Lecture #12 Complex Ions and Solubility

Size: px
Start display at page:

Download "Lecture #12 Complex Ions and Solubility"

Transcription

1 Lecture #12 Complex Ions and Solubility

2 Stepwise exchange of NH 3 for H 2 O in M(H 2 O) 4 2+ M(H 2 O) 2 (NH 3 ) 2 2+ M(H 2 O) 4 2+ M(NH 3 ) 4 2+ M(H 2 O) 3 (NH 3 ) 2+ M(H 2 O)(NH 3 ) 3 2+

3 Formation Constants (K f ) for Some Complex Ions at 25ºC

4 The Amphoteric Behavior of Aluminum Hydroxide (3 H3O+) (OH)- Al(H2O) H2O Al(H2O)3(OH)3 Al(H2O)2(OH)4 - + H2O (aq) (s) (aq)

5 The Amphoteric Behavior of Aluminum Hydroxide

6 Solubiity of Amphoteric Hydroxides

7 Hydrated Metal Ions as Acids Most transition metal cations form insoluble hydroxides: Fe(OH)3(s) Fe 3+ (aq) + 3 OH (aq) Ksp = Al(OH)3(s) Al 3+ (s) + 3 OH (aq) Ksp = For some, solubility increases in strongly basic solution: Al(H 2 O) 3 (OH) 3 (s)+ OH (aq) Al(H 2 O) 2 (OH) 4 (aq)

8 Hydrated Metal Ions as Acids Fe(H2O) H2O Fe(H2O)5(OH) 2+ + H3O +

9 K a for Hydrated Metal Cations

10 1) Calculate the ph of 0.50 M CrCl3: Cr 3+ (aq) + 4 H2O (l) Cr(H2O)4 3+ (aq) Cr(H2O)3(OH) 2+ (aq) + H+ (aq) Ka= 1.0 x 10-4 R Cr(H2O)4 3+ (aq) Cr(H2O)3(OH) 2+ (aq) + H + (aq) I C - x + x + x E 0.50-x x x Ka = [H + ][Cr(H2O)3(OH) 2+ ] [Cr(H2O)4 3+ ] (x) = 2 = 1.0 x 10 (.500-x) -4 x = 7.1 x 10-3 ph = 2.15

11 Solubility Equilibria

12 Solubility Equilibria All ionic compounds dissolve in water to some degree. Many compounds have such low solubility in water that we classify them as insoluble. What do we mean by insoluble? MnXm (s) nm m+ (aq) + mx n- (aq) We can apply the concepts of equilibrium to salts dissolving, and use the equilibrium constant for the process to measure relative solubilities in water.

13 Solubility Product The equilibrium constant for the dissociation of a solid salt into its aqueous ions is called the solubility product, Ksp. For an ionic solid MnXm, the reaction is: MnXm (s) nm m+ (aq) + mx n- (aq) The solubility product expression is: Ksp [M m+ ] n [X n- ] m

14 Molar Solubility Solubility (usually g/l) is the amount of solute that will dissolve in a given amount of solution at a particular temperature. Molar solubility is the number of moles of solute that will dissolve in a liter of solution. For the general reaction: MnXm (s) nm m+ (aq) + mx n- (aq) Molar Solubility = (n+m) (K sp ) (n) n (m) m

15 2) What is the molar solubility of Mg(OH)2 (Ksp = 5.6 x ) Mg(OH)2(s) Mg 2+ (aq) + 2 OH (aq) Mg(OH)2(s) Mg 2+ (aq) + 2 OH (aq) (x) (2x) x = M

16 K sp and Relative Solubility Molar solubility is related to Ksp. Molar solubility and Ksp cannot always be compared. In order to compare molar solubility and Ksp the compounds must have the same dissociation stoichiometry.

17 Solubility-Product Constants (K sp ) of Selected Ionic Compounds at 25 0 C Name, Formula Aluminum hydroxide, Al(OH) 3 Cobalt (II) carbonate, CoCO 3 Iron (II) hydroxide, Fe(OH) 2 Lead (II) fluoride, PbF 2 Lead (II) sulfate, PbSO 4 Mercury (I) iodide, Hg 2 I 2 Silver sulfide, Ag 2 S Zinc iodate, Zn(IO 3 ) 2 K sp 3 x x x x x x x x 10-6

18 Relationship Between K sp and Solubility at 25 0 C No. of Ions Formula Cation:Anion K sp Solubility (M) 2 MgCO 3 1:1 3.5 x x PbSO 4 1:1 1.6 x x BaCrO 4 1:1 2.1 x x Ca(OH) 2 1:2 5.5 x x BaF 2 1:2 1.5 x x CaF 2 1:2 3.2 x x Ag 2 CrO 4 2:1 2.6 x x 10-5

19 The Effect of Common Ion on Solubility Addition of a soluble salt that contains one of the ions of the insoluble salt, decreases the solubility of the insoluble salt. For example, addition of NaCl to the solubility equilibrium of solid PbCl2 decreases the solubility of PbCl2: PbCl2 (s) Pb 2+ (aq) + 2 Cl - (aq) Addition of Cl- shifts the equilibrium to the left

20 The Effect of a Common Ion on Solubility CrO 4 2- added PbCrO 4 (s) Pb 2+ (aq) + CrO 4 2- (aq) CrO 2 Equilibrium shifts to left

21 3) Calculate the molar solubility of Mg(OH)2 in a solution of M MgCl2 (Ksp for Mg(OH)2 = ) Mg(OH)2(s) Mg 2+ (aq) + 2 OH (aq) [Mg 2+ ] = 0.05 M Added Mg 2+ will shift the equilibrium to the left. [0.050][OH-] 2 (0.050)(2x) 2 x = 5.3 x 10-6 M without added Mg 2+, x = M

22 The Effect of ph on Solubility (Insoluble Ionic Hydroxides) M(OH)n (s) M n+ (aq) + n OH - (aq) A high ph decreases solubility by adding OHto the equilibrium. A low ph increases solubility by removing OHfrom the equilibrium. H3O + (aq) + OH - (aq) 2 H2O (l)

23 The Effect of ph on Solubility Insoluble Ionic Compounds Containing Anions of Weak Acids CaF2 M2(CO3)n (s) (s) 2 Ca M n+ 2+ (aq) (aq) + 2 n FCO3 - (aq) 2- (aq) A low ph increases solubility by removing F - from the equilibrium. H3O + (aq) + F - (aq) HF (aq) + H2O (l)

24 4) Which of the following compounds solubility will not be affected by a low ph in solution? A) AgCl B) Sr(OH) 2 C) CaF 2 D) CuS E) SrCO 3 Cl - + H + OH - + H + F - + H + HCl H2O HF S 2- + H + HS - CO H + HCO3 -

25 Precipitation Precipitation will occur when the concentrations of the ions exceed the solubility of the ionic compound. One can compare the reaction quotient Q, for the current solution concentrations to the value of Ksp: If Q = Ksp, the solution is saturated, but no precipitate forms. If Q < Ksp, the solution is unsaturated, and no precipitate forms. If Q > Ksp, the solution is above saturation, a precipitate forms. (Some solutions with Q>Ksp will not precipitate unless disturbed - these are supersaturated solutions.)

26 5) The following two solutions are mixed: 275 ml of M Pb(NO3)2 125 ml of M NaCl Will a precipitate form? Pb(NO3)2 (aq) + 2 NaCl (aq) PbCl2 (s) + 2 NaNO3 (aq) mol of [Pb 2+ ]= (0.134 mol/l) x (0.275 L) = mol of [Cl - ] = ( mol/l) x (0.125 L) = Final volume = 400 ml Final Concentrations: [Pb 2+ ] = mol/0.400 L = M [Cl - ] = mol/0.400 L = M PbCl2 (s) Pb 2+ (aq) + 2 Cl- (aq) Ksp = 1.6 x 10-5 Q = [Pb 2+ ][Cl - ] 2 = (0.0921)(0.016) 2 = 1.03 x 10-5 Q < Ksp A precipitate does not form!!

27 Separating Ions by Selective Precipitation Add precipitating ion Add precipitating ion Centrifuge Centrifuge

28 6) Consider a solution containing 0.10 M Ca 2+ and 0.02 Mg 2+. If the Mg 2+ is removed by precipitation as the hydroxide, will the Ca 2+ remain in the solution? Ca(OH)2(s) Ca 2+ (aq) + 2 OH (aq) Ksp = Mg(OH)2(s) Mg 2+ (aq) + 2 OH (aq) Ksp = What [OH ] is needed to ppt 0.10 M Ca 2+? Ksp = 4.7 x 10 6 = [Ca 2+ ]x[oh ] 2 = (0.100)(x) 2 x = 6.9 x 10-3 (When [OH] > 6.9 x 10-3, Q>K) How much Mg 2+ is in equilibrium with 6.9 x 10-3 M OH-? Ksp = 5.6 x = [Mg 2+ ]x [OH ] 2 = (?)(6.9 x 10-3 ) 2? = 1.2 x 10-7 (1.2 x 10-7 )/(0.02) x 100 =.0006 % of Mg 2+ remains

29 7) A solution contains M in Al 3+ and 0.29 M in NaF. If the Kf for AlF6 3- is , what is the final concentration of aluminum ions at equilibrium? Al 3+ (aq) + 4 F- (aq) AlF6 3- (aq) Kf = 7.0 x R I C Al 3+ (aq) 4 F- (aq) AlF6 3- (aq) 3.8 x (3.8 x x) -6(3.8 x x) +(3.8 x x) E x x (3.8 x x) [AlF6 3- ] Kf = [Al 3+ ][F - ] 6 = (3.8 x x) (3.8 x 10-2 ) x( x) 6 x(0.062) 6 = 7.0 x 1019 x = 9.6 x M

Chapter 16. Equilibria in Aqueous Systems

Chapter 16. Equilibria in Aqueous Systems Chapter 16 Equilibria in Aqueous Systems Buffers! buffers are solutions that resist changes in ph when an acid or base is added! they act by neutralizing the added acid or base! but just like everything

More information

Ionic Equilibria in Aqueous Systems. Dr.ssa Rossana Galassi

Ionic Equilibria in Aqueous Systems. Dr.ssa Rossana Galassi Ionic Equilibria in Aqueous Systems Dr.ssa Rossana Galassi 320 4381420 rossana.galassi@unicam.it Ionic Equilibria in Aqueous Systems 19.1 Equilibria of Acid-Base Buffer Systems 19.2 Acid-Base Titration

More information

AP Chemistry Table of Contents: Ksp & Solubility Products Click on the topic to go to that section

AP Chemistry Table of Contents: Ksp & Solubility Products Click on the topic to go to that section Slide 1 / 91 Slide 2 / 91 AP Chemistry Aqueous Equilibria II: Ksp & Solubility Products Table of Contents: K sp & Solubility Products Slide 3 / 91 Click on the topic to go to that section Introduction

More information

Chapter 19. Solubility and Simultaneous Equilibria p

Chapter 19. Solubility and Simultaneous Equilibria p Chapter 19 Solubility and Simultaneous Equilibria p. 832 857 Solubility Product ) The product of molar concentrations of the constituent ions, each raised ot the power of its stoichiometric coefficients

More information

Solubility and Complex-ion Equilibria

Solubility and Complex-ion Equilibria Solubility and Complex-ion Equilibria Contents and Concepts Solubility Equilibria 1. The Solubility Product Constant 2. Solubility and the Common-Ion Effect 3. Precipitation Calculations 4. Effect of ph

More information

Chapter 18. Solubility and Complex- Ionic Equilibria

Chapter 18. Solubility and Complex- Ionic Equilibria Chapter 18 Solubility and Complex- Ionic Equilibria 1 The common ion effect Le Chatelier Why is AgCl less soluble in sea water than in fresh water? AgCl(s) Ag + + Cl Seawater contains NaCl 2 Problem: The

More information

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin Chap 17 Additional Aspects of Aqueous Equilibria Hsu Fu Yin 1 17.1 The Common-Ion Effect Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Sodium acetate is a strong electrolyte: NaCH

More information

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12)

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12) I. Multiple Choice UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12) 1) Which one of the following would form an ionic solution when dissolved in water? A. I 2 C. Ca(NO 3 ) 2 B. CH 3 OH D.

More information

Ionic Equilibria in Aqueous Systems

Ionic Equilibria in Aqueous Systems Ionic Equilibria in Aqueous Systems Chapter Nineteen AP Chemistry There are buffers in our blood that keep the ph of our blood at a constant level. The foods that we eat are often acidic or basic. This

More information

Solubility Equilibria. Dissolving a salt... Chem 30S Review Solubility Rules. Solubility Equilibrium: Dissociation = Crystalization

Solubility Equilibria. Dissolving a salt... Chem 30S Review Solubility Rules. Solubility Equilibrium: Dissociation = Crystalization Chem 30S Review Solubility Rules Solubility Equilibria Salts are generally more soluble in HOT water(gases are more soluble in COLD water) Alkali Metal salts are very soluble in water. NaCl, KOH, Li 3

More information

Saturated vs. Unsaturated

Saturated vs. Unsaturated Solubility Equilibria in Aqueous Systems K sp (Equilibria of Slightly Soluble Salts, Ionic Compounds) Factors that Affect Solubility (Common Ion Effect, AcidBase Chemistry) Applications of Ionic Equilibria

More information

Chapter 15 Additional Aspects of

Chapter 15 Additional Aspects of Chemistry, The Central Science Chapter 15 Additional Aspects of Buffers: Solution that resists change in ph when a small amount of acid or base is added or when the solution is diluted. A buffer solution

More information

Solubility Equilibria

Solubility Equilibria Solubility Equilibria Heretofore, we have investigated gas pressure, solution, acidbase equilibriums. Another important equilibrium that is used in the chemistry lab is that of solubility equilibrium.

More information

Review 7: Solubility Equilibria

Review 7: Solubility Equilibria Review 7: Solubility Equilibria Objectives: 1. Be able to write dissociation equations for ionic compounds dissolving in water. 2. Given Ksp, be able to determine the solubility of a substance in both

More information

Solubility Equilibrium

Solubility Equilibrium 2016 Ksp note.notebook Solubility Equilibrium Learning Goals: to understand what happens when a compound dissolves in water to calculate the extent of dissolution...the molar solubility to calculate the

More information

Modified Dr. Cheng-Yu Lai

Modified Dr. Cheng-Yu Lai Ch16 Aqueous Ionic Equilibrium Solubility and Complex Ion Equilibria Lead (II) iodide precipitates when potassium iodide is mixed with lead (II) nitrate Modified Dr. Cheng-Yu Lai Solubility-product constant

More information

SOLUBILITY EQUILIBRIA (THE SOLUBILITY PRODUCT)

SOLUBILITY EQUILIBRIA (THE SOLUBILITY PRODUCT) SOLUBILITY EQUILIBRIA (THE SOLUBILITY PRODUCT) Saturated solutions of salts are another type of chemical equilibria. Slightly soluble salts establish a dynamic equilibrium with the hydrated cations and

More information

Chemistry 102 Chapter 17 COMMON ION EFFECT

Chemistry 102 Chapter 17 COMMON ION EFFECT COMMON ION EFFECT Common ion effect is the shift in equilibrium caused by the addition of an ion that takes part in the equilibrium. For example, consider the effect of adding HCl to a solution of acetic

More information

116 PLTL Activity sheet / Solubility Equilibrium Set 11

116 PLTL Activity sheet / Solubility Equilibrium Set 11 Predicting Solubility Solubility problems are equilibrium problems. The reactant in a solubility equilibrium is a slightly soluble salt and the equilibrium constant for the reaction is the solubility product

More information

Ch 17 Solubility Equilibria. Brown & LeMay

Ch 17 Solubility Equilibria. Brown & LeMay Ch 17 Solubility Equilibria Brown & LeMay When a typical ionic solid is dissolved in water that dissolved material can be assumed to be present as separate hydrated anions & cations. For example: CaF 2

More information

SOLUBILITY AND PRECIPITATION EQUILIBRIA

SOLUBILITY AND PRECIPITATION EQUILIBRIA 16 CHAPTER SOLUBILITY AND PRECIPITATION EQUILIBRIA 16.1 The Nature of Solubility Equilibria 16.2 Ionic Equilibria between Solids and Solutions 16.3 Precipitation and the Solubility Product 16.4 The Effects

More information

SOLUBILITY AND PRECIPITATION EQUILIBRIA

SOLUBILITY AND PRECIPITATION EQUILIBRIA 16 CHAPTER SOLUBILITY AND PRECIPITATION EQUILIBRIA 16.1 The Nature of Solubility Equilibria 16.2 Ionic Equilibria between Solids and Solutions 16.3 Precipitation and the Solubility Product 16.4 The Effects

More information

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Chemistry 12 Solubility Equilibrium II Name: Date: Block: 1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Forming a Precipitate Example: A solution may contain the ions Ca

More information

SOLUBILITY REVIEW QUESTIONS

SOLUBILITY REVIEW QUESTIONS Solubility Problem Set 1 SOLUBILITY REVIEW QUESTIONS 1. What is the solubility of calcium sulphate in M, g/l, and g/100 ml? 2. What is the solubility of silver chromate? In a saturated solution of silver

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium Sample Exercise 17.1 (p. 726) What is the ph of a 0.30 M solution of acetic acid? Be sure to use a RICE table, even though you may not need it. (2.63) What

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

Learning Objectives. Solubility and Complex-ion Equilibria. Contents and Concepts. 3. Precipitation Calculations. 4. Effect of ph on Solubility

Learning Objectives. Solubility and Complex-ion Equilibria. Contents and Concepts. 3. Precipitation Calculations. 4. Effect of ph on Solubility Solubility and Comple-ion Equilibria. Solubility and the Common-Ion Effect a. Eplain how the solubility of a salt is affected by another salt that has the same cation or anion. (common ion) b. Calculate

More information

Aqueous Equilibria Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Aqueous Equilibria Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry The Common-Ion Effect Consider a solution of acetic acid: HC 2 H 3 O 2 (aq) + H 2 O(l) H 3 O + (aq) + C 2 H 3 O 2 (aq) If

More information

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc.

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc. Chapter 17 Additional Aspects of Aqueous Equilibria 蘇正寬 chengkuan@mail.ntou.edu.tw Additional Aspects of Aqueous Equilibria 17.1 The Common-Ion Effect 17.2 Buffers 17.3 Acid Base Titrations 17.4 Solubility

More information

22. What is the maximum concentration of carbonate ions that will precipitate BaCO 3 but not MgCO 3 from a solution that is 2.

22. What is the maximum concentration of carbonate ions that will precipitate BaCO 3 but not MgCO 3 from a solution that is 2. PX312-1718 1. What is the solubility product expression for Th(IO 3 ) 4? A) K sp = [Th 4+ ][4IO 3 ] 4 B) K sp = [Th 4+ ][IO 3 ] C) K sp = [Th][IO 3 ] 4 D) K sp = [Th 4+ ][IO 3 ] 4 E) K sp = [Th 4+ ][IO

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

CHEM 12 Unit 3 Review package (solubility)

CHEM 12 Unit 3 Review package (solubility) CHEM 12 Unit 3 Review package (solubility) 1. Which of the following combinations would form an ionic solid? A. Metalloid - metal B. Metal non-metal C. Metalloid metalloid D. Non-metal non-metal 2. Which

More information

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Name: The Common-Ion Effect Suppose we have a weak acid and a soluble salt of that acid. CH 3 COOH NaCH 3 COO CH 3 COOH CH 3 COO + H + Since NaCH

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

E09. Exp 09 - Solubility. Solubility. Using Q. Solubility Equilibrium. This Weeks Experiment. Factors Effecting Solubility.

E09. Exp 09 - Solubility. Solubility. Using Q. Solubility Equilibrium. This Weeks Experiment. Factors Effecting Solubility. E09 Exp 09 - Solubility Solubility Solvation The reaction coefficient Precipitating Insoluble Substances Comparing Q to Ksp Solubility Equilibrium Solubility Product, Ksp Relating Molar Solubility Factors

More information

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions AP Chemistry CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak electrolyte.

More information

Consider a normal weak acid equilibrium: Which direction will the reaction shift if more A is added? What happens to the % ionization of HA?

Consider a normal weak acid equilibrium: Which direction will the reaction shift if more A is added? What happens to the % ionization of HA? ch16blank Page 1 Chapter 16: Aqueous ionic equilibrium Topics in this chapter: 1. Buffers 2. Titrations and ph curves 3. Solubility equilibria Buffersresist changes to the ph of a solution. Consider a

More information

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA

Operational Skills. Operational Skills. The Common Ion Effect. A Problem To Consider. A Problem To Consider APPLICATIONS OF AQUEOUS EQUILIBRIA APPLICATIONS OF AQUEOUS EQUILIBRIA Operational Skills Calculating the common-ion effect on acid ionization Calculating the ph of a buffer from given volumes of solution Calculating the ph of a solution

More information

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group Page III-15-1 / Chapter Fifteen Lecture Notes Flashback - Aqueous Salts! If one ion from the Soluble Compd. list is present in a compound, the compound is water soluble. PRECIPITATION REACTIONS Chapter

More information

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 16 Aqueous Ionic Equilibrium Sherril Soman Grand Valley State University The Danger of Antifreeze Each year, thousands of pets and wildlife species die from consuming antifreeze.

More information

REVIEW QUESTIONS Chapter 17

REVIEW QUESTIONS Chapter 17 Chemistry 102 REVIEW QUESTIONS Chapter 17 1. A buffer is prepared by adding 20.0 g of acetic acid (HC 2 H 3 O 2 ) and 20.0 g of sodium acetate (NaC 2 H 3 O 2 ) in enough water to prepare 2.00 L of solution.

More information

1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D. C12H22O11

1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D. C12H22O11 Chemistry 12 Solubility Equilibrium Review Package Name: Date: Block: I. Multiple Choice 1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D.

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Solubility and Complex-ion Equilibria

Solubility and Complex-ion Equilibria Solubility and Complex-ion Equilibria Solubility Equilibria Many natural processes depend on the precipitation or dissolving of a slightly soluble salt. In the next section, we look at the equilibria of

More information

Solubility Equilibria

Solubility Equilibria Chapter 17 SOLUBILITY EQUILIBRIA (Part II) Dr. Al Saadi 1 Solubility Equilibria The concept of chemical equilibrium helps to predict how much of a specific ionic compound (salt) will dissolve in water.

More information

Chapter 8: Applications of Aqueous Equilibria

Chapter 8: Applications of Aqueous Equilibria Chapter 8: Applications of Aqueous Equilibria 8.1 Solutions of Acids or Bases Containing a Common Ion 8.2 Buffered Solutions 8.3 Exact Treatment of Buffered Solutions 8.4 Buffer Capacity 8.5 Titrations

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak

More information

We CAN have molecular solutions (ex. sugar in water) but we will be only working with ionic solutions for this unit.

We CAN have molecular solutions (ex. sugar in water) but we will be only working with ionic solutions for this unit. Solubility Equilibrium The Basics (should be mostly review) Solubility is defined as the maximum amount of a substance which can be dissolved in a given solute at a given temperature. The solubility of

More information

Aqueous Equilibria: Part II- Solubility Product

Aqueous Equilibria: Part II- Solubility Product Aqueous Equilibria: Part II- Solubility Product PSI AP Chemistry Name-------------------------- I Solubility Product, K sp MC #63-103 a) Writing K sp expression b) Solving for K sp c) Solving for (molar)

More information

Solubility & Equilibrium Unit Review

Solubility & Equilibrium Unit Review Solubility & Equilibrium Unit Review This review is worth 3 marks of your total test marks. It must be completed on test day. 3 marks will be given to students who have fully completed this review with

More information

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group

Flashback - Aqueous Salts! PRECIPITATION REACTIONS Chapter 15. Analysis of Silver Group. Solubility of a Salt. Analysis of Silver Group Page III-15-1 / Chapter Fifteen Lecture Notes Flashback - Aqueous Salts! If one ion from the Soluble Compd. list is present in a compound, the compound is water soluble. PRECIPITATION REACTIONS Chapter

More information

Part One: Solubility Equilibria. Insoluble and slightly soluble compounds are important in nature and commercially.

Part One: Solubility Equilibria. Insoluble and slightly soluble compounds are important in nature and commercially. CHAPTER 17: SOLUBILITY AND COMPLEX ION EQUILIBRIA Part One: Solubility Equilibria A. Ksp, the Solubility Product Constant. (Section 17.1) 1. Review the solubility rules. (Table 4.1) 2. Insoluble and slightly

More information

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Quick Review - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Water H 2 O Is water an ionic or a covalent compound? Covalent,

More information

Solubility Equilibrium When a substance dissolves an equilibrium results between the precipitate and the dissolved ions. The solution becomes

Solubility Equilibrium When a substance dissolves an equilibrium results between the precipitate and the dissolved ions. The solution becomes Solubility Equilibrium When a substance dissolves an equilibrium results between the precipitate and the dissolved ions. The solution becomes saturated. The particles dissolving equals the particles precipitating.

More information

IONIC CHARGES. Chemistry 51 Review

IONIC CHARGES. Chemistry 51 Review IONIC CHARGES The ionic charge of an ion is dependent on the number of electrons lost or gained to attain a noble gas configuration. For most main group elements, the ionic charges can be determined from

More information

Dougherty Valley High School AP Chemistry Chapters 14 and 15 Test - Acid-Base Equilibria

Dougherty Valley High School AP Chemistry Chapters 14 and 15 Test - Acid-Base Equilibria Dougherty Valley High School AP Chemistry Chapters 14 and 15 Test - Acid-Base Equilibria This is a PRACTICE TEST. Complete ALL questions. Answers will be provided so that you may check your work. I strongly

More information

Chapter 17: Aqueous Ionic Equilibria III. Solubility equilibria Chem 102 Dr. Eloranta

Chapter 17: Aqueous Ionic Equilibria III. Solubility equilibria Chem 102 Dr. Eloranta Chapter 17: Aqueous Ionic Equilibria III Solubility equilibria Chem 102 Dr. Eloranta Solubility equilibria Solubility: amount of a solid (usually an ionic compound a salt) that dissolves in solution. Molar

More information

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents Slide 1 / 39 AP Chemistry Slide 2 / 39 Equilibrium Part C : Solubility Equilibrium 2014-10-29 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 39 Molar Solubility Calculating

More information

Problems -- Chapter Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following.

Problems -- Chapter Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following. Problems -- Chapter 1 1. Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following. (a) NaNO and HNO answers: see end of problem set (b)

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak

More information

APPLICATIONS OF AQUEOUS EQUILIBRIA REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS

APPLICATIONS OF AQUEOUS EQUILIBRIA REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS APPLICATIONS OF AQUEOUS EQUILIBRIA REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS COMMON IONS Common ion effect- The addition of an ion already present(common) in a system causes equilibrium

More information

Solubility Multiple Choice. January Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D.

Solubility Multiple Choice. January Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D. Solubility Multiple Choice January 1999 14. Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D. mol/s 15. Consider the following anions: When 10.0mL of 0.20M Pb(NO3)

More information

III.1 SOLUBILITY CONCEPT REVIEW

III.1 SOLUBILITY CONCEPT REVIEW III.1 SOLUBILITY CONCEPT REVIEW Read Hebden p. 73 76 and review basic solubility definitions. Soluble means Insoluble means The Dissolving Process IONIC Solutions MOLECULAR Solutions (Covalent compounds)

More information

Chapter 17 Additional Aspects of

Chapter 17 Additional Aspects of Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 17 Additional Aspects of John D. Bookstaver St. Charles Community College Cottleville,

More information

Equilibrium HW Holt May 2017

Equilibrium HW Holt May 2017 Equilibrium HW Holt May 2017 Answer Key p. 595 (PP 1-3, SR 1-10), p. 604 (SR 1-6); p. 616 (PP 1&2); p. 618 (PP 1&2); p. 620 (PP 1&2, SR 1-7) pp. 622-624 (2-11, 14-16, 27, 29, 32, 33, 34, 37, 39, 40 (review

More information

Calculating equilibrium constants

Calculating equilibrium constants Equilibrium Work Book Writing Equilibrium Constants Expressions 1. Write the equilibrium law (mass action expression) for each of the following reactions: a. SO 2 (g) + NO 2 (g) SO 3 (g) + NO(g) b. 2 C(s)

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

Chapter 17: Solubility Equilibria

Chapter 17: Solubility Equilibria Previous Chapter Table of Contents Next Chapter Chapter 17: Solubility Equilibria Sections 17.1-17.2: Solubility Equilibria and the K sp Table In this chapter, we consider the equilibrium associated with

More information

Chemistry 40S Chemical Equilibrium (This unit has been adapted from

Chemistry 40S Chemical Equilibrium (This unit has been adapted from Chemistry 40S Chemical Equilibrium (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Defining Equilibrium Goals: Describe physical and chemical equilibrium. Describe the

More information

SOLUBILITY AND SOLUBILITY PRODUCT

SOLUBILITY AND SOLUBILITY PRODUCT SOLUBILITY AND SOLUBILITY PRODUCT [MH 5; 16.1 & 16.2] $ In this section we are going to consider the solubility of ionic solids in water. $ ASolubility@ may be considered to be an equilibrium; the equilibrium

More information

CHEM Dr. Babb s Sections Exam #4 Review Sheet

CHEM Dr. Babb s Sections Exam #4 Review Sheet CHEM 116 - Dr. Babb s Sections Exam #4 Review Sheet 158. Explain using the HC 2 H 3 O 2 /NaC 2 H 3 O 2 buffer system how a buffer maintains a relatively constant ph when small quantity of acid (HCl) or

More information

Solutions CHAPTER OUTLINE

Solutions CHAPTER OUTLINE Chapter 8A Solutions 1 CHAPTER OUTLINE Type of Solutions Electrolytes & Nonelectrolytes Equivalents of Electrolytes Solubility & Saturation Soluble & Insoluble Salts Formation of a Solid Precipitation

More information

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product Solubility Equilibria These are associated with ionic solids dissolving in water to form aqueous solutions Chapter 16 Solubility Equilibria It is assumed that when an ionic compound dissolves in water,

More information

Solubility Equilibria. Even substances that are considered "insoluble" dissolve to a small extent.

Solubility Equilibria. Even substances that are considered insoluble dissolve to a small extent. Solubility Equilibria Even substances that are considered "insoluble" dissolve to a small extent. When a solution contains the maximum amount of dissolved material, it is saturated. 1 2 The undissolved

More information

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect Chemistry: Atoms First Julia Burdge & Jason Overby 17 Acid-Base Equilibria and Solubility Equilibria Chapter 15 Acid-Base Equilibria and Solubility Equilibria Kent L. McCorkle Cosumnes River College Sacramento,

More information

AP Chemistry. Introduction to Solubility Equilibria. Slide 1 / 91 Slide 2 / 91. Slide 3 / 91. Slide 4 / 91. Slide 5 / 91.

AP Chemistry. Introduction to Solubility Equilibria. Slide 1 / 91 Slide 2 / 91. Slide 3 / 91. Slide 4 / 91. Slide 5 / 91. Slide 1 / 91 Slide 2 / 91 P hemistry queous quilibria II: Ksp & Solubility Products Slide 3 / 91 Slide 4 / 91 Table of ontents: K sp & Solubility Products Introduction to Solubility quilibria alculating

More information

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts Ionic Equilibria weak acids and bases salts of weak acids and bases buffer solutions solubility of slightly soluble salts Arrhenius Definitions produce H + ions in the solution strong acids ionize completely

More information

AP Chemistry. Introduction to Solubility Equilibria. Slide 1 / 91 Slide 2 / 91. Slide 3 / 91. Slide 4 / 91. Slide 5 / 91.

AP Chemistry. Introduction to Solubility Equilibria. Slide 1 / 91 Slide 2 / 91. Slide 3 / 91. Slide 4 / 91. Slide 5 / 91. Slide 1 / 91 Slide 2 / 91 P hemistry queous Equilibria II: Ksp & Solubility Products Slide 3 / 91 Slide 4 / 91 Table of ontents: K sp & Solubility Products Introduction to Solubility Equilibria alculating

More information

Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section

Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section 1. If 1.0 liter solution has 5.6mol HCl, 5.mol NaOH and 0.0mol NaA is added together what is the ph when the resulting solution

More information

] [ SO 4 ] let sol y x x = x x be x = x 2 if sol y = 7.94 x 10 4 mol/l = 6.3 x 10 7

] [ SO 4 ] let sol y x x = x x be x = x 2 if sol y = 7.94 x 10 4 mol/l = 6.3 x 10 7 SCH 4U: UNIT 4 LESSONS Heterogeneous EQUILIBRIUM (Chap 17-pg 759) 1. Rationale: The principles of Chemical Equilibrium developed earlier (in Unit 3) also apply to weakly soluble salts. In this unit we

More information

Chem 12 Practice Solubility Test

Chem 12 Practice Solubility Test Chem 12 Practice Solubility Test 1. Which combination of factors will affect the rate of the following reaction? Zn (s) + 2HCl ZnCl 2 + H 2(g) A. Temperature and surface area only B. Temperature and concentration

More information

Review of Chemistry 11

Review of Chemistry 11 Review of Chemistry 11 HCl C 3 H 8 SO 2 NH 4 Cl KOH H 2 SO 4 H 2 O AgNO 3 PbSO 4 H 3 PO 4 Ca(OH) 2 Al(OH) 3 P 2 O 5 Ba(OH) 2 CH 3 COOH 1. Classify the above as ionic or covalent by making two lists. Describe

More information

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3 Chemistry 11 Solution Chemistry II Name: Date: Block: 1. Ions in Solutions 2. Solubility Table 3. Separating Ions Ions in Solutions Ionization Equation - Represents the salt breaking apart into ions. Practice:

More information

SOLUTIONS. Solutions - page

SOLUTIONS. Solutions - page SOLUTIONS For gases in a liquid, as the temperature goes up the solubility goes. For gases in a liquid, as the pressure goes up the solubility goes. Example: What is the molarity of a solution with 2.0

More information

Practice Worksheet - Answer Key. Solubility #1 (KEY)

Practice Worksheet - Answer Key. Solubility #1 (KEY) Practice Worksheet - Answer Key Solubility #1 (KEY) 1 Indicate whether the following compounds are ionic or covalent a) NaCl ionic f) Sr(OH) 2 ionic b) CaBr 2 ionic g) MgCO 3 ionic c) SO 2 covalent h)

More information

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect Chapter 17: Additional Aspects of Aqueous equilibria Learning goals and key skills: Describe the common ion effect. Explain how a buffer functions. Calculate the ph of a buffer solution. Calculate the

More information

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution

More information

Chapter 4 Suggested end-of-chapter problems with solutions

Chapter 4 Suggested end-of-chapter problems with solutions Chapter 4 Suggested end-of-chapter problems with solutions a. 5.6 g NaHCO 1 mol NaHCO 84.01 g NaHCO = 6.69 10 mol NaHCO M = 6.69 10 mol 50.0 m 1000 m = 0.677 M NaHCO b. 0.1846 g K Cr O 7 1 mol K 94.0 g

More information

Solubility and Complex Ion Equilibria

Solubility and Complex Ion Equilibria Solubility and Complex Ion Equilibria a mineral formed by marine organisms through biological precipitation CALCITE CaCO 3(s) Ca + (aq)+ CO 3 - (aq) K K sp [Ca + ][CO 3 - ].8 x 10-9 K sp solubility product

More information

Chapter 16: Applications of Aqueous Equilibrium Part 3. Solubilities of Ionic Compounds and K sp

Chapter 16: Applications of Aqueous Equilibrium Part 3. Solubilities of Ionic Compounds and K sp Chapter 16: Applications of Aqueous Equilibrium Part 3 Solubilities of Ionic Compounds and K sp You ve already learned that not all ionic compounds are water soluble. You memorized the solubility rules

More information

] after equilibrium has been established?

] after equilibrium has been established? Chemistry 1 Solubility Equilibrium onster Review 1. A saturated solution forms when a 0. 10 mol of salt is added to 10. L of water. The salt is A. Li S B. CuBr C. Zn( OH) ( ) D. NH CO 4. Consider the following

More information

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Acid-Base Equilibria and Solubility Equilibria Chapter 17 PowerPoint Lecture Presentation by J. David Robertson University of Missouri Acid-Base Equilibria and Solubility Equilibria Chapter 17 The common ion effect is the shift in equilibrium caused by the addition

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Homogeneous versus Heterogeneous Solution Equilibria (17.1) Buffer Solutions (17.2) A Closer Look at Acid-Base

More information

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Equilibri acido-base ed equilibri di solubilità. Capitolo 16 Equilibri acido-base ed equilibri di solubilità Capitolo 16 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

More information

Chapter 16 Aqueous Ionic Equilibrium

Chapter 16 Aqueous Ionic Equilibrium Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Chapter 16 Aqueous Ionic Equilibrium Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA 2008, Prentice Hall The Danger of Antifreeze

More information

Solubility and Complex Ion Equilibria

Solubility and Complex Ion Equilibria CALCITE Solubility and Complex Ion Equilibria a mineral formed by marine organisms through biological precipitation CaCO (s) Ca + (aq)+ CO (aq) K K sp [Ca + ][CO ].8 x 10-9 K sp solubility product constant

More information

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13 ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. A solution is a homogenous mixture of 2 or more substances at the molecular level The solute(s) is(are)

More information

Chemistry 12 Review Sheet on Unit 3 Solubility of Ionic Substances

Chemistry 12 Review Sheet on Unit 3 Solubility of Ionic Substances Chemistry 12 Review Sheet on Unit 3 Solubility of Ionic Substances 1. Identify each of the following as ionic or molecular substances: a) NaCl (aq)... b) CH 3 COOH (aq)... c) CCl 4(l)... d) HNO 3(aq)...

More information

AP 17.4, 17.5 Study Questions

AP 17.4, 17.5 Study Questions Name: Class: Date: AP 17.4, 17.5 Study Questions True/False Indicate whether the statement is true or false. 1. The solubility product of a compound is numerically equal to the product of the concentration

More information

Exam3Fall2009thermoelectro

Exam3Fall2009thermoelectro Exam3Fall2009thermoelectro Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Thermodynamics can be used to determine all of the following EXCEPT

More information