Cryoconference Young researchers

Size: px
Start display at page:

Download "Cryoconference Young researchers"

Transcription

1 Scanning Tunneling Microscope in a Dilution Refrigerator with a Vector Magnetic Field Solenoid J. Galvis, I Guillamón, H Suderow, J. G. Rodrigo, S. Viera Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia condensada Facultad de Ciencias, Universidad Autonoma de Madrid, Madrid, Spain Cryoconference Young researchers

2 OUTLINE 1. SUPERCONDUCTIVITY AND TUNNELING MICROSCOPY MIXED STATE SUPERCONDUCTIVITY STUDY WITH STM LAYERED SUPERCONDUCTORS 2. EXPERIMENTAL TECHNIQUES CRYOSTAT DESCRIPTION STM DESCRIPTION VECTOR MAGNETIC FIELD SOLENOID OVERVIEW 3. PERSPECTIVES

3 MIXED STATE TYPE I SUPERCONDUCTIVITY AND TUNNELING MICROSCOPY TYPE II Abrikosov hexagonal lattice NORMAL The magnetic field penetrates in form of vortices. Coherence length ONE OF THE MAIN MOTIVATIONS FOR THE DEVELOPMENT OF THIS EXPERIMENTAL SETUP IS THE STUDY OF MIXED STATE IN SOME SUPERCONDUCTORS.

4 SUPERCONDUCTIVITY AND TUNNELING MICROSCOPY SUPERCONDUCTIVITY STUDY WITH STM ACOORDING TO TERSOFF AND HAMMAN THE TUNELLING CURRENT BETWEEN TWO ELECTRODES: TUNELLING CURRENT BETWEEN NORMAL METAL AND SUPERCONDUCTOR MATERIAL: TUNELLING CONDUCTANCE: Simplified form assuming N 1 constant. J. Tersoff, and D. R. Hamann.. Phys. Rev. Lett., 50 (1985). DENSITY OF STATE

5 SUPERCONDUCTIVITY AND TUNNELING MICROSCOPY SUPERCONDUCTIVITY STUDY WITH STM How can we built the vortex lattice map of density of states? TIP D D SAMPLE DOS is obtained measuring the tunneling conductance. SAMPLE Magnetic field perpendicular to surface VORTEX Scanning the entire sample surface makes it possible to build the vortex lattice. V. Crespo.Superconductividady magnetismoa travésde la espectroscopíatúnel de barrido con punta superconductora. PHD Thesis. Universidad Autónoma de Madrid.

6 LAYERED SUPERCONDUCTORS SUPERCONDUCTIVITY AND TUNNELING MICROSCOPY 2H DICHALCOGENIDES FAMILY CRYSTAL STRUCTURE Characterized by Transition metal Chalcogenide 2H REPRESENTS A HEXAGONAL SIMMETRY AND TWO LAYERS PER UNIT CELL. THE X-M-X BLOCKS ARE WEAKLY BONDED BY VAN DER WAALS FORCES. Initial objective THE CRYSTAL STRUCTURE IS STRONGLY 2-DIMENSIONAL.

7 LAYERED SUPERCONDUCTORS SUPERCONDUCTIVITY AND TUNNELING MICROSCOPY Why is the vortex lattice of the NbSe 2 system interesting? The six rays can be interpreted as directions in which the coherence length diverges, caused by local Fermi surface anomalies in these directions. The vortex exhibit a star shape with six rays. A sharp peak appears Localized states in the vortex core I. Guillamon. Orden y desorden en superconductividad. PHD Thesis. Universidad Autónoma de Madrid. The peak is shifted to higher energies

8 SUPERCONDUCTIVITY AND TUNNELING MICROSCOPY LAYERED SUPERCONDUCTORS Anisotropic superconductors VARIOUS BUCKLING INSTABILITES ARE OBSRVED For large angles and high energy the star shape vanish

9 CRYOSTAT DESCRIPTION CRYOSTAT DESCRIPTION 1K POT STILL CONTINUOS HEAT EXCHANGER STEP HEAT EXCHANGER MIXING CHAMBER

10 CRYOSTAT DESCRIPTION CRYOSTAT DESCRIPTION STM THE STM IS ATTACHED AND THERMALIZED WITH THE MIXING CHAMBER

11 CRYOSTAT DESCRIPTION CRYOSTAT DESCRIPTION CABLES BRAID AND SHIELDED CABLES. 8 CABLES OF MANGANIN AND 8 CABLES OF COPPER. Twisted pair cable

12 CRYOSTAT DESCRIPTION CRYOSTAT DESCRIPTION CABLES THERMALIZATION 1K POT STILL CONTINUOS HEAT EXCHANGER The gold plates are bolted to the cryostat. MIXING CHAMBER The cable is trapped between two gold plates.

13 STM DESCRIPTION STM DESCRIPTION Z MOTION QUICK SLOW Mobile Internal generation of a mechanical force resulting from an applied electric field. Sample Piezoelectric material

14 STM DESCRIPTION Piezotube cross section Sample The displacement of the tip over the sample is determined by the piezotube characteristic and applied voltage. Maximum displacement:

15 STM DESCRIPTION The sample holder is set on a moving part, which can be moved from the outside of cryostat through a piano wire attached to a precision screw. Rotating the Removable precision screw piece the sample holder moves. The spring allows that the sample return to its initial position. Sample holder Skate Piano wire

16 STM DESCRIPTION Macroscopic motion over the sample at 100 mk In conclusion macroscopic motion of the screw, allows a microscopic movement of the sample holder. FIB milledpathsin Au substratein a zigzag shape. Three images corresponding to three steps of the sample holder I. Guillamon. Orden y desorden en superconductividad. PHD Thesis. Universidad Autónoma de Madrid.

17 STM DESCRIPTION STM CONTROL SYSTEM Piezotube signal X Y Z Current amplifier Voltage supply Electronic Control Digital-Analog converter LuNi 2 B 2 C

18 VECTOR MAGNETIC FIELD SOLENOID VECTOR MAGNETIC FIELD SOLENOID 0-5 TESLA IN Z DIRECTION 0-1,2 TESLA IN THE X-Y PLANE The STM is located just in the geometrical center of the coils. X Y X

19 VECTOR MAGNETIC FIELD SOLENOID AXIAL MAGNETIC FIELD TRANSVERSAL MAGNETIC FIELD

20 OVERVIEW INSERT 5 meters STM CONTROL SYSTEM HOME- MADE GAS HANDLING SYSTEM HOME- MADE POWER SUPPLY FOR VECTOR MAGNETIC FIELD SOLENOID ALL PUMPS ARE IN OTHER ROOM AWAY OF THE INSERT. PUMP ROOM -100 to 100A X 3 In construction

21 PERSPECTIVES TO STUDY THE VORTEX LATTICE IN DICHALCOGENIDES WITH RESPECT TO MAGNETIC FIELD ANGLE, IN PARTICULAR THE SYSTEM NbSe 2. TO STUDY THE SHAPE OF THE VORTEX CORE WITH RESPECT TO MAGNETIC FIELD ANGLE.

22 BIBLIOGRAPHY H. F. Hess, R. B. Robinson, and J. V. Waszczak Phys. Rev. Lett. 64, 2711 (1990) H. F. Hess, C. A. Murray and J. V. Waszczak Phys. Rev. B. 22, 636 (1994) V. L. Ginzburg. Superconductivity. World Scientific V. Crespo. Superconductividad y magnetismo a través de la espectroscopía túnel de barrido con punta superconductora. PHD Thesis. Universidad Autónoma de Madrid (2009). I. Guillamon. Orden y desorden en superconductividad. PHD Thesis. Universidad Autónoma de Madrid (2009). I. Guillamón, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodière, Phys. Rev. Lett. 101, (2008) M. Tinkham, Introduction to Superconductivity. Dover Publications. Second edition (2004) J. Tersoff, and D. R. Hamann.. Phys. Rev. Lett., 50 (1985)

Scanning tunneling measurements of single layers of superconducting 2H-TaSe 2 crystals

Scanning tunneling measurements of single layers of superconducting 2H-TaSe 2 crystals Scanning tunneling measurements of single layers of superconducting 2H-TaSe 2 crystals Jose Augusto Galvis XV JORNADA DE JÓVENES CIENTÍFICOS DEL INSTITUTO DE CIENCIA DE MATERIALES NICOLÁS CABRERA Low Temperature

More information

Scanning Tunneling Microscopy Local probes at high magnetic fields?

Scanning Tunneling Microscopy Local probes at high magnetic fields? Scanning Tunneling Microscopy Local probes at high magnetic fields? Hermann Suderow Laboratorio de Bajas Temperaturas Departamento de Física de la Materia Condensada Instituto de Ciencia de Materiales

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS J. A. Galvis, L. C., I. Guillamon, S. Vieira, E. Navarro-Moratalla, E. Coronado, H. Suderow, F. Guinea Laboratorio

More information

arxiv: v1 [cond-mat.supr-con] 21 Mar 2014

arxiv: v1 [cond-mat.supr-con] 21 Mar 2014 arxiv:1403.5514v1 [cond-mat.supr-con] 21 Mar 2014 Imaging superconducting vortex core and lattice with the scanning tunneling microscope H. Suderow 1,2, I. Guillamón 1,2,3, J.G. Rodrigo 1,2, S. Vieira

More information

Direct observation of melting in a 2-D superconducting vortex lattice

Direct observation of melting in a 2-D superconducting vortex lattice Direct observation of melting in a 2-D superconducting vortex lattice I. Guillamón, 1 H. Suderow, 1 A. Fernández-Pacheco, 2,3,4 J. Sesé, 2,4 R. Córdoba, 2,4 J.M. De Teresa, 3,4 M. R. Ibarra, 2,3,4 S. Vieira

More information

3.1 Electron tunneling theory

3.1 Electron tunneling theory Scanning Tunneling Microscope (STM) was invented in the 80s by two physicists: G. Binnig and H. Rorher. They got the Nobel Prize a few years later. This invention paved the way for new possibilities in

More information

SUPPLEMENTARY INFORMATION. Magnetic field induced dissipation free state in superconducting nanostructures

SUPPLEMENTARY INFORMATION. Magnetic field induced dissipation free state in superconducting nanostructures SUPPLEMENTARY INFORMATION Magnetic field induced dissipation free state in superconducting nanostructures R. Córdoba, 1, 2 T. I. Baturina, 3, 4 A. Yu. Mironov, 3 J. Sesé, 1, 2 J. M. De Teresa, 5, 2 M.

More information

Low Vibration Cryogenic Equipment

Low Vibration Cryogenic Equipment PAGE 12 PAGE 13 ATTOCUBE S CRYOSTATS ATTODRY attodry1000....................... 14 cryogen-free cryostats with/without s attodry700.........................18 cryogen-free table-top cryostats with optical

More information

Design of a low-temperature scanning tunneling microscope head with a lowfriction, piezoelectric coarse approach mechanism

Design of a low-temperature scanning tunneling microscope head with a lowfriction, piezoelectric coarse approach mechanism Design of a low-temperature scanning tunneling microscope head with a lowfriction, piezoelectric coarse approach mechanism T. A. Smith 1 and A. Biswas 2 1 Department of Physics, Southern Illinois University

More information

microscope S. H. Pan, E. W. Hudson, and J. C. Davis Department of Physics, University of California, Berkeley, California 94720

microscope S. H. Pan, E. W. Hudson, and J. C. Davis Department of Physics, University of California, Berkeley, California 94720 REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 70, NUMBER 2 FEBRUARY 1999 3 He refrigerator based very low temperature scanning tunneling microscope S. H. Pan, E. W. Hudson, and J. C. Davis Department of Physics,

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Scanning Tunneling Microscopy/Spectroscopy

Scanning Tunneling Microscopy/Spectroscopy Scanning Tunneling Microscopy/Spectroscopy 0 Scanning Tunneling Microscope 1 Scanning Tunneling Microscope 2 Scanning Tunneling Microscope 3 Typical STM talk or paper... The differential conductance di/dv

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

672 Advanced Solid State Physics. Scanning Tunneling Microscopy

672 Advanced Solid State Physics. Scanning Tunneling Microscopy 672 Advanced Solid State Physics Scanning Tunneling Microscopy Biao Hu Outline: 1. Introduction to STM 2. STM principle & working modes 3. STM application & extension 4. STM in our group 1. Introduction

More information

Scanning Tunnelling Microscopy Observations of Superconductivity

Scanning Tunnelling Microscopy Observations of Superconductivity Department of physics Seminar I a Scanning Tunnelling Microscopy Observations of Superconductivity Author: Tim Verbovšek Mentor: dr. Rok Žitko Co-Mentor: dr. Erik Zupanič Ljubljana, February 013 Abstract

More information

Switching of magnetic domains reveals spatially inhomogeneous superconductivity

Switching of magnetic domains reveals spatially inhomogeneous superconductivity Switching of magnetic domains reveals spatially inhomogeneous superconductivity Simon Gerber, Marek Bartkowiak, Jorge L. Gavilano, Eric Ressouche, Nikola Egetenmeyer, Christof Niedermayer, Andrea D. Bianchi,

More information

Schematic for resistivity measurement

Schematic for resistivity measurement Module 9 : Experimental probes of Superconductivity Lecture 1 : Experimental probes of Superconductivity - I Among the various experimental methods used to probe the properties of superconductors, there

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

Manual. CBT Sensor H3L3 v1.0. Updates to this manual found at:

Manual. CBT Sensor H3L3 v1.0. Updates to this manual found at: Manual CBT Sensor H3L3 v1.0 This manual describes the handling and assembly of CBT sensor provided by Aivon Oy, Finland. Further information: Aivon Oy Tietotie 3, FI-02150 Finland tel. +358-400-265501

More information

Tunneling Spectroscopy of PCCO

Tunneling Spectroscopy of PCCO Tunneling Spectroscopy of PCCO Neesha Anderson and Amlan Biswas Department of Physics, University of Florida, Gainesville, Florida Abstract A point-contact probe capable of operating down to temperatures

More information

The interpretation of STM images in light of Tersoff and Hamann tunneling model

The interpretation of STM images in light of Tersoff and Hamann tunneling model The interpretation of STM images in light of Tersoff and Hamann tunneling model The STM image represents contour maps of constant surface LDOS at E F, evaluated at the center of the curvature of the tip.

More information

Superconductivity and Superfluidity

Superconductivity and Superfluidity Superconductivity and Superfluidity Contemporary physics, Spring 2015 Partially from: Kazimierz Conder Laboratory for Developments and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Resistivity

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Overview Lecture Derek Lee Imperial College London January 2007 Outline 1 Course content Introduction Superfluids Superconductors 2 Course Plan Resources Outline 1 Course content

More information

Scanning probe microscopy of graphene with a CO terminated tip

Scanning probe microscopy of graphene with a CO terminated tip Scanning probe microscopy of graphene with a CO terminated tip Andrea Donarini T. Hofmann, A. J. Weymouth, F. Gießibl 7.5.2014 - Theory Group Seminar The sample Single monolayer of graphene Epitaxial growth

More information

Theoretical Modelling and the Scanning Tunnelling Microscope

Theoretical Modelling and the Scanning Tunnelling Microscope Theoretical Modelling and the Scanning Tunnelling Microscope Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso Introducción a la Nanotecnología Máster

More information

The dielectric response of Molecular Wires

The dielectric response of Molecular Wires The dielectric response of Molecular Wires Julio Gómez Laboratorio de Nuevas Microscopías. Departamento de Física de la Materia Condensada C-III Universidad Autónoma de Madrid Nanowires overview Breakjuncti

More information

Temperature Effects and Oscillations on Vortices in Superfluid Helium

Temperature Effects and Oscillations on Vortices in Superfluid Helium Temperature Effects and Oscillations on Vortices in Superfluid Helium May Palace and Dr. Rena Zieve UC Davis 2015 Physics REU A new measurement technique for studying kelvin wave oscillations along vortices

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/38444 holds various files of this Leiden University dissertation Author: Haan, Arthur den Title: Nuclear magnetic resonance force microscopy at millikelvin

More information

arxiv: v1 [cond-mat.supr-con] 18 Jul 2011

arxiv: v1 [cond-mat.supr-con] 18 Jul 2011 Chiral charge order in the superconductor 2H-TaS 2 I. Guillamón, 1, 2 H. Suderow, 1 J. G. Rodrigo, 1 S. Vieira, 1 P. Rodière, 3 L. Cario, 4 E. Navarro-Moratalla, 5 C. Martí-Gastaldo, 5 and E. Coronado

More information

Experimental methods in physics. Local probe microscopies I

Experimental methods in physics. Local probe microscopies I Experimental methods in physics Local probe microscopies I Scanning tunnelling microscopy (STM) Jean-Marc Bonard Academic year 09-10 1. Scanning Tunneling Microscopy 1.1. Introduction Image of surface

More information

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXFORD UNIVERSITY PRESS Contents Preface

More information

The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene

The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene Abstract: The aim of this project was to investigate how the electrical resistance of a conductor changes if it is deposited

More information

Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice

Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice Joseph Hlevyack 2012 NSF/REU Program Physics Department, University of Notre Dame Advisor: Morten R. Eskildsen,

More information

SHPM imaging of LiHoF 4 at ultra low temperatures.

SHPM imaging of LiHoF 4 at ultra low temperatures. SHPM imaging of LiHoF 4 at ultra low temperatures. Master Thesis Supervised by: Professor Henrik M. Ronnow and Dr. Julian O. Piatek Laboratory for quantum magnetism (LQM) Faculté des Sciences de base de

More information

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Martin Dressel 1. Physikalisches Institut, Universität Stuttgart, Germany Outline 1. Introduction ESR resonators 2. Strip

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1463 Observation of Van Hove singularities in twisted graphene layers Guohong Li 1, A. Luican 1, J.M. B. Lopes dos Santos 2, A. H. Castro Neto 3, Alfonso Reina

More information

Mechanical and Electrical Oscillations of a Superconductor Coil and its. Departamento de Física, Universidade Federal de Santa Catarina, Campus,

Mechanical and Electrical Oscillations of a Superconductor Coil and its. Departamento de Física, Universidade Federal de Santa Catarina, Campus, 1 Mechanical and Electrical Oscillations of a Superconductor Coil and its Applications. Osvaldo F. Schilling Departamento de Física, Universidade Federal de Santa Catarina, Campus, Trindade, 88040-900,

More information

Scanning Tunneling Microscopy Studies of the Ge(111) Surface

Scanning Tunneling Microscopy Studies of the Ge(111) Surface VC Scanning Tunneling Microscopy Studies of the Ge(111) Surface Anna Rosen University of California, Berkeley Advisor: Dr. Shirley Chiang University of California, Davis August 24, 2007 Abstract: This

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Experiment Ma8: Superconductivity

Experiment Ma8: Superconductivity Experiment Ma8: Superconductivity 1 Overview Superconductivity is a phenomenon occurring at low temperatures. H.K. Onnes observed in year 1911 that the electrical resistivity of some metals sank abruptly

More information

Superconductivity. The Discovery of Superconductivity. Basic Properties

Superconductivity. The Discovery of Superconductivity. Basic Properties Superconductivity Basic Properties The Discovery of Superconductivity Using liquid helium, (b.p. 4.2 K), H. Kamerlingh Onnes found that the resistivity of mercury suddenly dropped to zero at 4.2 K. H.

More information

What s so super about superconductivity?

What s so super about superconductivity? What s so super about superconductivity? Mark Rzchowski Physics Department Electrons can flow through the wire when pushed by a battery. Electrical resistance But remember that the wire is made of atoms.

More information

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see? Scanning Tunneling Microscopy how does STM work? the quantum mechanical picture example of images how can we understand what we see? Observation of adatom diffusion with a field ion microscope Scanning

More information

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Stefan Heun NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy Coworkers NEST, Pisa, Italy:

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Addition 1. Shear Stack Piezoelectric Elements and Shear Effect Basics

Addition 1. Shear Stack Piezoelectric Elements and Shear Effect Basics 120 Addition 1 Shear Stack Piezoelectric Elements and Shear Effect Basics Introduction The STM scanner built up in this work is a Besocke type scanner (see room temperature STM instrumental chapter). The

More information

Scanning Tunneling Microscopy Transmission Electron Microscopy

Scanning Tunneling Microscopy Transmission Electron Microscopy Scanning Tunneling Microscopy Transmission Electron Microscopy Speakers Burcu Başar Semih Gezgin Yavuz Selim Telis Place Hacettepe University Department of Chemical Engineering It s a small world after

More information

Towards nano-mri in mesoscopic transport systems

Towards nano-mri in mesoscopic transport systems Towards nano-mri in mesoscopic transport systems P. Peddibhotla, M. Montinaro, D. Weber, F. Xue, and M. Poggio Swiss Nanoscience Institute Department of Physics University of Basel Switzerland 3 rd Nano-MRI

More information

Topological Defects in the Topological Insulator

Topological Defects in the Topological Insulator Topological Defects in the Topological Insulator Ashvin Vishwanath UC Berkeley arxiv:0810.5121 YING RAN Frank YI ZHANG Quantum Hall States Exotic Band Topology Topological band Insulators (quantum spin

More information

Lecture 10: Supercurrent Equation

Lecture 10: Supercurrent Equation Lecture 10: Supercurrent Equation Outline 1. Macroscopic Quantum Model 2. Supercurrent Equation and the London Equations 3. Fluxoid Quantization 4. The Normal State 5. Quantized Vortices October 13, 2005

More information

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES VORTICES in SUPERFLUIDS & SUPERCONDUCTORS CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES Quantum Vortices in Superfluids Suppose we look at a vortex in a superfluid- ie., fluid circulating

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) PHY 300 - Junior Phyics Laboratory Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Thursday,

More information

High Temperature Superconductor. Cable Concepts for Fusion Magnets. Christian Barth. \iyit Scientific. ^VI I Publishing

High Temperature Superconductor. Cable Concepts for Fusion Magnets. Christian Barth. \iyit Scientific. ^VI I Publishing High Temperature Superconductor Cable Concepts for Fusion Magnets by Christian Barth \iyit Scientific ^VI I Publishing Contents 1 Introduction and motivation 1 2 Superconductors 5 21 Superconductivity

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

Scanning superconducting quantum interference device microscope in a dilution refrigerator

Scanning superconducting quantum interference device microscope in a dilution refrigerator REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 72, NUMBER 11 NOVEMBER 2001 Scanning superconducting quantum interference device microscope in a dilution refrigerator Per G. Björnsson Geballe Laboratory for Advanced

More information

Superconductivity in Cu x Bi 2 Se 3 and its Implications for Pairing in the Undoped Topological Insulator

Superconductivity in Cu x Bi 2 Se 3 and its Implications for Pairing in the Undoped Topological Insulator Superconductivity in Cu x Bi 2 Se 3 and its Implications for Pairing in the Undoped Topological Insulator Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani,

More information

Insitu magnetization measurements of Cu/Co multilayers during the process of electrodeposition

Insitu magnetization measurements of Cu/Co multilayers during the process of electrodeposition Insitu magnetization measurements of Cu/Co multilayers during the process of electrodeposition A. Gündel, E. Chassaing, and J. E. Schmidt Citation: Journal of Applied Physics 90, 5257 (2001); doi: 10.1063/1.1413233

More information

Chapter 13 Principles of Electromechanics

Chapter 13 Principles of Electromechanics Chapter 13 Principles of Electromechanics Jaesung Jang Electrostatics B-H Magnetization Curves & Magnetic Hysteresis 1 Electrostatics & Magnetic Flux The force on a stationary charge q in an electric field

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

H c2 II (T) β"-(et) 2 SF 5 CH 2 CF 2 SO H p. =9.6 T (T c =5K) T c /u B H (T) T (mk) 200 H Plane. 56 mk

H c2 II (T) β-(et) 2 SF 5 CH 2 CF 2 SO H p. =9.6 T (T c =5K) T c /u B H (T) T (mk) 200 H Plane. 56 mk Low temperature upper critical eld studies in organic superconductor -(BEDT-TTF) 2 SF 5 CH 2 CF 2 SO 3 F. Zuo, P. Zhang, X. Su, J. S. Brooks, J. A. Schlueter y, J. Mohtasham, R. W. Winter, and G. L. Gard

More information

arxiv: v1 [cond-mat.mes-hall] 23 Jan 2015

arxiv: v1 [cond-mat.mes-hall] 23 Jan 2015 arxiv:1501.05743v1 [cond-mat.mes-hall] 23 Jan 2015 Modeling contact formation between atomic-sized gold tips via molecular dynamics W Dednam 1,2, C Sabater 1,4, M A Fernandez 1, C Untiedt 1, J J Palacios

More information

EFFECT OF TIP-SIZE ON STM IMAGES OF GRAPHITE

EFFECT OF TIP-SIZE ON STM IMAGES OF GRAPHITE EFFECT OF TIP-SIZE ON STM IMAGES OF GRAPHITE C. Horie, H. Miyazaki To cite this version: C. Horie, H. Miyazaki. EFFECT OF TIP-SIZE ON STM IMAGES OF GRAPHITE. Journal de Physique Colloques, 1987, 48 (C6),

More information

Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays

Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays Qinghua Chen Prof. Shi Xue Dou 1 Outline: I. An Introduction of superconductor II. Overview of vortex

More information

Superconductivity and Quantum Coherence

Superconductivity and Quantum Coherence Superconductivity and Quantum Coherence Lent Term 2008 Credits: Christoph Bergemann, David Khmelnitskii, John Waldram, 12 Lectures: Mon, Wed 10-11am Mott Seminar Room 3 Supervisions, each with one examples

More information

Electrization of the superconductive windings and tori and the new type of contact potential difference

Electrization of the superconductive windings and tori and the new type of contact potential difference Electrization of the superconductive windings and tori and the new type of contact potential difference F.F. Mende Abstract In the article is examined new physical phenomenon the electrocurent contact

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Magnetic Vortex Properties of the MgB 2 Superconductor. Tommy O Brien 2009 NSF/REU Program Physics Department, University of Notre Dame

Magnetic Vortex Properties of the MgB 2 Superconductor. Tommy O Brien 2009 NSF/REU Program Physics Department, University of Notre Dame Magnetic Vortex Properties of the MgB 2 Superconductor Tommy O Brien 2009 NSF/REU Program Physics Department, University of Notre Dame Advisor: Prof. Morten Ring Eskildsen August 5, 2009 Magnesium diboride

More information

Electron confinement in metallic nanostructures

Electron confinement in metallic nanostructures Electron confinement in metallic nanostructures Pierre Mallet LEPES-CNRS associated with Joseph Fourier University Grenoble (France) Co-workers : Jean-Yves Veuillen, Stéphane Pons http://lepes.polycnrs-gre.fr/

More information

Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by uppercritical

Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by uppercritical UvA-DARE (Digital Academic Repository) Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by uppercritical field experiments Pan, Y.; Nikitin, A.; Araizi Kanoutas, G.; Huang,

More information

Visualization of atomic-scale phenomena in superconductors

Visualization of atomic-scale phenomena in superconductors Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peayush Choubey, Peter Hirschfeld Department

More information

Superconductivity. Dirk van Delft and Peter Kes, "The discovery of superconductivity", Physics Today 63(9), 38, 2010.

Superconductivity. Dirk van Delft and Peter Kes, The discovery of superconductivity, Physics Today 63(9), 38, 2010. Experiment Nr. 31 Superconductivity 1. Introduction When cooled down below a characteristic critical temperature T c a specific phase transition of electron system can be observed in certain materials.

More information

Electromagnetic Induction

Electromagnetic Induction Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 29 Looking forward

More information

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets Chapter 2 Theoretical background The first part of this chapter gives an overview of the main static magnetic behavior of itinerant ferromagnetic and antiferromagnetic materials. The formation of the magnetic

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Point-contact spectra of a Pt-Ir tip/lto film junction. The main panel shows differential conductance at 2, 12, 13, 16 K (0 T), and 10 K (2 T) to demonstrate

More information

MAGNETO-OPTIC IMAGING OF SINGLE VORTEX DYNAMICS IN NbSe 2 CRYSTALS

MAGNETO-OPTIC IMAGING OF SINGLE VORTEX DYNAMICS IN NbSe 2 CRYSTALS MAGNETO-OPTIC IMAGING OF SINGLE VORTEX DYNAMICS IN NbSe 2 CRYSTALS M. Baziljevich, P. E. Goa, H. Hauglin, E. Il Yashenko, T. H. Johansen Dept. of Physics, University of Oslo, Box 1048 Blindern, 0316 Oslo,

More information

Electronic states on the surface of graphite

Electronic states on the surface of graphite Electronic states on the surface of graphite Guohong Li, Adina Luican, Eva Y. Andrei * Department of Physics and Astronomy, Rutgers Univsersity, Piscataway, NJ 08854, USA Elsevier use only: Received date

More information

Position calibration of cryogenic dark matter detectors

Position calibration of cryogenic dark matter detectors Abstract Position calibration of cryogenic dark matter detectors Aliya Merali University of Florida REU Participant, Summer 2010 Advisor: Dr. Tarek Saab Preparations for a position calibration of cryogenic

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

Energy Levels Zero energy. From Last Time Molecules. Today. n- and p-type semiconductors. Energy Levels in a Metal. Junctions

Energy Levels Zero energy. From Last Time Molecules. Today. n- and p-type semiconductors. Energy Levels in a Metal. Junctions Today From Last Time Molecules Symmetric and anti-symmetric wave functions Lightly higher and lower energy levels More atoms more energy levels Conductors, insulators and semiconductors Conductors and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1804 Supplementary Information J. Zhu 1, J. Christensen 2, J. Jung 2,3, L. Martin-Moreno 4, X. Yin 1, L. Fok 1, X. Zhang 1 and F. J. Garcia-Vidal 2 1 NSF Nano-scale

More information

Internal sc Coils for Dilution Refrigerators

Internal sc Coils for Dilution Refrigerators Internal sc Coils for Dilution Refrigerators Hartmut Dutz, Stefan Goertz, Ralf Heinz, Thomas Ludwig -1- Frozen-Spin-Target (Saclay/Bonn-type) P y P y P Z -2- limited angular acceptance ( low energy scattering

More information

FYSZ 460 Advanced laboratory work: Superconductivity and high T C superconductor Y 1 Ba 2 Cu 3 O 6+y

FYSZ 460 Advanced laboratory work: Superconductivity and high T C superconductor Y 1 Ba 2 Cu 3 O 6+y FYSZ 460 Advanced laboratory work: Superconductivity and high T C superconductor Y 1 Ba 2 Cu 3 O 6+y Laboratory Instructions Minna Nevala minna.nevala@phys.jyu.fi November 15, 2010 Contents 1 Introduction

More information

Transducers. ME 3251 Thermal Fluid Systems

Transducers. ME 3251 Thermal Fluid Systems Transducers ME 3251 Thermal Fluid Systems 1 Transducers Transform values of physical variables into equivalent electrical signals Converts a signal from one form to another form 2 Types of Transducers

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. A, Schematic of a Au/SRO113/SRO214 junction. A 15-nm thick SRO113 layer was etched along with 30-nm thick SRO214 substrate layer. To isolate the top Au electrodes

More information

Tests on Superconductor Gravitational Effects

Tests on Superconductor Gravitational Effects Tests on Superconductor Gravitational Effects by Alexander V. Frolov 1. Theoretical background The high density fluctuations in Bose condensate is laboratory scale case to confirm theoretical conclusions

More information

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007 Microscopy and Spectroscopy with Tunneling Electrons STM Sfb Kolloquium 23rd October 2007 The Tunnel effect T ( E) exp( S Φ E ) Barrier width s Barrier heigth Development: The Inventors 1981 Development:

More information

Scanning Tunneling Microscopy: theory and examples

Scanning Tunneling Microscopy: theory and examples Scanning Tunneling Microscopy: theory and examples Jan Knudsen The MAX IV laboratory & Division of synchrotron radiation research K5-53 (Sljus) jan.knudsen@sljus.lu.se April 17, 018 http://www.sljus.lu.se/staff/rainer/spm.htm

More information

By-Pass. This voltage is proportional to the liquid level (threewire potentiometer circuit). The resistance reading can

By-Pass. This voltage is proportional to the liquid level (threewire potentiometer circuit). The resistance reading can " " ' " ' / The magnetic field which is in the ball or cylindrical floats actuates very small reed contacts through the wall of a guide tube and these pick up an uninterrupted measuring-circuit voltage

More information

Citation for published version (APA): Mendoza, S. M. (2007). Exploiting molecular machines on surfaces s.n.

Citation for published version (APA): Mendoza, S. M. (2007). Exploiting molecular machines on surfaces s.n. University of Groningen Exploiting molecular machines on surfaces Mendoza, Sandra M IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 26 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.supr-con] 26 Nov 2001 3D-2D crossover in the naturally layered superconductor (LaSe) 114 (NbSe 2 ) arxiv:cond-mat/0111483v1 [cond-matsupr-con] 26 Nov 2001 P Samuely, 1 P Szabó, 1 J Kačmarčík, 1 A G M Jansen, 2 A Lafond, 3 and

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Low Temperature Physics Measurement Systems

Low Temperature Physics Measurement Systems PAGE 6 & 2008 2007 PRODUCT CATALOG Accelerate your Semiconductor Research & Developments towards Nanoscale Products. Experience your new working horse in the emerging field of semiconductor research for

More information

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES J. M. De Teresa Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain. E-mail:

More information

Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor

Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor www.sciencemag.org/cgi/content/full/332/6036/1410/dc1 Supporting Online Material for Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor Can-Li Song, Yi-Lin Wang, Peng Cheng, Ye-Ping

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

X: The Hall Effect in Metals

X: The Hall Effect in Metals X: The all Effect in Metals I. References C. Kittel: Introduction to Solid State Physics, pp. 148-151. Ashcroft and Mermin: Solid state Physics, pp. 6-15. Dekker: Solid State Physics, pp. 301-302. Yarwood:

More information