set up an equilibrium table: Balanced Equation SrF 2 (s) Sr 2+ (aq) + 2 F (aq) Initial Concentrations (M) c o 0 0 Change (M) - x x 2x Equilibrium Concentrations (M) (c o - x) x 2x To determine the solubility we use the equilibrium concentrations from the table and the K sp value given above, and solve for x: K sp = [Sr 2+ ][F ] 2 = (x)( 2x) 2 = 4x 3 = x 3 = x = = molar solubility To find the solubility we use the molar mass to convert the molar solubility to g/l: mol SrF g SrF 2 2 2? g / L = = SrF2 /L 1L 1molSrF 2 Predicting Precipitation Away from equilibrium, the ion product Q sp may be defined. As always, Q has the same form as K, but typically involves non-equilibrium concentrations. Precipitation can be predicted by comparing Q sp with K sp : Relationship Solution Type Result Q sp < K sp Unsaturated More salt can dissolve without ppt forming Q sp = K sp Saturated No more salt can dissolve Q sp > K sp Supersaturated Salt will precipitate until Q sp = K sp Chemical Separations If two precipitates are possible, the least soluble salt will precipitate first (the one with the smaller K sp ). For example, if you add NaOH(aq) to a solution containing equal amounts of Ca 2+ and Mg 2+, Mg(OH) 2 (s) will precipitate before Ca(OH) 2 (s) since K sp (Mg(OH) 2 ) = is less than 1

2 K sp (Ca(OH) 2 ) = The reason is that for Mg(OH) 2, Q sp > K sp will occur at lower [OH ] since the K sp is smaller. If the K sp values for two salts differ widely, the salts may be separated by fractional precipitation. Reduction in Solubility due to the Common Ion Effect Addition of an ion common to a solubility equilibrium will reduce solubility. This can be predicted in a qualitative way using Le Chatelier s Principle. For example, adding fluoride ion, F (aq), to the SrF 2 (s) equilibrium above will shift it left. The shift will increase the amount of SrF 2 (s) in solid form, and thus decrease solubility. The new solubility can be calculated as illustrated in the following example. Example 2. What would be the molar solubility of SrF 2 (s) in a 0.10 M NaF(aq) solution? Again we set up an equilibrium table, but now we have an initial concentration of fluoride ion: Balanced Equation SrF 2 (s) Sr 2+ (aq) + 2 F (aq) Initial Concentrations (M) c o Change (M) - x x 2x Equilibrium Concentrations (M) (c o - x) x ( x) We next use the equilibrium concentrations in the table and the K sp value given above, and solve for x. Note that since x is small, ( x) K sp = [Sr 2+ ][F ] 2 = (x)( x) 2 (x)( 0.10) 2 = x = 2.0 x x = = molar solubility Note that as predicted by the common ion effect, this solubility is much lower than what we calculated in Example 1 for pure water! Increase in Solubility due to addition of a Species that Reacts with an Ion The solubility of a salt will increase if a species is added which reacts with one of its ions. Once again this is an example of shifts predicted by Le Chatelier s Principle. For example if the anion reacts with the added substance, the concentration of the anion will be reduced. Thus the equilibrium will shift right to undo, in part, the disturbance. The shift right will reduce the amount of salt in solid form, and thereby increase its solubility. There are two common examples of this phenomena: (1) Reaction of the basic anion of a salt with a strong acid. Salts such as Mg(OH) 2 (s), BaCO 3 (s), and NiS(s) are much more soluble in a strong acid solution than in water. On the other hand, the solubility of AgCl(s) does not increase when 6 M HNO 3 is added. (2) Reaction of the acidic cation (Lewis acid) of a salt with a Lewis base to form a soluble complex ion. Salts such as AgCl(s) and Cu(OH) 2 (s) are much more soluble in 6 M NH 3 (aq) solution than in pure water due to the formation of Ag(NH 3 ) 2 + (aq) and Cu(NH 3 ) 4 2+ (aq) complex ions respectively. Likewise, amphoteric hydroxides such as Al(OH) 3 (s) and Zn(OH) 2 (s) are soluble in 6 M NaOH(aq) due to the formation of Al(OH) 4 - (aq) and Zn(OH) 4 2- (aq) ions. 2

3 Calcium chromate, CaCrO 4, K sp of What happens when calcium and chromate solutions are mixed to give M Ca 2+ 2 and M CrO 4 Q=6.00x10-4, no ppt since Q < Ksp What concentration of the lead ion, Pb 2+, must be exceeded to precipitate PbCl 2 from a solution that is M in the chloride ion, Cl? K sp for lead chloride is [Pb 2+ ] = M 3

4 AgI, BaF 2, and AgBr are all sparingly soluble salts. Which of these salts will be more soluble in an acidic solution than in water? As a chemist for an agricultural products company, you have just developed a new herbicide,"herbigon," that you think has the potential to kill weeds effectively. A sparingly soluble salt, Herbigon is dissolved in 1M acetic acid for technical reasons having to do with its production. You have determined that the solubility product Ksp of Herbigon is Although the formula of this new chemical is a trade secret, it can be revealed that the formula for Herbigon is X-acetate (XCH 3 COO, where "X" represents the top-secret cation of the salt). It is this cation that kills weeds. Since it is critical to have Herbigon dissolved (it won't kill weeds as a suspension), you are working on adjusting the ph so Herbigon will be soluble at the concentration needed to kill weeds. What ph must the solution have to yield a solution in which the concentration of X + is M? The pka of acetic acid is ph=2.10 4

5 Cu 2+ and Pb 2+ are both present in an aqueous solution. To precipitate one of the ions and leave the other in solution, add a. H 2 S (aq) b. H 2 SO 4 (aq) c. HNO 3 (aq) d. NH 4 NO 3 (aq) What is the minimum ph at which Cd(OH) 2 will precipitate from a solution that is M in Cd 2+ (aq)? ph=8.32 5

6 What [I ] should be maintained in KI(aq) to produce a solubility of Mol PbI 2 /L when PbI 2 is added? [I ] = M 6

AP Chemistry Table of Contents: Ksp & Solubility Products Click on the topic to go to that section

AP Chemistry Table of Contents: Ksp & Solubility Products Click on the topic to go to that section Slide 1 / 91 Slide 2 / 91 AP Chemistry Aqueous Equilibria II: Ksp & Solubility Products Table of Contents: K sp & Solubility Products Slide 3 / 91 Click on the topic to go to that section Introduction

More information

Solubility and Complex-ion Equilibria

Solubility and Complex-ion Equilibria Solubility and Complex-ion Equilibria Contents and Concepts Solubility Equilibria 1. The Solubility Product Constant 2. Solubility and the Common-Ion Effect 3. Precipitation Calculations 4. Effect of ph

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Saturated vs. Unsaturated

Saturated vs. Unsaturated Solubility Equilibria in Aqueous Systems K sp (Equilibria of Slightly Soluble Salts, Ionic Compounds) Factors that Affect Solubility (Common Ion Effect, AcidBase Chemistry) Applications of Ionic Equilibria

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

CHEM 12 Unit 3 Review package (solubility)

CHEM 12 Unit 3 Review package (solubility) CHEM 12 Unit 3 Review package (solubility) 1. Which of the following combinations would form an ionic solid? A. Metalloid - metal B. Metal non-metal C. Metalloid metalloid D. Non-metal non-metal 2. Which

More information

Chapter 15 Additional Aspects of

Chapter 15 Additional Aspects of Chemistry, The Central Science Chapter 15 Additional Aspects of Buffers: Solution that resists change in ph when a small amount of acid or base is added or when the solution is diluted. A buffer solution

More information

Solubility and Complex-ion Equilibria

Solubility and Complex-ion Equilibria Solubility and Complex-ion Equilibria Solubility Equilibria Many natural processes depend on the precipitation or dissolving of a slightly soluble salt. In the next section, we look at the equilibria of

More information

Chapter 18. Solubility and Complex- Ionic Equilibria

Chapter 18. Solubility and Complex- Ionic Equilibria Chapter 18 Solubility and Complex- Ionic Equilibria 1 The common ion effect Le Chatelier Why is AgCl less soluble in sea water than in fresh water? AgCl(s) Ag + + Cl Seawater contains NaCl 2 Problem: The

More information

SOLUBILITY AND SOLUBILITY PRODUCT

SOLUBILITY AND SOLUBILITY PRODUCT SOLUBILITY AND SOLUBILITY PRODUCT [MH 5; 16.1 & 16.2] $ In this section we are going to consider the solubility of ionic solids in water. $ ASolubility@ may be considered to be an equilibrium; the equilibrium

More information

SOLUBILITY REVIEW QUESTIONS

SOLUBILITY REVIEW QUESTIONS Solubility Problem Set 1 SOLUBILITY REVIEW QUESTIONS 1. What is the solubility of calcium sulphate in M, g/l, and g/100 ml? 2. What is the solubility of silver chromate? In a saturated solution of silver

More information

SOLUBILITY AND PRECIPITATION EQUILIBRIA

SOLUBILITY AND PRECIPITATION EQUILIBRIA 16 CHAPTER SOLUBILITY AND PRECIPITATION EQUILIBRIA 16.1 The Nature of Solubility Equilibria 16.2 Ionic Equilibria between Solids and Solutions 16.3 Precipitation and the Solubility Product 16.4 The Effects

More information

SOLUBILITY AND PRECIPITATION EQUILIBRIA

SOLUBILITY AND PRECIPITATION EQUILIBRIA 16 CHAPTER SOLUBILITY AND PRECIPITATION EQUILIBRIA 16.1 The Nature of Solubility Equilibria 16.2 Ionic Equilibria between Solids and Solutions 16.3 Precipitation and the Solubility Product 16.4 The Effects

More information

Modified Dr. Cheng-Yu Lai

Modified Dr. Cheng-Yu Lai Ch16 Aqueous Ionic Equilibrium Solubility and Complex Ion Equilibria Lead (II) iodide precipitates when potassium iodide is mixed with lead (II) nitrate Modified Dr. Cheng-Yu Lai Solubility-product constant

More information

CHEM Dr. Babb s Sections Exam #4 Review Sheet

CHEM Dr. Babb s Sections Exam #4 Review Sheet CHEM 116 - Dr. Babb s Sections Exam #4 Review Sheet 158. Explain using the HC 2 H 3 O 2 /NaC 2 H 3 O 2 buffer system how a buffer maintains a relatively constant ph when small quantity of acid (HCl) or

More information

Chemistry 102 Chapter 17 COMMON ION EFFECT

Chemistry 102 Chapter 17 COMMON ION EFFECT COMMON ION EFFECT Common ion effect is the shift in equilibrium caused by the addition of an ion that takes part in the equilibrium. For example, consider the effect of adding HCl to a solution of acetic

More information

AP 17.4, 17.5 Study Questions

AP 17.4, 17.5 Study Questions Name: Class: Date: AP 17.4, 17.5 Study Questions True/False Indicate whether the statement is true or false. 1. The solubility product of a compound is numerically equal to the product of the concentration

More information

Lecture #12 Complex Ions and Solubility

Lecture #12 Complex Ions and Solubility Lecture #12 Complex Ions and Solubility Stepwise exchange of NH 3 for H 2 O in M(H 2 O) 4 2+ M(H 2 O) 2 (NH 3 ) 2 2+ M(H 2 O) 4 2+ M(NH 3 ) 4 2+ M(H 2 O) 3 (NH 3 ) 2+ M(H 2 O)(NH 3 ) 3 2+ Formation Constants

More information

Solubility Equilibria

Solubility Equilibria Solubility Equilibria Heretofore, we have investigated gas pressure, solution, acidbase equilibriums. Another important equilibrium that is used in the chemistry lab is that of solubility equilibrium.

More information

Learning Objectives. Solubility and Complex-ion Equilibria. Contents and Concepts. 3. Precipitation Calculations. 4. Effect of ph on Solubility

Learning Objectives. Solubility and Complex-ion Equilibria. Contents and Concepts. 3. Precipitation Calculations. 4. Effect of ph on Solubility Solubility and Comple-ion Equilibria. Solubility and the Common-Ion Effect a. Eplain how the solubility of a salt is affected by another salt that has the same cation or anion. (common ion) b. Calculate

More information

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents Slide 1 / 39 AP Chemistry Slide 2 / 39 Equilibrium Part C : Solubility Equilibrium 2014-10-29 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 39 Molar Solubility Calculating

More information

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12)

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12) I. Multiple Choice UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12) 1) Which one of the following would form an ionic solution when dissolved in water? A. I 2 C. Ca(NO 3 ) 2 B. CH 3 OH D.

More information

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Name: The Common-Ion Effect Suppose we have a weak acid and a soluble salt of that acid. CH 3 COOH NaCH 3 COO CH 3 COOH CH 3 COO + H + Since NaCH

More information

Chapter 19. Solubility and Simultaneous Equilibria p

Chapter 19. Solubility and Simultaneous Equilibria p Chapter 19 Solubility and Simultaneous Equilibria p. 832 857 Solubility Product ) The product of molar concentrations of the constituent ions, each raised ot the power of its stoichiometric coefficients

More information

SOLUBILITY EQUILIBRIA (THE SOLUBILITY PRODUCT)

SOLUBILITY EQUILIBRIA (THE SOLUBILITY PRODUCT) SOLUBILITY EQUILIBRIA (THE SOLUBILITY PRODUCT) Saturated solutions of salts are another type of chemical equilibria. Slightly soluble salts establish a dynamic equilibrium with the hydrated cations and

More information

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin Chap 17 Additional Aspects of Aqueous Equilibria Hsu Fu Yin 1 17.1 The Common-Ion Effect Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Sodium acetate is a strong electrolyte: NaCH

More information

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group Page III-15-1 / Chapter Fifteen Lecture Notes Flashback - Aqueous Salts! If one ion from the Soluble Compd. list is present in a compound, the compound is water soluble. PRECIPITATION REACTIONS Chapter

More information

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect Chemistry: Atoms First Julia Burdge & Jason Overby 17 Acid-Base Equilibria and Solubility Equilibria Chapter 15 Acid-Base Equilibria and Solubility Equilibria Kent L. McCorkle Cosumnes River College Sacramento,

More information

Review 7: Solubility Equilibria

Review 7: Solubility Equilibria Review 7: Solubility Equilibria Objectives: 1. Be able to write dissociation equations for ionic compounds dissolving in water. 2. Given Ksp, be able to determine the solubility of a substance in both

More information

Chapter 17: Aqueous Ionic Equilibria III. Solubility equilibria Chem 102 Dr. Eloranta

Chapter 17: Aqueous Ionic Equilibria III. Solubility equilibria Chem 102 Dr. Eloranta Chapter 17: Aqueous Ionic Equilibria III Solubility equilibria Chem 102 Dr. Eloranta Solubility equilibria Solubility: amount of a solid (usually an ionic compound a salt) that dissolves in solution. Molar

More information

Solubility Multiple Choice. January Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D.

Solubility Multiple Choice. January Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D. Solubility Multiple Choice January 1999 14. Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D. mol/s 15. Consider the following anions: When 10.0mL of 0.20M Pb(NO3)

More information

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group Page III-15-1 / Chapter Fifteen Lecture Notes Flashback - Aqueous Salts! If one ion from the Soluble Compd. list is present in a compound, the compound is water soluble. PRECIPITATION REACTIONS Chapter

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium Sample Exercise 17.1 (p. 726) What is the ph of a 0.30 M solution of acetic acid? Be sure to use a RICE table, even though you may not need it. (2.63) What

More information

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA 16.3 (a) This is a weak acid problem. Setting up the standard equilibrium table: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Initial (M): 0.40 0.00

More information

More About Chemical Equilibria

More About Chemical Equilibria 1 More About Chemical Equilibria Acid-Base & Precipitation Reactions Chapter 15 & 16 1 Objectives Chapter 15 Define the Common Ion Effect (15.1) Define buffer and show how a buffer controls ph of a solution

More information

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Chemistry 12 Solubility Equilibrium II Name: Date: Block: 1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Forming a Precipitate Example: A solution may contain the ions Ca

More information

Week 9 Solubility & Intro electrochem

Week 9 Solubility & Intro electrochem Week 9 Solubility & Intro electrochem Q UEST IO N 1 2 The solubility of Ag 2CO 3 is 3.5 10 g/l at 25 C. What is the value of Ks p at this temperature? 12 A. 2.2 10 8 B. 3.4 10 12 C. 8.2 10 4 D. 1.7 10

More information

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution

More information

Chemistry 12 Review Sheet on Unit 3 Solubility of Ionic Substances

Chemistry 12 Review Sheet on Unit 3 Solubility of Ionic Substances Chemistry 12 Review Sheet on Unit 3 Solubility of Ionic Substances 1. Identify each of the following as ionic or molecular substances: a) NaCl (aq)... b) CH 3 COOH (aq)... c) CCl 4(l)... d) HNO 3(aq)...

More information

Chapter 15 - Applications of Aqueous Equilibria

Chapter 15 - Applications of Aqueous Equilibria Neutralization: Strong Acid-Strong Base Chapter 15 - Applications of Aqueous Equilibria Molecular: HCl(aq) + NaOH(aq) NaCl(aq) + H 2 O(l) SA-SB rxn goes to completion (one-way ) Write ionic and net ionic

More information

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA APPLICATIONS OF AQUEOUS EQUILIBRIA Operational Skills Calculating the common-ion effect on acid ionization Calculating the ph of a buffer from given volumes of solution Calculating the ph of a solution

More information

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect Chapter 17: Additional Aspects of Aqueous equilibria Learning goals and key skills: Describe the common ion effect. Explain how a buffer functions. Calculate the ph of a buffer solution. Calculate the

More information

We CAN have molecular solutions (ex. sugar in water) but we will be only working with ionic solutions for this unit.

We CAN have molecular solutions (ex. sugar in water) but we will be only working with ionic solutions for this unit. Solubility Equilibrium The Basics (should be mostly review) Solubility is defined as the maximum amount of a substance which can be dissolved in a given solute at a given temperature. The solubility of

More information

Chem 12 Practice Solubility Test

Chem 12 Practice Solubility Test Chem 12 Practice Solubility Test 1. Which combination of factors will affect the rate of the following reaction? Zn (s) + 2HCl ZnCl 2 + H 2(g) A. Temperature and surface area only B. Temperature and concentration

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak

More information

Ch 17 Solubility Equilibria. Brown & LeMay

Ch 17 Solubility Equilibria. Brown & LeMay Ch 17 Solubility Equilibria Brown & LeMay When a typical ionic solid is dissolved in water that dissolved material can be assumed to be present as separate hydrated anions & cations. For example: CaF 2

More information

Solubility Equilibrium

Solubility Equilibrium 2016 Ksp note.notebook Solubility Equilibrium Learning Goals: to understand what happens when a compound dissolves in water to calculate the extent of dissolution...the molar solubility to calculate the

More information

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Chapter 15 Applications of Aqueous Equilibria (mainly acid/base & solubility)

More information

Solubility Equilibria

Solubility Equilibria Chapter 17 SOLUBILITY EQUILIBRIA (Part II) Dr. Al Saadi 1 Solubility Equilibria The concept of chemical equilibrium helps to predict how much of a specific ionic compound (salt) will dissolve in water.

More information

III.1 SOLUBILITY CONCEPT REVIEW

III.1 SOLUBILITY CONCEPT REVIEW III.1 SOLUBILITY CONCEPT REVIEW Read Hebden p. 73 76 and review basic solubility definitions. Soluble means Insoluble means The Dissolving Process IONIC Solutions MOLECULAR Solutions (Covalent compounds)

More information

Week 9 Solubility & Redox

Week 9 Solubility & Redox Week 9 Solubility & Redox Q UEST IO N 1 2 The solubility of Ag 2CO 3 is 3.5 10 g/l at 25 C. What is the value of Ks p at this temperature? 12 A. 2.2 10 8 B. 3.4 10 12 C. 8.2 10 4 D. 1.7 10 E. 4.3 10 Q

More information

CHEM J-6 June 2014

CHEM J-6 June 2014 CHEM1102 2014-J-6 June 2014 A solution is prepared that contains sodium chloride and sodium chromate (both 0.10 M). When a concentrated solution of silver nitrate is added slowly, white AgCl(s) begins

More information

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc.

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc. Chapter 17 Additional Aspects of Aqueous Equilibria 蘇正寬 chengkuan@mail.ntou.edu.tw Additional Aspects of Aqueous Equilibria 17.1 The Common-Ion Effect 17.2 Buffers 17.3 Acid Base Titrations 17.4 Solubility

More information

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Formula, Complete, Net Ionic Equations 7. Qualitative Analysis

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak

More information

Solubility & Equilibrium Unit Review

Solubility & Equilibrium Unit Review Solubility & Equilibrium Unit Review This review is worth 3 marks of your total test marks. It must be completed on test day. 3 marks will be given to students who have fully completed this review with

More information

Chapter 16: Applications of Aqueous Equilibrium Part 3. Solubilities of Ionic Compounds and K sp

Chapter 16: Applications of Aqueous Equilibrium Part 3. Solubilities of Ionic Compounds and K sp Chapter 16: Applications of Aqueous Equilibrium Part 3 Solubilities of Ionic Compounds and K sp You ve already learned that not all ionic compounds are water soluble. You memorized the solubility rules

More information

Aqueous Equilibria: Part II- Solubility Product

Aqueous Equilibria: Part II- Solubility Product Aqueous Equilibria: Part II- Solubility Product PSI AP Chemistry Name-------------------------- I Solubility Product, K sp MC #63-103 a) Writing K sp expression b) Solving for K sp c) Solving for (molar)

More information

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions AP Chemistry CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak electrolyte.

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART II Chapter Description 14 Chemical Equilibrium 15 Acids and Bases 16 Acid-Base Equilibrium 17 Solubility and Complex-Ion Equilibrium 19

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

What is the ph of a 0.25 M solution of acetic acid (K a = 1.8 x 10-5 )?

What is the ph of a 0.25 M solution of acetic acid (K a = 1.8 x 10-5 )? 1 of 17 After completing this chapter, you should, at a minimum, be able to do the following. This information can be found in my lecture notes for this and other chapters and also in your text. Correctly

More information

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Acid-Base Equilibria and Solubility Equilibria Chapter 17 PowerPoint Lecture Presentation by J. David Robertson University of Missouri Acid-Base Equilibria and Solubility Equilibria Chapter 17 The common ion effect is the shift in equilibrium caused by the addition

More information

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA 16.5 (a) This is a weak acid problem. Setting up the standard equilibrium table: CH 3 COOH(aq) H (aq) CH 3 COO (aq) Initial (): 0.40 0.00 0.00

More information

Solubility and Complex Ion. Equilibria

Solubility and Complex Ion. Equilibria Solubility and Complex Ion a mineral formed by marine organisms through biological precipitation CALCITE Equilibria CaCO 3(s) Ca 2+ (aq) + CO 3 2- (aq) K = K sp = [Ca 2+ ][CO 3 2- ] = 2.8 x 10-9 K sp =

More information

! b. Calculate the ph of the saturated solution. (Hint: How many OH ions form for every Zn(OH) 2 that dissolves? Calculate poh, then ph.)! (8.

! b. Calculate the ph of the saturated solution. (Hint: How many OH ions form for every Zn(OH) 2 that dissolves? Calculate poh, then ph.)! (8. AP Chem Worksheet: Solubility Product, K sp Page 1 Write your chemical equations for dissolving the solid and the K sp expression before trying to solve the problems!! 1. The molar solubility of copper(i)

More information

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Equilibri acido-base ed equilibri di solubilità. Capitolo 16 Equilibri acido-base ed equilibri di solubilità Capitolo 16 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

More information

Ba 2+ (aq) + SO 4 2 (aq) ] = at 25 C

Ba 2+ (aq) + SO 4 2 (aq) ] = at 25 C Solubility Solubility 1 A. Solubility Product In this chapter, we will be discussing the solubility of ionic compounds (salts) in water. However, solubility, at least qualitatively, is very roughly defined.

More information

Solubility Equilibria. Even substances that are considered "insoluble" dissolve to a small extent.

Solubility Equilibria. Even substances that are considered insoluble dissolve to a small extent. Solubility Equilibria Even substances that are considered "insoluble" dissolve to a small extent. When a solution contains the maximum amount of dissolved material, it is saturated. 1 2 The undissolved

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria ACIDS-BASES COMMON ION EFFECT SOLUBILITY OF SALTS Acid-Base Equilibria and Solubility Equilibria Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2 The common

More information

1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D. C12H22O11

1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D. C12H22O11 Chemistry 12 Solubility Equilibrium Review Package Name: Date: Block: I. Multiple Choice 1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D.

More information

22. What is the maximum concentration of carbonate ions that will precipitate BaCO 3 but not MgCO 3 from a solution that is 2.

22. What is the maximum concentration of carbonate ions that will precipitate BaCO 3 but not MgCO 3 from a solution that is 2. PX312-1718 1. What is the solubility product expression for Th(IO 3 ) 4? A) K sp = [Th 4+ ][4IO 3 ] 4 B) K sp = [Th 4+ ][IO 3 ] C) K sp = [Th][IO 3 ] 4 D) K sp = [Th 4+ ][IO 3 ] 4 E) K sp = [Th 4+ ][IO

More information

The solubility of insoluble substances can be decreased by the presence of a common ion. AgCl will be our example.

The solubility of insoluble substances can be decreased by the presence of a common ion. AgCl will be our example. COMMON ION EFFECT WORKED PROBLEMS The solubility of insoluble substances can be decreased by the presence of a common ion. AgCl will be our example. Present in silver chloride are silver ions (Ag + ) and

More information

5. What is the percent ionization of a 1.4 M HC 2 H 3 O 2 solution (K a = ) at 25 C? A) 0.50% B) 0.36% C) 0.30% D) 0.18% E) 2.

5. What is the percent ionization of a 1.4 M HC 2 H 3 O 2 solution (K a = ) at 25 C? A) 0.50% B) 0.36% C) 0.30% D) 0.18% E) 2. Name: Date: 1. For which of the following equilibria does K c correspond to an acid-ionization constant, K a? A) NH 3 (aq) + H 3 O + (aq) NH 4 + (aq) + H 2 O(l) B) NH 4 + (aq) + H 2 O(l) NH 3 (aq) + H

More information

CHAPTER 16 SOLUBILITY AND COMPLEX ION EQUILIBRIA. Questions

CHAPTER 16 SOLUBILITY AND COMPLEX ION EQUILIBRIA. Questions CHAPTER 16 SOLUBILITY AND COMPLEX ION EQUILIBRIA Questions 8. MX(s) M n+ (aq) + X n (aq) K sp = [M n+ [X n ; the K sp reaction always refers to a solid breaking up into its ions. The representations all

More information

Applications of Aqueous Equilibria Chapter 15. Solubility Equilbriua Sections 6-8

Applications of Aqueous Equilibria Chapter 15. Solubility Equilbriua Sections 6-8 Applications of Aqueous Equilibria Chapter 15 Solubility Equilbriua Sections 6-8 Solubility Product CaF 2 (s) Ca 2+ (aq) + 2F - (aq) then Ca 2+ (aq) + 2F - (aq) CaF 2 (s) CaF 2 (s) Ca 2+ (aq) + 2F - (aq)

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Homogeneous versus Heterogeneous Solution Equilibria (17.1) Buffer Solutions (17.2) A Closer Look at Acid-Base

More information

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product Solubility Equilibria These are associated with ionic solids dissolving in water to form aqueous solutions Chapter 16 Solubility Equilibria It is assumed that when an ionic compound dissolves in water,

More information

CHAPTER 7.0: IONIC EQUILIBRIA

CHAPTER 7.0: IONIC EQUILIBRIA Acids and Bases 1 CHAPTER 7.0: IONIC EQUILIBRIA 7.1: Acids and bases Learning outcomes: At the end of this lesson, students should be able to: Define acid and base according to Arrhenius, Bronsted- Lowry

More information

Solubility Equilibrium. Solutions. Dissociation Equations. April/May Chemistry 30

Solubility Equilibrium. Solutions. Dissociation Equations. April/May Chemistry 30 Solubility Equilibrium Chemistry 30 Solutions Mixture containing two or more components, but looks like one homogeneous substance Solute: dissolved substance Solvent: dissolving substance In this course:

More information

Topic: Units of Solubility Product Constant 1. The units of the solubility product of Cu 2. are : a) M 2 b) M 5 c) M d) M 3 ) 4

Topic: Units of Solubility Product Constant 1. The units of the solubility product of Cu 2. are : a) M 2 b) M 5 c) M d) M 3 ) 4 PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - Meq. Approach SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market,

More information

Chapter 16. Solubility and Complex Ion Equilibria

Chapter 16. Solubility and Complex Ion Equilibria Chapter 16 Solubility and Complex Ion Equilibria Section 16.1 Solubility Equilibria and the Solubility Product Solubility Equilibria Solubility product (K sp ) equilibrium constant; has only one value

More information

SOLUBILITY EQUILIBRIUM

SOLUBILITY EQUILIBRIUM Introduction SOLUBILITY EQUILIBRIUM A. Ionic vs Molecular Solutions 1. Ionic Compounds form Ionic Solutions a) Ionic compounds ( + ) dissolved in water to form Ionic Solutions eg1: equation AlCl3(s) Al3+

More information

ANITA S WORK H I4 6 I6 5

ANITA S WORK H I4 6 I6 5 ANITA S WORK Multiple Choice Section: Please DO NOT WRITE or MAKE ANY MARKS on this test paper. Put all answers on your SCANTRON CARD. Please make sure that you fill in your Scantron Card correctly: use

More information

Aqueous Equilibria Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Aqueous Equilibria Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry The Common-Ion Effect Consider a solution of acetic acid: HC 2 H 3 O 2 (aq) + H 2 O(l) H 3 O + (aq) + C 2 H 3 O 2 (aq) If

More information

Chapter 17 Additional Aspects of

Chapter 17 Additional Aspects of Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 17 Additional Aspects of John D. Bookstaver St. Charles Community College Cottleville,

More information

CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems

CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems sparingly soluble ionic solids acidic and basic solutions concentrations of dissolved species K s calculations

More information

HW 16-10: Review from textbook (p.725 #84, 87, 88(mod), 89, 95, 98, 101, 102, 110, 113, 115, 118, 120, SG#23,A)

HW 16-10: Review from textbook (p.725 #84, 87, 88(mod), 89, 95, 98, 101, 102, 110, 113, 115, 118, 120, SG#23,A) HW 6: Review from textbook (p.75 #84, 87, 88(mod), 89, 95, 98,,,, 3, 5, 8,, SG#3,A) 6.84 The pk a of the indicator methyl orange is 3.46. Over what ph range does this indicator change from 9 percent HIn

More information

] after equilibrium has been established?

] after equilibrium has been established? Chemistry 1 Solubility Equilibrium onster Review 1. A saturated solution forms when a 0. 10 mol of salt is added to 10. L of water. The salt is A. Li S B. CuBr C. Zn( OH) ( ) D. NH CO 4. Consider the following

More information

APPLICATIONS OF AQUEOUS EQUILIBRIA REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS

APPLICATIONS OF AQUEOUS EQUILIBRIA REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS APPLICATIONS OF AQUEOUS EQUILIBRIA REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS COMMON IONS Common ion effect- The addition of an ion already present(common) in a system causes equilibrium

More information

4.4: Solubility and Ionic Equations

4.4: Solubility and Ionic Equations 4.4: Solubility and Ionic Equations Solubility Curves Graphs of solubility (maximum concentration) against temperature allow quick and easy reference, and are very useful for a wide variety of questions

More information

Chapter 8: Applications of Aqueous Equilibria

Chapter 8: Applications of Aqueous Equilibria Chapter 8: Applications of Aqueous Equilibria 8.1 Solutions of Acids or Bases Containing a Common Ion 8.2 Buffered Solutions 8.3 Exact Treatment of Buffered Solutions 8.4 Buffer Capacity 8.5 Titrations

More information

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 17 Additional Aspects of James F. Kirby Quinnipiac University Hamden, CT Effect of Acetate on the Acetic Acid Equilibrium Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq)

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Equilibrium Constants For a generic chemical reaction, the equilibrium constant is defined as: aa + bb cc + dd (1) The equilibrium constant, K eq, for a chemical reaction indicates

More information

CHAPTER 12 ACID-BASE EQUILIBRIA AND SOLUBILITY

CHAPTER 12 ACID-BASE EQUILIBRIA AND SOLUBILITY CHAPTER 1 ACID-BASE EQUILIBRIA AND SOLUBILITY 1.1 (a) This is a weak acid problem. Setting up the standard equilibrium table: CHCOOH(aq) H (aq) CHCOO (aq) Initial (M): 0.40 0.00 0.00 Change (M): x x x

More information

Ch 8 Practice Problems

Ch 8 Practice Problems Ch 8 Practice Problems 1. What combination of substances will give a buffered solution that has a ph of 5.05? Assume each pair of substances is dissolved in 5.0 L of water. (K a for NH 4 = 5.6 10 10 ;

More information

Chemistry 12 Provincial Exam Workbook Unit 03: Solubility Equilibrium. Multiple Choice Questions

Chemistry 12 Provincial Exam Workbook Unit 03: Solubility Equilibrium. Multiple Choice Questions R. Janssen, MSEC Chemistry 1 Provincial Workbook (Unit 0), P 1 / 7 Chemistry 1 Provincial Exam Workbook Unit 0: Solubility Equilibrium Multiple Choice Questions 1. Which of the following would be true

More information

Ionic Equilibria in Aqueous Systems. Dr.ssa Rossana Galassi

Ionic Equilibria in Aqueous Systems. Dr.ssa Rossana Galassi Ionic Equilibria in Aqueous Systems Dr.ssa Rossana Galassi 320 4381420 rossana.galassi@unicam.it Ionic Equilibria in Aqueous Systems 19.1 Equilibria of Acid-Base Buffer Systems 19.2 Acid-Base Titration

More information

Solubility Equilibria. Dissolving a salt... Chem 30S Review Solubility Rules. Solubility Equilibrium: Dissociation = Crystalization

Solubility Equilibria. Dissolving a salt... Chem 30S Review Solubility Rules. Solubility Equilibrium: Dissociation = Crystalization Chem 30S Review Solubility Rules Solubility Equilibria Salts are generally more soluble in HOT water(gases are more soluble in COLD water) Alkali Metal salts are very soluble in water. NaCl, KOH, Li 3

More information