Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Analysis Method for Quantifying the Morphology of Nanotube Networks Dusan Vobornik*, Shan Zou and Gregory P. Lopinski Measurement Science and Standards, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada Corresponding Author * S1

2 Contents 1. Cross-sections: bundling of polymer dispersed nanotubes 2. AFM tip size estimation and de-convolution procedure 3. Deconvolved images 4. Uncertainty analysis based on height threshold to separate nanotubes from the substrate 5. References 1. Cross-sections: bundling of polymer dispersed nanotubes In figure S1 we show cross sections of several bundles in same nanotube images that are presented in the figure 1 of the article. These nanotubes have a narrow distribution of diameters ranging from 1.2 to 1.4 nm. Upon polymer wrapping, a further diameter increase can be expected, as AFM is then measuring the added polymer and nanotube diameters. Yet, at this time it is impossible to predict the exact diameter increase because it depends on the way in which the polymer wraps nanotubes and which is not known: the geometry of the wrapping (helical vs aligned with the nanotube axis), the wrapping density (are polymer molecules entirely covering the nanotube surface, or are there only sparse polymer molecules here and there along the nanotube), or the position adopted by polymers alkyl chains, all affect the eventual diameter increase. The polymer could not be directly resolved by AFM on the surface of nanotubes in our experiments. Based on cross-sections of 20 single nanotubes in all four images presented in figure 1 in the article, the average wrapped single nanotube size is 1.7 nm. Here the assumption is that any nanotube whose diameter does not exceed 2 nm in the AFM image is a single nanotube. This is reasonable because the tightest bundling of 3 smallest 1.2 nm nanotubes without any polymer would already result in a minimum bundle height of 2.2 nm (see figure S1(e)). The network on HOPG is shown in (a) and the corresponding cross-sections in (b), while (c) shows the network on silicon oxide and the resulting profiles in (d). In (b), profiles 1, 2, and 6 are close to or under 2 nm height, indicating that they are single or horizontally aligned nanotubes (no vertical bundling or stacking), while cross-sections 3, 4, 5 and 7 are close to or above 3 nm and therefore most likely bundles. The varying shape and height of the profiles indicate that there is a variety of bundles, the largest ones being close to 5 nm in height. Profiles in (d) show similar results with varying degrees of bundling, even though, at a first glance, the AFM image appears to show a network of uniform single nanotubes. S2

3 Fig. S1: Networks made of the same solution of polymer wrapped nanotubes, (a) on Piranha cleaned SiO 2, rinsed with toluene, (c) on Piranha cleaned SiO 2, rinsed with toluene, tetrahydrofuran and isopropanol sequentially, (e) on plasma cleaned SiO 2, rinsed with toluene, (g) on HOPG, rinsed with toluene. Cross-sections corresponding to numbered white lines in (a), (c), (e) and (d) are respectively shown in (b), (d), (f) and (h), indicating a significant amount of bundling. The cartoon in (i) shows that the height of a bundle of nm diameter nanotubes is approximately 2.2 nm. S3

4 2. AFM tip size estimation and de-convolution procedure The de-convolving requires a good knowledge of the AFM probe s size. There are experimental methods to estimate the size by scanning a test sample prior to the imaging of the sample of interest, and use the sharpness of edges in images to deduce the shape of the AFM tip s end. While these methods may be adequate for average AFM probes, they are problematic for ultrasharp tips (tips whose radius is less than 10 nm approximately), because they the probes tend to degrade quickly and become more dull with each sample approach. Therefore, the tip size that is obtained on a test sample may no longer be true after scanning the test sample, removing the tip, and approaching the sample of interest and scanning it. Some analysis software, including Gwyddion 3, offer an automated blind tip estimation procedure that relies on an extensive analysis of the actual image of the sample of interest to infer the tip shape and size. While this seems like an ideal approach, upon testing it several times on nanotube networks images, we found that the resulting tip size was generally not in the realistic range. We are not sure why this is, but upon testing our impression was that this blind tip estimation algorithm worked better for AFM images of features that have aspect ratios closer to one, and less well for elongated features such as nanotubes. Another way to estimate the tip size relies on the fact that the Van der Waals force is directly proportional to the tip size. The equation describing the Van der Waals force between a spherical object (tip) and a flat substrate is: 6 (SE1) In SE1, F(d) is the Van der Waals force between the spherical AFM tip of radius r, and a plane (substrate) at a distance d, while A HAM is the Hamaker constant which depends on both the tip and the substrate materials. The AFM tip being a mechanical oscillator, the tip-sample force is also equal to: (SE2) In equation SE2, d is the AFM cantilever deflection, while k is it s spring constant, S D is the deflection sensitivity of the AFM and V VdW is the voltage signal corresponding to the maximum attractive force in the F(d) curve (while the AFM cantilever gets deflected when approaching the sample because of tip-sample interaction forces, this Fig. S2: AFM tip-sample force curve with the tip oscillating at 2 khz over the sample surface with the 300 nm amplitude. Blue curve shows the force as the tip approaches the surface, while the red curve shows it when the tip retracts away. Peak force tapping feedback is used. For tip size estimation we use the maximum of attractive force on the approach to avoid having to account for complicated chemical adhesion force that appears to dominate the retraction. S4

5 deflection is monitored using a photodiode, and therefore the signal that we detect is the voltage, which can then be converted into deflection by using the deflection sensitivity, a value that depends on several variables such as the laser alignment and the AFM instrument that is used; see figure S3 for a typical F(d) curve we saw in these experiments). The tip-sample Van der Waals force is still measurable a couple of nanometers away from the sample surface, while the repulsive tap forces are negligible even a fraction of nanometer away from the surface. There are other long range forces that can be relevant over the same tip-sample separation as the Van der Waals forces, the common ones being electrostatic interactions and snap-in capillary forces. However, both of these are readily detected as they modify the F(d) curve shape in characteristic ways. In our AFM experiments on nanotube networks we routinely monitor the F(d) curve and have never observed any evidence of either capillary or electrostatic tip-sample interactions. Therefore we can combine equations SE1 and SE2, which results in: (SE3) We have used the manufacturer-specified nominal spring constant k = 0.4 N/m, but for a more precise use of the method it would be advisable to determine this value experimentally for each of the tips. It is impossible to determine experimentally what is the value of d corresponding to the maximum of the attractive force, but generally values of 0.1 to 1 nm are considered to be reasonable. We have tested several of these values in the equation S3 on different AFM tips. In the end we have chosen to use d = 0.7 nm, because this value gives the radius of less than 3 nm and more than 2 nm for the smallest tips, and this is consistent with the manufacturer specified tip radius of 2 nm. In our experiments we used silicon nitride tips, and the substrate material is silicon oxide, and the Hamaker constant for these two materials is known 4. Finally, we have decided to use a value of S D = 60 nm/v for deflection sensitivity, instead of experimentally determining it for each of the experiments. This is a typical value we found in previous experiments for the same AFM probes with similar alignment on our AFM. This value can be determined at the time of each of the experiments, but doing it poses a risk of making ultra-sharp tip duller, increasing its radius, and the associated error as described here in part 2. We have recorded the value of V VdW before and after each of the images shown in the article, as shown in the table ST1, and have used these values and the equation SE3 to estimate corresponding tips sizes. Upon determining tip size we used the de-convolution procedure that s built in Gwyddion, namely the surface reconstruction function (Data Process Tip Surface Reconstruc on), where the input is the p size and the output the deconvolved image. It is important to note that Van der Waals force maxima on the substrate should be recorded before and after each image. Images where the before and after values are different should be discarded from the analysis because this change indicates that the tip has undergone a change at some point during the scanning (either a piece of the tip was lost, resulting in a duller tip with a larger diameter, or the tip got contaminated picking some contaminant from the surface), and therefore the volumetric analysis would become unreliable. S5

6 3. Deconvoluted images Fig. S3 Deconvoluted 1 μm 2 AFM images of nanotube networks on SiO 2 (a, b, c) and on HOPG (d). Substrates were cleaned by Piranha etching (a, b), oxygen plasma treatment (c), or by cleaving (d) before the network deposition. Upon solvent evaporation networks were rinsed with toluene for 20 seconds (a,c,d) or sequentially with toluene, isopropanol and tetrahydrofuran, for 20 seconds each (b). Table ST1: The top line of the table shows the raw voltage values of the Van der Waals force maxima (V VdW ) that were recorded before and after each of the scans shown in figure S3, while the bottom line shows the radii values that was calculated using these voltages using the equation SE3 S6

7 4. Uncertainty based on the choice of the height threshold to separate nanotubes from the substrate In this article we propose a novel analysis method, and the uncertainty that we discuss here is only related to the analysis, and not to the experimental technique (AFM) or the sample preparation uncertainties. There are two Fig. S1: An estimate of the maximum accuracy range that can result from the choice of height threshold that defines the network (in blue) as everything above the threshold, and the substrate as everything that is lower. For the network that was deposited on piranha cleaned silicon oxide, and rinsed with toluene post-deposition, our best estimate of the threshold was 1.7 nm, as shown in the top row middle column above. Then, we estimated that varying the threshold by 0.25 nm lower or higher corresponded to a maximum error range, out of which most individual users would realize that either large portions of the substrate (top left side image), or, respectively, of the network (top right side image) are being identified as network, or, respectively, as substrate. Upon setting the threshold we manually removed any part of the mask that was obviously on the substrate using appropriate tools in Gwyddion, resulting in images in the second row. These cleaned images in the second row were then analyzed using the procedure outlined in the article to estimate the network density and the bundling coefficient, and these numbers were used to determine the final uncertainty of the analysis for this image, i.e. ± 8 μm -2 for the network density, and ± 0.03 for the bundling coefficient. S7

8 main sources of uncertainty that affect the analysis method: - The bias towards underestimating the number of nanotubes, which we have demonstrated in part 2 above. Based on the analysis in part 2, this uncertainty does not affect single nanotubes, but appears to significantly affect larger bundles. To eliminate this bias we have added the de-convolution procedure to the analysis method, but the de-convolution introduces a whole new set of uncertainties, related both to the tip size determination, and to the de-convolution algorithm. In conclusion, this part of the analysis is too complex to precisely determine the associated uncertainty of each separate variable. One way to go around this would be to perform tests on well characterized samples simulating different bundle sizes and experimentally determine the uncertainty using the top-down approach. At this time we have not yet done this. However, this uncertainty is not affected by the person who carries out the analysis, and always introduces the same bias for the same sample, and therefore, even if it is not accounted for, it affects only the absolute values, but does not affect relative comparisons between sample preparations. - The uncertainty due to the choice of the height threshold that defines what part of the image is the network (shown in blue in figure S4) and what part is the substrate. This uncertainty depends on the personal appreciation of the image, and may vary both depending on the person, and on the day to day variability even for the same individual performing the analysis. We have tested what happens when one person performs the analysis several times and on the same set of images, but sometimes with more than a month in-between, and the spread of results was generally smaller than the uncertainty that we estimated using the method described below. We established the uncertainty range resulting from the threshold choice by first finding the best estimate of the threshold, and then seeing what happens if we change this threshold value to a point where the errors become obvious. In the case of the network deposited on piranha cleaned silicon oxide and rinsed with toluene following the deposition, our best estimate of the threshold was 1.7 nm, as shown in the top row middle column in figure S4. Then, we estimated that varying the threshold by 0.25 nm lower, or higher, corresponded to a maximum error range, where most individual users would realize that either large portions of the substrate (top left side image in S4), or, respectively, of the network (top right side image) are being identified as the network, or, respectively, as the substrate. Upon setting the threshold, we manually removed any part of the mask that was obviously on the substrate using appropriate tools in Gwyddion (filtering grains by pixel-size, or using the remove individual grains tool), resulting in images in the second row of S4. These cleaned images in the second row were then analyzed using the procedure outlined in the article to estimate the network density and the bundling coefficient, as shown in the table in the bottom of S4, and these numbers were used to determine the final uncertainty of the analysis for this image, i.e. ± 8 μm -2 for network density, and ± 0.03 for the bundling coefficient. The same procedure, that is varying the best threshold by + and 0.25 nm was found to be adequate for all the networks. 5. References 1 J. Ding, Z. Li, J. Lefebvre, F. Cheng, G. Dubey, S. Zou, P. Finnie, A. Hrdina, L. Scoles, G. P. Lopinski, C. T. Kingston, B. Simard and P. R. L. Malenfant, Nanoscale, 2014, 6, P. Klapetek, M. Valtr, D. Nečas, O. Salyk and P. Dzik, Nanoscale Res. Lett., 2011, 6, D. Nečas and P. Klapetek, Cent. Eur. J. Phys., 2012, 10, L. Bergstrom, Adv. Colloid Interface Sci., 1997, 70, 125. S8

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

Outline Scanning Probe Microscope (SPM)

Outline Scanning Probe Microscope (SPM) AFM Outline Scanning Probe Microscope (SPM) A family of microscopy forms where a sharp probe is scanned across a surface and some tip/sample interactions are monitored Scanning Tunneling Microscopy (STM)

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM Module 26: Atomic Force Microscopy Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM 1 The AFM apart from generating the information about the topography of the sample features can be used

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Supplementary Methods Characterization of AFM resolution We employed amplitude-modulation AFM in non-contact mode to characterize the topography of the graphene samples. The measurements were performed

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Università degli Studi di Bari "Aldo Moro"

Università degli Studi di Bari Aldo Moro Università degli Studi di Bari "Aldo Moro" Table of contents 1. Introduction to Atomic Force Microscopy; 2. Introduction to Raman Spectroscopy; 3. The need for a hybrid technique Raman AFM microscopy;

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information

Softlithography and Atomic Force Microscopy

Softlithography and Atomic Force Microscopy Praktikum I, Autumn Semester 2008/09 Experiment 13/14; 03.12.2008 Softlithography and Atomic Force Microscopy Authors: Claudio Zihlmann (zclaudio@student.ethz.ch) and Philippe Knüsel (pknuesel@student.ethz.ch)

More information

Scanning Force Microscopy II

Scanning Force Microscopy II Scanning Force Microscopy II Measurement modes Magnetic force microscopy Artifacts Lars Johansson 1 SFM - Forces Chemical forces (short range) Van der Waals forces Electrostatic forces (long range) Capillary

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting information Self-assembled nanopatch with peptide-organic multilayers and mechanical

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

Nanoscale IR spectroscopy of organic contaminants

Nanoscale IR spectroscopy of organic contaminants The nanoscale spectroscopy company The world leader in nanoscale IR spectroscopy Nanoscale IR spectroscopy of organic contaminants Application note nanoir uniquely and unambiguously identifies organic

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Characterization of MEMS

More information

SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS

SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS Gautam Kumar, Shanna Smith, Florence Eschbach, Arun Ramamoorthy, Michael

More information

L8: The Mechanics of Adhesion used by the Gecko

L8: The Mechanics of Adhesion used by the Gecko L8: The Mechanics of Adhesion used by the Gecko With help from Bo He Overview Gecko s foot structure Intermolecular force Measurement: 2-D MEMS sensor Gecko s adhesive mechanism Measurement results discussion

More information

nano-ta: Nano Thermal Analysis

nano-ta: Nano Thermal Analysis nano-ta: Nano Thermal Analysis Application Note #1 Failure Analysis - Identification of Particles in a Polymer Film Author: David Grandy Ph.D. Introduction Nano-TA is a local thermal analysis technique

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de yang.xu@tu-ilmenau.de

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force

Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force Ž. Applied Surface Science 144 145 1999 627 632 Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force H.-Y. Nie ), M.J.

More information

Measurements of interaction forces in (biological) model systems

Measurements of interaction forces in (biological) model systems Measurements of interaction forces in (biological) model systems Marina Ruths Department of Chemistry, UMass Lowell What can force measurements tell us about a system? Depending on the technique, we might

More information

2.76/2.760 Multiscale Systems Design & Manufacturing

2.76/2.760 Multiscale Systems Design & Manufacturing 2.76/2.760 Multiscale Systems Design & Manufacturing Fall 2004 MOEMS Devices for Optical communications system Switches and micromirror for Add/drops Diagrams removed for copyright reasons. MOEMS MEMS

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

PY5020 Nanoscience Scanning probe microscopy

PY5020 Nanoscience Scanning probe microscopy PY500 Nanoscience Scanning probe microscopy Outline Scanning tunnelling microscopy (STM) - Quantum tunnelling - STM tool - Main modes of STM Contact probes V bias Use the point probes to measure the local

More information

Sensors and Metrology. Outline

Sensors and Metrology. Outline Sensors and Metrology A Survey 1 Outline General Issues & the SIA Roadmap Post-Process Sensing (SEM/AFM, placement) In-Process (or potential in-process) Sensors temperature (pyrometry, thermocouples, acoustic

More information

A General Equation for Fitting Contact Area and Friction vs Load Measurements

A General Equation for Fitting Contact Area and Friction vs Load Measurements Journal of Colloid and Interface Science 211, 395 400 (1999) Article ID jcis.1998.6027, available online at http://www.idealibrary.com on A General Equation for Fitting Contact Area and Friction vs Load

More information

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division AFM Imaging In Liquids W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division Imaging Techniques: Scales Proteins 10 nm Bacteria 1μm Red Blood Cell 5μm Human Hair 75μm Si Atom Spacing 0.4nm

More information

A SCIENTIFIC APPROACH TO A STICKY PROBLEM

A SCIENTIFIC APPROACH TO A STICKY PROBLEM A SCIENTIFIC APPROACH TO A STICKY PROBLEM Sticking, the adherence of granule to punch face or die bore, is one of the major issues affecting the manufacture of solid dose pharmaceuticals. As part of I

More information

Accurate thickness measurement of graphene

Accurate thickness measurement of graphene Accurate thickness measurement of graphene Cameron J Shearer *, Ashley D Slattery, Andrew J Stapleton, Joseph G Shapter and Christopher T Gibson * Centre for NanoScale Science and Technology, School of

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Stacking fault density is direction dependent: Illustration of the stacking fault multiplicity: lattice disorder is clearly direction specific, gradually zooming

More information

Chapter 2 Correlation Force Spectroscopy

Chapter 2 Correlation Force Spectroscopy Chapter 2 Correlation Force Spectroscopy Correlation Force Spectroscopy: Rationale In principle, the main advantage of correlation force spectroscopy (CFS) over onecantilever atomic force microscopy (AFM)

More information

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Contents What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Figure1: 2004 Seth Copen Goldstein What is AFM? A type of Scanning Probe Microscopy

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

NIS: what can it be used for?

NIS: what can it be used for? AFM @ NIS: what can it be used for? Chiara Manfredotti 011 670 8382/8388/7879 chiara.manfredotti@to.infn.it Skype: khiaram 1 AFM: block scheme In an Atomic Force Microscope (AFM) a micrometric tip attached

More information

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXFORD UNIVERSITY PRESS Contents Preface

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magnetic Exchange Force Microscopy with Atomic Resolution Uwe Kaiser, Alexander Schwarz and Roland Wiesendanger S1 AFM set-up Figure S1 shows the block diagram of the AFM data acquisition set-up using

More information

Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope

Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 70, NUMBER 3 MARCH 1999 Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope J. W. Hong,

More information

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions Supplemental Information Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions M. Frei 1, S Aradhya 1, M. S. Hybertsen 2, L. Venkataraman 1 1 Department of Applied Physics and Applied

More information

Shock Pressure Measurements for the Removal of Particles of Sub-micron Dimensions from Silicon Wafers

Shock Pressure Measurements for the Removal of Particles of Sub-micron Dimensions from Silicon Wafers Shock Pressure Measurements for the Removal of Particles of Sub-micron Dimensions from Silicon Wafers C.Curran, K.G.Watkins, J.M.Lee Laser Group Department of Engineering The University of Liverpool United

More information

Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope

Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope Kentaro Sasaki, Keiji Ueno and Atsushi Koma Department of Chemistry, The University of Tokyo,

More information

Introduction to Scanning Probe Microscopy

Introduction to Scanning Probe Microscopy WORKSHOP Nanoscience on the Tip Introduction to Scanning Probe Microscopy Table of Contents: 1 Historic Perspectives... 1 2 Scanning Force Microscopy (SFM)... 2 2.1. Contact Mode... 2 2.2. AC Mode Imaging...

More information

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield. 1 2 3 4 Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO 2. Optical microscopy images of three examples of large single layer graphene flakes cleaved on a single

More information

Point mass approximation. Rigid beam mechanics. spring constant k N effective mass m e. Simple Harmonic Motion.. m e z = - k N z

Point mass approximation. Rigid beam mechanics. spring constant k N effective mass m e. Simple Harmonic Motion.. m e z = - k N z Free end Rigid beam mechanics Fixed end think of cantilever as a mass on a spring Point mass approximation z F Hooke s law k N = F / z This is beam mechanics, standard in engineering textbooks. For a rectangular

More information

Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM)

Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM) WORKSHOP Nanoscience on the Tip Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM) Table of Contents: 1. Motivation... 1. Simple Harmonic Motion... 1 3. AC-Mode Imaging...

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

Keysight Technologies Carbon Nanotube Tips for MAC Mode AFM Measurements in Liquids. Application Note

Keysight Technologies Carbon Nanotube Tips for MAC Mode AFM Measurements in Liquids. Application Note Keysight Technologies Carbon Nanotube Tips for MAC Mode AFM Measurements in Liquids Application Note Introduction Atomic force microscopy (AFM) is a powerful technique in revealing the microscopic structure

More information

Supplementary Materials. Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with

Supplementary Materials. Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Supplementary Materials Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure M. Frei 1, S Aradhya 1, M. Koentopp 2, M. S. Hybertsen 3, L. Venkataraman

More information

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Dr. E. A. Leone BACKGRUND ne trend in the electronic packaging industry

More information

VEDA - Virtual Environment for Dynamic Atomic Force Microscopy

VEDA - Virtual Environment for Dynamic Atomic Force Microscopy VEDA - Virtual Environment for Dynamic Atomic Force Microscopy John Melcher, Daniel Kiracofe, doctoral students Steven Johnson, undergraduate Shuiqing Hu, Veeco Arvind Raman, Associate Professor Mechanical

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Introduction to the Scanning Tunneling Microscope

Introduction to the Scanning Tunneling Microscope Introduction to the Scanning Tunneling Microscope A.C. Perrella M.J. Plisch Center for Nanoscale Systems Cornell University, Ithaca NY Measurement I. Theory of Operation The scanning tunneling microscope

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Nanotechnology. Gavin Lawes Department of Physics and Astronomy

Nanotechnology. Gavin Lawes Department of Physics and Astronomy Nanotechnology Gavin Lawes Department of Physics and Astronomy Earth-Moon distance 4x10 8 m (courtesy NASA) Length scales (Part I) Person 2m Magnetic nanoparticle 5x10-9 m 10 10 m 10 5 m 1 m 10-5 m 10-10

More information

Introduction. Sample kit content

Introduction. Sample kit content Introduction Polymer blend sample preparation TN01062 Preparation of polymer samples available from the Lateral force, Phase imaging, and Force modulation mode kits The SBS-PMMA, SBS-PS, and SBR-PMMA samples

More information

Vibration Studying of AFM Piezoelectric Microcantilever Subjected to Tip-Nanoparticle Interaction

Vibration Studying of AFM Piezoelectric Microcantilever Subjected to Tip-Nanoparticle Interaction Journal of Novel Applied Sciences Available online at www.jnasci.org 2013 JNAS Journal-2013-2-S/806-811 ISSN 2322-5149 2013 JNAS Vibration Studying of AFM Piezoelectric Microcantilever Subjected to Tip-Nanoparticle

More information

Final Reading Assignment: Travels to the Nanoworld: pages pages pages

Final Reading Assignment: Travels to the Nanoworld: pages pages pages Final Reading Assignment: Travels to the Nanoworld: pages 152-164 pages 201-214 pages 219-227 Bottom-up nanofabrication Can we assemble nanomachines manually? What are the components (parts)? nanoparticles

More information

Probing the Hydrophobic Interaction between Air Bubbles and Partially. Hydrophobic Surfaces Using Atomic Force Microscopy

Probing the Hydrophobic Interaction between Air Bubbles and Partially. Hydrophobic Surfaces Using Atomic Force Microscopy Supporting Information for Probing the Hydrophobic Interaction between Air Bubbles and Partially Hydrophobic Surfaces Using Atomic Force Microscopy Chen Shi, 1 Derek Y.C. Chan, 2.3 Qingxia Liu, 1 Hongbo

More information

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy Jing-jiang Yu Nanotechnology Measurements Division Agilent Technologies, Inc. Atomic Force Microscopy High-Resolution

More information

Atomic Force Microscopy

Atomic Force Microscopy Journal of the Advanced Undergraduate Physics Laboratory Investigation Volume 0 Issue 0 Premiere Issue Article 2 6-6-2012 Atomic Force Microscopy Tyler Lane Minnesota State University - Moorhead, lanety@mnstate.edu

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1332 Light triggered self-construction of supramolecular organic nanowires as metallic interconnects Vina Faramarzi 1,2, Frédéric Niess 1,3, Emilie Moulin 3, Mounir Maaloum 1,3, Jean-François

More information

Atomic Force Microscopy (AFM) Part I

Atomic Force Microscopy (AFM) Part I Atomic Force Microscopy (AFM) Part I CHEM-L2000 Eero Kontturi 6 th March 2018 Lectures on AFM Part I Principles and practice Imaging of native materials, including nanocellulose Part II Surface force measurements

More information

PARTICLE MEASUREMENT IN CLEAN ROOM TECHNOLOGY

PARTICLE MEASUREMENT IN CLEAN ROOM TECHNOLOGY WHITEPAPER ENGLISH PARTICLE MEASUREMENT IN CLEAN ROOM TECHNOLOGY PARTICLE MEASUREMENT Particle measurement in cleanrooms. WP1508006-0100-EN, V1R0, 2015-08 PARTICLE MEASUREMENT IN CLEAN ROOM TECHNOLOGY

More information

Simple Harmonic Motion and Damping

Simple Harmonic Motion and Damping Simple Harmonic Motion and Damping Marie Johnson Cabrices Chamblee Charter High School Background: Atomic Force Microscopy, or AFM, is used to characterize materials. It is used to measure local properties,

More information

Introduction to Scanning Tunneling Microscopy

Introduction to Scanning Tunneling Microscopy Introduction to Scanning Tunneling Microscopy C. JULIAN CHEN IBM Research Division Thomas J. Watson Research Center Yorktown Heights, New York New York Oxford OXFORD UNIVERSITY PRESS 1993 CONTENTS List

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information for Manuscript: Nanoscale wear as a stress-assisted chemical reaction Supplementary Methods For each wear increment, the diamond indenter was slid laterally relative to the silicon

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4 Issued: Wednesday, March 4, 2016 PROBLEM SET #4 Due: Monday, March 14, 2016, 8:00 a.m. in the EE C247B homework box near 125 Cory. 1. This problem considers bending of a simple cantilever and several methods

More information

Nitride HFETs applications: Conductance DLTS

Nitride HFETs applications: Conductance DLTS Nitride HFETs applications: Conductance DLTS The capacitance DLTS cannot be used for device trap profiling as the capacitance for the gate will be very small Conductance DLTS is similar to capacitance

More information

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design Tamkang Journal of Science and Engineering, Vol. 12, No. 4, pp. 399 407 (2009) 399 Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System

More information

Lithium Ion Insertion Properties of Solution-Exfoliated Germanane

Lithium Ion Insertion Properties of Solution-Exfoliated Germanane Lithium Ion Insertion Properties of Solution-Exfoliated Germanane Andrew C. Serino, Jesse S. Ko, Michael T. Yeung, Jeffrey J. Schwartz, Chris B. Kang, Sarah H. Tolbert,,, Richard B. Kaner,,, Bruce S. Dunn,*,,

More information

Supporting Information for. A Molecular Half-Wave Rectifier

Supporting Information for. A Molecular Half-Wave Rectifier Supporting Information for A Molecular Half-Wave Rectifier Christian A. Nijhuis, 1,* William F. Reus, 2 Adam C. Siegel, 2 and George M. Whitesides 2,* 1 Department of Chemistry, National University of

More information

Fabrication of ordered array at a nanoscopic level: context

Fabrication of ordered array at a nanoscopic level: context Fabrication of ordered array at a nanoscopic level: context Top-down method Bottom-up method Classical lithography techniques Fast processes Size limitations it ti E-beam techniques Small sizes Slow processes

More information

Oxford Scholarship Online

Oxford Scholarship Online University Press Scholarship Online Oxford Scholarship Online Atomic Force Microscopy Peter Eaton and Paul West Print publication date: 2010 Print ISBN-13: 9780199570454 Published to Oxford Scholarship

More information

Understanding the properties and behavior of groups of interacting atoms more than simple molecules

Understanding the properties and behavior of groups of interacting atoms more than simple molecules Condensed Matter Physics Scratching the Surface Understanding the properties and behavior of groups of interacting atoms more than simple molecules Solids and fluids in ordinary and exotic states low energy

More information

Vapor-Phase Cutting of Carbon Nanotubes Using a Nanomanipulator Platform

Vapor-Phase Cutting of Carbon Nanotubes Using a Nanomanipulator Platform Vapor-Phase Cutting of Carbon Nanotubes Using a Nanomanipulator Platform MS&T 10, October 18, 2010 Vladimir Mancevski, President and CTO, Xidex Corporation Philip D. Rack, Professor, The University of

More information

3.052 Nanomechanics of Materials and Biomaterials Tuesday 04/03/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW

3.052 Nanomechanics of Materials and Biomaterials Tuesday 04/03/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW Outline : HIGH RESOLUTION FORCE SPECTROSCOPY...2-10 General Experiment Description... 2 Verification of Surface Functionalization:Imaging of Planar Substrates...

More information

Surface Chemical Analysis Using Scanning Probe Microscopy

Surface Chemical Analysis Using Scanning Probe Microscopy STR/03/067/ST Surface Chemical Analysis Using Scanning Probe Microscopy A. L. K. Tan, Y. C. Liu, S. K. Tung and J. Wei Abstract - Since its introduction in 1986 as a tool for imaging and creating three-dimensional

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

Depletion forces induced by spherical depletion agents

Depletion forces induced by spherical depletion agents Depletion forces induced by spherical depletion agents Laurent Helden Jules Mikhael. Physikalisches Institut Universität Stuttgart Model system for hard core interactions accessible fortirm-measurements.

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Model dependence of AFM simulations in non-contact mode

Model dependence of AFM simulations in non-contact mode Surface Science 457 (2) 267 272 www.elsevier.nl/locate/susc Model dependence of AFM simulations in non-contact mode I.Yu. Sokolov a,b,*, G.S. Henderson a, F.J. Wicks a,c a Department of Geology, University

More information

Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM

Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM By: Bede Pittenger, Natalia Erina, Chanmin Su INTRODUCTION The scanning probe microscope (SPM) 1 has long been recognized as

More information

Scanning Probe Microscopies (SPM)

Scanning Probe Microscopies (SPM) Scanning Probe Microscopies (SPM) Nanoscale resolution af objects at solid surfaces can be reached with scanning probe microscopes. They allow to record an image of the surface atomic arrangement in direct

More information

Printing nanotube-based p-type thin film transistors with high current density

Printing nanotube-based p-type thin film transistors with high current density Printing nanotube-based p-type thin film transistors with high current density Single-wall carbon nanotubes (SWCNT), with their outstanding mechanical and electrical properties, offer a solution to coat

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

Model 2300XP PSL & Process-Particle Wafer Deposition System

Model 2300XP PSL & Process-Particle Wafer Deposition System Model 2300XP PSL & Process-Particle Wafer Deposition System Deposit PSL spheres on wafers to create NISTtraceable PSL size standards for - calibrating wafer inspection systems - providing fab-wide and

More information

Improving nano-scale imaging of of intergrated micro-raman/afm systems using negativestiffness

Improving nano-scale imaging of of intergrated micro-raman/afm systems using negativestiffness See vibration isolation technology @ www.minusk.com?pdf) Electronic Products and Technology - May 2014 Improving nano-scale imaging of of intergrated micro-raman/afm systems using negativestiffness vibration

More information

Self-assembled nanostructures for antireflection optical coatings

Self-assembled nanostructures for antireflection optical coatings Self-assembled nanostructures for antireflection optical coatings Yang Zhao 1, Guangzhao Mao 2, and Jinsong Wang 1 1. Deaprtment of Electrical and Computer Engineering 2. Departmentof Chemical Engineering

More information

PHY 481/581. Some classical/quantum physics for the nanometer length scale.

PHY 481/581. Some classical/quantum physics for the nanometer length scale. PHY 481/581 Some classical/quantum physics for the nanometer length scale http://creativecommons.org/licenses/by-nc-sa/3.0/ 1 What is nano-science? the science of materials whose properties scale with

More information

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch*

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Supporting information Inverted P3HT:PC61BM organic solar cells incorporating a -extended squaraine dye with H- and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Department

More information

The Controlled Evolution of a Polymer Single Crystal

The Controlled Evolution of a Polymer Single Crystal Supporting Online Material The Controlled Evolution of a Polymer Single Crystal Xiaogang Liu, 1 Yi Zhang, 1 Dipak K. Goswami, 2 John S. Okasinski, 2 Khalid Salaita, 1 Peng Sun, 1 Michael J. Bedzyk, 2 Chad

More information