Looking for ferromagnetic signals in proton-irradiated graphite

Size: px
Start display at page:

Download "Looking for ferromagnetic signals in proton-irradiated graphite"

Transcription

1 Looking for ferromagnetic signals in proton-irradiated graphite M. A. Ramos 1, A. Asenjo 2, M. Jaafar 2, A. Climent-Font 3, A. Muñoz-Martín 3,4, J. Camarero 5, M. García-Hernandez 2, and M. Vázquez 2 1 LBT-UAM, Depto. de Física de la Materia Condensada, C-III, Universidad Autónoma de Madrid, Cantoblanco, Madrid miguel.ramos@uam.es 2 Instituto de Ciencia de Materiales, ICMM-CSIC, Cantoblanco, Madrid 3 Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid 4 Parque Científico de Madrid. Campus de Cantoblanco, Madrid 5 LASUAM, Depto. de Física de la Materia Condensada, C-III, Universidad Autónoma de Madrid, Cantoblanco, Madrid 1 Introduction Pure graphite, the stable crystalline allotrope of carbon at room temperature and ambient pressure, is known to exhibit a strong and anisotropic textbook diamagnetism, due to its delocalized π electrons. Nevertheless, in the last two decades several researchers have reported more or less clear evidences of ferromagnetic behaviour in carbon at room temperature. We might mention the work by japanese groups [Mur91, Mur92], who observed it in amorphous carbon (relatively rich in hydrogen). The origin of this ferromagnetic behaviour could be theroretically justified as arising from the mixture of sp 2 and sp 3 bonding in carbon structure [Ovc88]. More recently, new findings of this kind have appeared in the literature, as the presence of ferromagnetic signals in some polymerized fullerenes reported by Makarova et al. [Mak01], or that found in proton-irradiated Highly-Oriented Pyrolitic Graphite (HOPG) by the group led by Esquinazi [Esq03, Han03]. In the latter experimental work, the analysis of possible magnetic impurities has been much more rigorous as to overcome the natural skepticism arose by the former experiments. Moreover, several theoretical works seem to support the importance of disorder [Voz04] and/or of vacancy-hydrogen complexes [Leh04] for the appearence of magnetic moments in graphite. The interest in the possibility of producing organic materials with magnetic properties is obvious. Therefore, we have undertaken a joint research line to study this subject, by making use of the 5 MV tandem ion-accelerator hosted by the CMAM in the Universidad Autónoma de Madrid. At the same time of the ion implantation, the PIXE technique allows to determine in situ

2 2 Ramos et al. the amount of magnetic impurities in the sample, a crucial issue given the weakness of the reported ferromagnetic signals. The possible existence of the latter have been studied through SQUID magnetometry, Magnetic Force Microscopy (MFM) and magneto-optic Kerr effect (MOKE). 2 Experimental High purity HOPG was used (NTI-Europe, ZYA quality, 0.4 ± 0.1 rocking curve). Proton and/or carbon irradiations were conducted in a 5 MV tandem ion-accelerator (HVEE, using a Cockroft-Walton power supply system). Particle Induced X-ray Emission (PIXE) measurements allowed us to assess the amount of local concentration of heavier impurities. In some cases, we employed a fine square mesh of copper (G2000HS, SPI, with a pitch of 12.5 µm, with separating copper bars of 5 µm and squared holes of 7.5 µm each side) as a mask onto the irradiation area. Measurements of the total magnetic moment of the samples were performed with a SQUID magnetometer from Quantum Design. Possible ferromagnetic behaviour at the surface of the irradiated samples was studied by means of a Magnetic Force Microscope (MFM) from Nanotec Electronica S.L., operating under externally applied magnetic field [Ase00] at ambient temperature. In all experiments, a double-step procedure was employed: First, a simple topographic scan is taken by mantaining a constant amplitude of oscillation of the cantilever, very close to the surface. Afterwards, long-range interactions are measured in a second scan with no feedback, following the topography of the sample and measuring the frequency shift that is proportional to the magnetic force gradient. This second scan is performed by retracing the tip tens of nm from the sample in order to avoid the topographic interaction. We have also conducted magneto-optic measurements by using a high resolution vectorial Kerr set-up [Cam05]. 3 Results and discussion First of all, we cut HOPG samples with a typical surface area of mm 2 and mm thick, using clean diamond wire. We conducted ion-beam irradiation of H + protons of 3 MeV energy, in high vacuum. Montecarlo SRIM simulations indicate a corresponding implantation depth of 75.3 ± 1.3 µm for the H + ions. Spot size was here always about 1 mm 2. In Fig. 1, we show the measured magnetization of the samples, with magnetic fields applied parallel to graphene planes, after subtracting the linear (negative) diamagnetic background, expected for bulk, pure graphite. Total irradiated doses ranged µc. As can be seen, in all cases a (weak) ferromagnetic curve is observed, with the sample of intermediate irradiation dose, 200 µc exhibiting the higher ferromagnetic signal. Nevertheless, we found somewhat surprisingly that also a non-irradiated HOPG sample exhibit some ferromagnetic signal,

3 Looking for ferromagnetic signals in proton-irradiated graphite 3 Fig. 1. SQUID measurements of the total magnetic moment of differently irradiated HOPG samples. See legend for ion-doses implanted. A linear diamagnetic background has been subtracted in all curves to show up the ferromagnetic contribution comparable with the samples of lesser magnetization. We discard the possibility of all this behaviour being due to magnetic impurities, since our PIXE experiments performed on some of these samples always gave concentrations below 10 ± 4ppm of Fe element, and indetectable for other magnetic impurities. We believe that these observations simply confirm the findings of ferromagnetic behaviour in many non-irradiated HOPG samples, with different kinds of preparation quality, structural vacancies or disorder, as found by Esquinazi and co-workers [Esq02]. However, our first experiments using MFM Fig. 2. Topographic profile of a HOPG sample irradiated with a copper mask with a dose of 150 µc of C 4+ carbon ions of 25 MeV, and 225 µc of H + protons of 1.25 MeV (see text for details) on these proton-irradiated samples, as on other ones irradiated in air with ion-beam spots smaller than 100 µm, provided no clear evidence of magnetic behaviour at the surface of proton-irradiated regions, in contrast to earlier

4 4 Ramos et al. Fig. 3. Topographic image (left picture) and corresponding magnetic-contrast image (right picture) taken after applying an external magnetic field of 3 koe to the same sample shown in Fig.2 reports [Esq03, Han03]. MOKE experiments performed in the same samples also gave negative results, always a pure linear diamagnetic curve was obtained. This is not too surprising, since the found ferromagnetic contributions superimposed on a large diamagnetic signal are very weak. Moreover, it is not clear what should be its relative strength at the superficial regions probed by these techniques. In order to improve the layout of the samples surface to have a better contrast for MFM studies, we decided to use a grid or mask of copper. Thus, we put several grids of a fine copper mesh on one 1 cm 2 HOPG sample to be irradiated. The squared holes were of 7.5 µm 7.5 µm with copper separating bars of 5 µm and 20 µm thick. In the experiments shown here, all studied sample regions were first irradiated with a dose of 150 µc of C 4+ carbon ions impinging on the sample with an energy of 25 MeV, the spot size being around 1 mm 2. Hence the carbon ions were to stop at the middle of the depth of the copper separating bars. Through the holes of the grid however, these carbon ions will penetrate the HOPG sample with a calculated implantation range of 20.3 µm. In one region of the sample, a second irradiation was then conducted. A dose of 225 µc of H + protons was implanted, with an energy of 1.25 MeV chosen, so that the protons also stop at mid depth of the copper separating bars, whereas through the holes the penetration into the HOPG sample would be of about 20.0 µm. The surface topography of the latter sample after both consecutive ion irradiations and removing of the mask is shown in Fig. 2, where the topographic modifications induced by the irradiations are seen to clearly follow the pattern of the copper grid. Fig. 3 shows a clear magneticcontrast pattern in the ion-irradiated spots. In contrast to this case, in the region of the sample were only the first carbon irradiation was performed, no magnetic features were observed, as can be seen in Fig. 4. MFM probes with different magnetic moment [Ase06] have been used in order to enhance the tip-sample interaction. This seems to support the relevant role played by H + ions in promoting ferromagnetism in carbon.

5 Looking for ferromagnetic signals in proton-irradiated graphite 5 Fig. 4. Topographic images (left picture) and corresponding magnetic-contrast images (right picture) taken on a HOPG sample irradiated through a copper mask, with a dose of 150 µc of C 4+ carbon ions of 25 MeV by using (a) a Mesp-LM MFM probe and (b) a MESP MFM probe from Veeco 4 Summary and conclusions We have presented some representative experimental results found in protonand carbon-irradiated HOPG samples, aiming to confirm or disregard the existence of ferromagnetic behaviour in pure carbon. To address that, we have combined macroscopic, bulk magnetic measurements (SQUID) with microscopic ones (MFM, MOKE). In brief, we have confirmed the existence of ferromagnetic features, both at macroscopic and microscopic scales. Nevertheless, the produced effects are still so weak, and the variables involved so many and unknown, that much more systematic studies are needed. References [Ase00] [Ase06] [Cam05] [Esq02] Asenjo A., Garcia D., Garcia J. M., Prados C., Vázquez, M.: MFM study of dense stripes domains in FeB/CoSiB multilayers and its evolution under an external applied field. Phys. Rev. B, 62, 6538 (2000) Asenjo A.,Jafaar M., Navas D., Vázquez M.: Quantitative Magnetic Force Microscopy analysis of the magnetization process in nanowire arrays. J. Appl. Phys., 100, (2006) Camarero, J., Sort, J., Hoffmann, A., García-Martín, J. M., Dieny, B., Miranda, R., Nogués, J.: Origin of the Asymmetric Magnetization Reversal Behavior in Exchange-Biased Systems: Competing Anisotropies. Phys Rev. Lett. 95, (2005) Esquinazi, P., Setzer, A., Höhne, R., Semmelhack, C., Kopelevich, Y., Spemann, D., Butz, T., Kohlstrunk, B., Lösche, M.: Ferromagnetism in oriented graphite samples. Phys. Rev. B, 66, (2002)

6 6 Ramos et al. [Esq03] [Han03] [Mur91] [Mur92] [Ovc88] [Mak01] [Voz04] [Leh04] Esquinazi, P., Spemann, D., Höhne, R., Setzer, A., Han, K.-H., Butz, T.: Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett., 91, (2003) Han, K.-H., Spemann, D., Esquinazi, P., Höhne, R., Riede, V., Butz, T.: Ferromagnetic spots in graphite produced by proton irradiation. Adv. Mater., 15, (2003) Murata, K., Ushijima, H., Ueda, H., Kawaguchi, K.: Magnetic properties of amorphous-like carbons prepared by tetraaza compounds by the chemical vapour deposition (CVD) method. J. Chem. Soc., Chem. Commun., (1991) Murata, K., Ushijima, H., Ueda, H., Kawaguchi, K.: A stable carbonbased organic magnet. J. Chem. Soc., Chem. Commun., (1992) Ovchinnikov, A. A., Spector, V. N.: Organic ferromagnets - new results. Synth. Metals, 27, B615-B624 (1988) Makarova, T., Sundqvist, B., Höhne, R., Esquinazi, P., Kopelevich, Y., Scharff, P., Davydov, V. A., Kashevarova, L. S., Rakhmanina, A. V.: Magnetic carbon. Nature (London), 413, (2001) Vozmediano, M. A. H., Guinea, F., Lopez-Sancho, M. P.: Interactions, disorder and local defects in graphite. cond-mat/ (2004) Lehtinen, P. O., Foster, A. S., Ma, Y., Krasheninnikov, A., Nieminen, R. M.: Irradiation-Induced Magnetism in Graphite: A Density Functional Study. Phys. Rev. Lett., 93, (2004)

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes W. Orellana and P. Fuentealba Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653,

More information

Room-temperature ferromagnetism in nanoparticles of Superconducting materials

Room-temperature ferromagnetism in nanoparticles of Superconducting materials Room-temperature ferromagnetism in nanoparticles of Superconducting materials Shipra, A. Gomathi, A. Sundaresan* and C. N. R. Rao* Chemistry and Physics of Materials Unit and Department of Science and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2183 Spin-half paramagnetism in graphene induced by point defects R. R. Nair et al. #1 Quantitative analysis of fluorination of graphene laminates Fluorination

More information

Tunable Magnetism in Carbon-Ion-Implanted Highly Oriented Pyrolytic Graphite**

Tunable Magnetism in Carbon-Ion-Implanted Highly Oriented Pyrolytic Graphite** DOI: 10.1002/adma.200801205 Tunable Magnetism in Carbon-Ion-Implanted Highly Oriented Pyrolytic Graphite** By Huihao Xia,* Weifeng Li, You Song, Xinmei Yang, Xiangdong Liu, Mingwen Zhao,* Yueyuan Xia,

More information

Magnetic properties of carbon nanocluster

Magnetic properties of carbon nanocluster Magnetic properties of carbon nanocluster Roberto Escudero Departamento de Materia Condensada y Criogenia Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Symposium en

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons.

Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Supplementary Information for Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons Sefaattin Tongay 1, 2 +, Joonki Suh 1, 2 +, Can

More information

Lehtinen, P. O. & Foster, A. S. & Ayuela, A. & Vehviläinen, T. T. & Nieminen, Risto M.

Lehtinen, P. O. & Foster, A. S. & Ayuela, A. & Vehviläinen, T. T. & Nieminen, Risto M. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Lehtinen, P. O.

More information

Magnetic properties of carbon nano-particles produced by a pulsed arc submerged in ethanol

Magnetic properties of carbon nano-particles produced by a pulsed arc submerged in ethanol CARBON 46 (2008) 215 219 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/carbon Magnetic properties of carbon nano-particles produced by a pulsed arc submerged in ethanol N.

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM Module 26: Atomic Force Microscopy Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM 1 The AFM apart from generating the information about the topography of the sample features can be used

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures a b A B Supplementary Figure S1: No distortion observed in the graphite lattice. (a) Drift corrected and reorientated topographic STM image recorded at +300

More information

Permanent Magnetism in Thiol Capped Nanoparticles, Gold and ZnO

Permanent Magnetism in Thiol Capped Nanoparticles, Gold and ZnO Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 1 Proceedings of the CSMAG 07 Conference, Košice, July 9 12, 2007 Permanent Magnetism in Thiol Capped Nanoparticles, Gold and ZnO P. Crespo, M.A. García, E.

More information

Scanning Probe Microscopy. L. J. Heyderman

Scanning Probe Microscopy. L. J. Heyderman 1 Scanning Probe Microscopy 2 Scanning Probe Microscopy If an atom was as large as a ping-pong ball......the tip would have the size of the Matterhorn! 3 Magnetic Force Microscopy Stray field interaction

More information

Magnetic ordering in two-dimensional. nanoparticle assemblies

Magnetic ordering in two-dimensional. nanoparticle assemblies Magnetic ordering in two-dimensional nanoparticle assemblies Pedro Zeijlmans van Emmichoven Faculty of Science, Utrecht University Leiden, June 18 th, 2007 Collaborators Mirela Georgescu Mark Klokkenburg

More information

Magnetic properties of ion-implanted diamond

Magnetic properties of ion-implanted diamond Diamond & Related Materials 16 (2007) 1589 1596 www.elsevier.com/locate/diamond Magnetic properties of ion-implanted diamond R. Höhne a, P. Esquinazi a,, V. Heera b, H. Weishart b a Division of Superconductivity

More information

Scanning Tunneling Microscopy Studies of the Ge(111) Surface

Scanning Tunneling Microscopy Studies of the Ge(111) Surface VC Scanning Tunneling Microscopy Studies of the Ge(111) Surface Anna Rosen University of California, Berkeley Advisor: Dr. Shirley Chiang University of California, Davis August 24, 2007 Abstract: This

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1804 Supplementary Information J. Zhu 1, J. Christensen 2, J. Jung 2,3, L. Martin-Moreno 4, X. Yin 1, L. Fok 1, X. Zhang 1 and F. J. Garcia-Vidal 2 1 NSF Nano-scale

More information

The role of hydrogen in room-temperature ferromagnetism at graphite surfaces

The role of hydrogen in room-temperature ferromagnetism at graphite surfaces SLAC-PUB-14356 The role of hydrogen in room-temperature ferromagnetism at graphite surfaces H. Ohldag Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 9425, USA P. Esquinazi

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Room-Temperature Ferromagnetism of Graphene

Room-Temperature Ferromagnetism of Graphene Letter Subscriber access provided by NANKAI UNIV LIBRARY Room-Temperature Ferromagnetism of Graphene Yan Wang, Yi Huang, You Song, Xiaoyan Zhang, Yanfeng Ma, Jiajie Liang, and Yongsheng Chen Nano Lett.,

More information

The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene

The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene Abstract: The aim of this project was to investigate how the electrical resistance of a conductor changes if it is deposited

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 13:00 Monday, 12/February/2018 (P/T 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Citation for published version (APA): Mendoza, S. M. (2007). Exploiting molecular machines on surfaces s.n.

Citation for published version (APA): Mendoza, S. M. (2007). Exploiting molecular machines on surfaces s.n. University of Groningen Exploiting molecular machines on surfaces Mendoza, Sandra M IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond.

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond. Imaging Carbon materials with correlative Raman-SEM microscopy Application Example Carbon materials are widely used in many industries for their exceptional properties. Electric conductance, light weight,

More information

Graphene Annealing: How Clean Can It Be?

Graphene Annealing: How Clean Can It Be? Supporting Information for Graphene Annealing: How Clean Can It Be? Yung-Chang Lin, 1 Chun-Chieh Lu, 1 Chao-Huei Yeh, 1 Chuanhong Jin, 2 Kazu Suenaga, 2 Po-Wen Chiu 1 * 1 Department of Electrical Engineering,

More information

Surface analysis techniques

Surface analysis techniques Experimental methods in physics Surface analysis techniques 3. Ion probes Elemental and molecular analysis Jean-Marc Bonard Academic year 10-11 3. Elemental and molecular analysis 3.1.!Secondary ion mass

More information

Spin-half paramagnetism in graphene induced by point defects

Spin-half paramagnetism in graphene induced by point defects LETTERS PUBLISHED ONLINE: 10 JANUARY 2012 DOI: 10.1038/NPHYS2183 Spin-half paramagnetism in graphene induced by point defects R. R. Nair 1, M. Sepioni 1, I-Ling Tsai 1, O. Lehtinen 2, J. Keinonen 2, A.

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting information Self-assembled nanopatch with peptide-organic multilayers and mechanical

More information

Crystalline Surfaces for Laser Metrology

Crystalline Surfaces for Laser Metrology Crystalline Surfaces for Laser Metrology A.V. Latyshev, Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia Abstract: The number of methodological recommendations has been pronounced to describe

More information

The scanning microbeam PIXE analysis facility at NIRS

The scanning microbeam PIXE analysis facility at NIRS Nuclear Instruments and Methods in Physics Research B 210 (2003) 42 47 www.elsevier.com/locate/nimb The scanning microbeam PIXE analysis facility at NIRS Hitoshi Imaseki a, *, Masae Yukawa a, Frank Watt

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Carbonaceous contaminants on support films for transmission electron microscopy

Carbonaceous contaminants on support films for transmission electron microscopy PERGAMON Carbon 39 (2001) 909 913 Carbonaceous contaminants on support films for transmission electron microscopy P.J.F. Harris Department of Chemistry, University of Reading, Whiteknights, Reading RG6

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

PARMA UNIVERSITY. Physics Department. Angelo Goffredi. Thesis submitted for the award of the degree of PhD in

PARMA UNIVERSITY. Physics Department. Angelo Goffredi. Thesis submitted for the award of the degree of PhD in PARMA UNIVERSITY Physics Department Magnetic Carbon Angelo Goffredi Thesis submitted for the award of the degree of PhD in Science and Technology of the Innovative Materials Reviser: Dr. Matteo Belli Prof.

More information

Lateral length scales in exchange bias

Lateral length scales in exchange bias EUROPHYSICS LETTERS 15 July 2005 Europhys. Lett., 71 (2), pp. 297 303 (2005) DOI: 10.1209/epl/i2005-10078-2 Lateral length scales in exchange bias I. V. Roshchin 1,O.Petracic 1,2,R.Morales 1,3,Z.-P.Li

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES J. M. De Teresa Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain. E-mail:

More information

Applications of ion beams in materials science

Applications of ion beams in materials science Applications of ion beams in materials science J. Gyulai Research Institute for Technical Physics and Materials Science (MFA), Hung. Acad. Sci., Budapest Types of processing technologies Top-down - waste

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

Magnetoplasmonics: fundamentals and applications

Magnetoplasmonics: fundamentals and applications Antonio García-Martín http://www.imm-cnm.csic.es/magnetoplasmonics Instituto de Microelectrónica de Madrid Consejo Superior de Investigaciones Científicas Magnetoplasmonics: fundamentals and applications

More information

Proceedings of SPIE, Micro- and Nanoelectronics -2003, Vol. 5401, pp (2003).

Proceedings of SPIE, Micro- and Nanoelectronics -2003, Vol. 5401, pp (2003). Proceedings of SPIE, Micro- and Nanoelectronics -2003, Vol. 5401, pp 555-560 (2003). Magnetic force microscopy of magnetization reversal of microstructures in situ in the external field of up to 2000Oe

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten Yasuhisa Oya 1) *, Makoto Kobayashi 1), Naoaki Yoshida 2),

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1332 Light triggered self-construction of supramolecular organic nanowires as metallic interconnects Vina Faramarzi 1,2, Frédéric Niess 1,3, Emilie Moulin 3, Mounir Maaloum 1,3, Jean-François

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Supplementary Methods Characterization of AFM resolution We employed amplitude-modulation AFM in non-contact mode to characterize the topography of the graphene samples. The measurements were performed

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Microscopical and Microanalytical Methods (NANO3)

Microscopical and Microanalytical Methods (NANO3) Microscopical and Microanalytical Methods (NANO3) 06.11.15 10:15-12:00 Introduction - SPM methods 13.11.15 10:15-12:00 STM 20.11.15 10:15-12:00 STS Erik Zupanič erik.zupanic@ijs.si stm.ijs.si 27.11.15

More information

Local Anodic Oxidation of GaAs: A Nanometer-Scale Spectroscopic Study with PEEM

Local Anodic Oxidation of GaAs: A Nanometer-Scale Spectroscopic Study with PEEM Local Anodic Oxidation of GaAs: A Nanometer-Scale Spectroscopic Study with PEEM S. Heun, G. Mori, M. Lazzarino, D. Ercolani, G. Biasiol, and L. Sorba Laboratorio TASC-INFM, 34012 Basovizza, Trieste A.

More information

b imaging by a double tip potential

b imaging by a double tip potential Supplementary Figure Measurement of the sheet conductance. Resistance as a function of probe spacing including D and 3D fits. The distance is plotted on a logarithmic scale. The inset shows corresponding

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

Indications of superconductivity in doped highly oriented pyrolytic graphite

Indications of superconductivity in doped highly oriented pyrolytic graphite Indications of superconductivity in doped highly oriented pyrolytic graphite Grover Larkins and Yuriy Vlasov Department of Electrical and Computer Engineering, Florida International University, Miami,

More information

Bandgap engineering through nanocrystalline magnetic alloy grafting on. graphene

Bandgap engineering through nanocrystalline magnetic alloy grafting on. graphene Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information (ESI) for Bandgap engineering through nanocrystalline

More information

Introduction to Scanning Probe Microscopy Zhe Fei

Introduction to Scanning Probe Microscopy Zhe Fei Introduction to Scanning Probe Microscopy Zhe Fei Phys 590B, Apr. 2019 1 Outline Part 1 SPM Overview Part 2 Scanning tunneling microscopy Part 3 Atomic force microscopy Part 4 Electric & Magnetic force

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) http://ww2.sljus.lu.se/staff/rainer/spm.htm Scanning Probe Microscopy (FYST42 / FAFN30) Scanning Probe Microscopy (SPM) overview & general principles March 23 th, 2018 Jan Knudsen, room K522, jan.knudsen@sljus.lu.se

More information

2.3 Particle Induced X-Ray Emission PIXE

2.3 Particle Induced X-Ray Emission PIXE 2.3 Particle Induced X-Ray Emission PIXE The previous section concentrated on X-ray fluorescence. This section discusses a different X-ray production technique that can lead to the development of 2-D/3-D

More information

Atomic Force/Magnetic Force Microscope

Atomic Force/Magnetic Force Microscope Atomic Force/Magnetic Force Microscope Veeco Instruments Dimension 3000 SPM with Nanoscope IIIa controller Atomic Force Microscopy Mode Magnetic Force Microscopy Mode Vibration isolation and sound proof

More information

Nitrogen in graphite and carbon nanotubes: Magnetism and mobility

Nitrogen in graphite and carbon nanotubes: Magnetism and mobility Nitrogen in graphite and carbon nanotubes: Magnetism and mobility Yuchen Ma,* A. S. Foster, A. V. Krasheninnikov, and R. M. Nieminen Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100,

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Cryoconference Young researchers

Cryoconference Young researchers Scanning Tunneling Microscope in a Dilution Refrigerator with a Vector Magnetic Field Solenoid J. Galvis, I Guillamón, H Suderow, J. G. Rodrigo, S. Viera Laboratorio de Bajas Temperaturas, Departamento

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies B. Özyilmaz a, G. Richter, N. Müsgens, M. Fraune, M. Hawraneck, B. Beschoten b, and G. Güntherodt Physikalisches

More information

CNPEM Laboratório de Ciência de Superfícies

CNPEM Laboratório de Ciência de Superfícies Investigating electrical charged samples by scanning probe microscopy: the influence to magnetic force microscopy and atomic force microscopy phase images. Carlos A. R. Costa, 1 Evandro M. Lanzoni, 1 Maria

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/320/5874/356/dc1 Supporting Online Material for Chaotic Dirac Billiard in Graphene Quantum Dots L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill,

More information

Supplementary Figure 1: Fitting of the x-ray diffraction data by FULLPROF method. (a) O-LPCMO and (b) R-LPCMO. The orange (red) line is the x-ray

Supplementary Figure 1: Fitting of the x-ray diffraction data by FULLPROF method. (a) O-LPCMO and (b) R-LPCMO. The orange (red) line is the x-ray Supplementary Figure 1: Fitting of the x-ray diffraction data by FULLPROF method. (a) O-LPCMO and (b) R-LPCMO. The orange (red) line is the x-ray diffraction data of O-LPCMO (R-LPCMO) and the blue (black)

More information

ABSTRACT 1. INTRODUCTION 2. EXPERIMENT

ABSTRACT 1. INTRODUCTION 2. EXPERIMENT Fabrication of Nanostructured Heterojunction LEDs Using Self-Forming Moth-Eye Type Arrays of n-zno Nanocones Grown on p-si (111) Substrates by Pulsed Laser Deposition D. J. Rogers 1, V. E. Sandana 1,2,3,

More information

Formation of buried conductive micro-channels in single crystal diamond. with MeV C and He implantation

Formation of buried conductive micro-channels in single crystal diamond. with MeV C and He implantation Formation of buried conductive micro-channels in single crystal diamond with MeV C and He implantation F. Picollo 1, P. Olivero 1 *, F. Bellotti 2, J. A. Lo Giudice 1, G. Amato 2, M. 3, N. Skukan 3, 3,

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

MAGNETIC FORCE MICROSCOPY

MAGNETIC FORCE MICROSCOPY University of Ljubljana Faculty of Mathematics and Physics Department of Physics SEMINAR MAGNETIC FORCE MICROSCOPY Author: Blaž Zupančič Supervisor: dr. Igor Muševič February 2003 Contents 1 Abstract 3

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

V 11: Electron Diffraction

V 11: Electron Diffraction Martin-Luther-University Halle-Wittenberg Institute of Physics Advanced Practical Lab Course V 11: Electron Diffraction An electron beam conditioned by an electron optical system is diffracted by a polycrystalline,

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Spontaneous Partitioning of the Ni+C 60 Thin Film Grown at RT

Spontaneous Partitioning of the Ni+C 60 Thin Film Grown at RT Spontaneous Partitioning of the Ni+C 60 Thin Film Grown at RT J.Vacik 1*, V. Lavrentiev 1, V. Hnatowicz 1, S. Yamamoto 2, V. Vorlicek 3, H. Stadler 4 1 Nuclear Physics Institute AS CR, 250 68 Husinec Rez,

More information

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center Film Characterization Tutorial G.J. Mankey, 01/23/04 Theory vs. Experiment A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Ultrahigh interlayer friction in multiwalled boron nitride nanotubes 1 Contents Nanotubes production and characterizations 2 Experimental Methods 4 Post mortem characterization of the nanotubes 4 Références

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes Ryosuke Senga 1, Hannu-Pekka Komsa 2, Zheng Liu 1, Kaori Hirose-Takai 1, Arkady V. Krasheninnikov 2

More information

Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope

Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope MPhil Thesis Defense Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope Presented by CHEN Cheng 12 th Aug.

More information

Planar Hall Effect in Magnetite (100) Films

Planar Hall Effect in Magnetite (100) Films Planar Hall Effect in Magnetite (100) Films Xuesong Jin, Rafael Ramos*, Y. Zhou, C. McEvoy and I.V. Shvets SFI Nanoscience Laboratories, School of Physics, Trinity College Dublin, Dublin 2, Ireland 1 Abstract.

More information

Frictional characteristics of exfoliated and epitaxial graphene

Frictional characteristics of exfoliated and epitaxial graphene Frictional characteristics of exfoliated and epitaxial graphene Young Jun Shin a,b, Ryan Stromberg c, Rick Nay c, Han Huang d, Andrew T. S. Wee d, Hyunsoo Yang a,b,*, Charanjit S. Bhatia a a Department

More information

background (the broad feature running bottom left to top right is a smooth depression 100 pm deep).

background (the broad feature running bottom left to top right is a smooth depression 100 pm deep). d e amplitude (arb.) c amplitude (arb.) a 2 1 5 1 kvertical (μm-1) 2 1 15 16 17 kradial (μm-1) height (pm) b 2-2 5 1 lateral position (nm) 15 2 Supplementary Figure 1: Uniformity of stripe-superlattice

More information

Magnetic properties of vacancies in graphene and single-walled carbon nanotubes

Magnetic properties of vacancies in graphene and single-walled carbon nanotubes Magnetic properties of vacancies in graphene and single-walled carbon nanotubes Contents Yuchen Ma, P O Lehtinen, A S Foster and R M Nieminen Laboratory of Physics, Helsinki University of Technology, PO

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques James Vale October 25, 2011 Abstract Multiferroic materials have significant potential for both the scientific

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Studies of Iron-Based Superconductor Thin Films

Studies of Iron-Based Superconductor Thin Films MBE Growth and STM Studies of Iron-Based Superconductor Thin Films Wei Li 1, Canli Song 1,2, Xucun Ma 2, Xi Chen 1*, Qi-Kun Xu 1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics,

More information

Studies of the Magnetization Reversal Processes in Co Dot and Antidot Arrays on a Microscopic Scale

Studies of the Magnetization Reversal Processes in Co Dot and Antidot Arrays on a Microscopic Scale The Open Surface Science Journal, 2012, 4, (Suppl 1: M6) 65-70 65 Open Access Studies of the Magnetization Reversal Processes in Co Dot and Antidot Arrays on a Microscopic Scale M. Vázquez *,1, A. Asenjo

More information

Magnetophoresis of colloidal particles in a dispersion of superparamagnetic nanoparticles: Theory and Experiments

Magnetophoresis of colloidal particles in a dispersion of superparamagnetic nanoparticles: Theory and Experiments Magnetophoresis of colloidal particles in a dispersion of superparamagnetic nanoparticles: Theory and Experiments M. Benelmekki a*, Ll. M. Martinez b, J. S. Andreu c,d, J. Camacho d, J. Faraudo c. a Centro

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) Scanning Probe Microscopy (SPM) Scanning Tunneling Microscopy (STM) --- G. Binnig, H. Rohrer et al, (1982) Near-Field Scanning Optical Microscopy (NSOM) --- D. W. Pohl (1982) Atomic Force Microscopy (AFM)

More information