Growth and Electronic Structure of Organic Molecular Layers Studied by Density Functional Theory

Size: px
Start display at page:

Download "Growth and Electronic Structure of Organic Molecular Layers Studied by Density Functional Theory"

Transcription

1 Growth and Electronic Structure of Organic Molecular Layers Studied by Density Functional Theory Slide 1

2 Motivation OLED para-sexiphenyl (6P) (C36H26) OFET Pentacene (5A) (C22H14) Slide 2

3 Outline 1. Density Functional Theory in a Nutshell 2. Van der Waals Forces: Surface / Adsorption Energies 3. Step-Edge Barrier in Organic Thin Film Growth 4. Orbital Densities from Angle-Resolved Photoemission 5. Dissecting Orbitals: Tomography in Reciprocal Space Slide 3

4 Outline 1. Density Functional Theory in a Nutshell 2. Van der Waals Forces: Surface / Adsorption Energies 3. Step-Edge Barrier in Organic Thin Film Growth 4. Orbital Densities from Angle-Resolved Photoemission 5. Dissecting Orbitals: Tomography in Reciprocal Space Slide 3

5 Density Functional Theory in a Nutshell Self-consistency Approximations: e.g.: LDA, GGA,... Slide 4

6 Cohesive Energy of Molecular Crystals Slide 5

7 Van der Waals Density Functional Nonlocal Correlation Energy leading to van-der-waals interaction Exchange-Correlation Energy Dion et al, Phys. Rev. Lett. 92, (2004). Slide 6

8 Outline 1. Density Functional Theory in a Nutshell 2. Van der Waals Forces: Surface/Adsorption Energies 3. Step-Edge Barrier in Organic Thin Film Growth 4. Orbital Densities from Angle-Resolved Photoemission 5. Dissecting Orbitals: Tomography in Reciprocal Space Slide 3

9 Cohesive Energy of Molecular Crystals Nabok, Puschnig, Ambrosch-Draxl, Phys. Rev. B 77, (2008). Slide 7

10 Surface Energies of Molecular Crystals 4A (100) 4A (0 10) 4A (0 01) 4A (110) γ [m J /m 2 ] Nabok et al. Phys. Rev. B 77, (2008); Ambrosch-Draxl et al., New J. Phys. 11, (2009). Slide 8

11 Thiophene / Cu(110) d Thiophene@Cu(110): Sony et al., Phys. Rev. Lett. 99, (2007). PTCDA@Cu,Ag,Au(111): Romaner et al., New. J. Phys. 11, (2009). Slide 9

12 Van-der-Waals-Bibliography Ab-initio vdw-density Functional Theory Dion et al, Phys. Rev. Lett. 92, (2004). Thonhauser et al., Phys. Rev. B, 76, (2007) Vydrov et al., Phys. Rev. Lett., 103, (2009) Lee et al. Phys. Rev. B 82, (2010) Efficient Implementations Roman-Perez et al. Phys. Rev. Lett. 103, (2009). Vydrov et al., J. Chem. Phys. 132, (2010). Lazic et al. Comp. Phys. Commun. 181, (2010). Nabok et al. Comp. Phys. Commun. 182, (2011). Applications huge number Brief Review see e.g.: Langreth et al., J. Phys.: CM 21, (2009) Slide 9

13 Van-der-Waals-Bibliography Ab-initio vdw-df Semi-Empirical Correction Dion et al, Phys. Rev. Lett. 92, (2004). Grimme, J. Comput. Chem., 25, 1463 (2004). Grimme, J. Comput. Chem., 27, 1787 (2006). Tkatchenko et al. PRL 102, (2009). Ruiz et al. PRL 108, (2012): PTCDA / Coinage-Metal(111)-Surfaces Slide 9

14 Outline 1. Density Functional Theory in a Nutshell 2. Van der Waals Forces: Surface / Adsorption Energies 3. Step-Edge Barrier in Organic Thin Film Growth 4. Orbital Densities from Angle-Resolved Photoemission 5. Dissecting Orbitals: Tomography in Reciprocal Space Slide 3

15 Island Growth on Amorphous Mica AFM-image 10 x 10 µm² T = 300 K θ = 0.32 ML F = 0.02 ML/min Amorphous Mica (ion bombarded) Observation of islands consisting of standing p-6p What is the critical cluster size? Transistion from lying-tostanding p-6p? Potocar et al., PRB 83, (2011). talk by A. Winkler, Tue 10:20-10:40 Slide 10

16 p-6p / p-6p(001) p-6p(001) as model substrate with weak Interactions top view side view Adsorption geometry: Slide 11

17 p-6p / p-6p(001) p-6p(001) as model substrate with weak Interactions top view side view Adsorption geometry: Energy landscape Diffusion path: b Slide 11

18 Lying vs. Standing p-6p DLA ALA critical cluster size i* Ebinding = Encluster / n Elying molecule Slide 12

19 2.6 nm Terraced Mounds AFM image: Sexiphenyl grown on a disordered mica surface Slide 13

20 Ehrlich-Schwoebel Barrier (ESB) Diffusion on a terrace Interlayer jump rate Slide 14

21 Sexiphenyl on Mica Ehrlich-Schwoebel Barrier = 0.67 ev = residence time (deposition time)2 AFM image: Film thickness = 30 nm 2nd layer nucleation rate Slide 15

22 Step-Edge Barrier Slide 16

23 Step-Edge Barrier in te rm o lecu la r in te ra ctio n s 1 2 e n e rg y co st fo r b e n d in g G. Hlawacek et al., Science 321, 108 (2008). Slide 17

24 Step-Edge Barrier Slide 17

25 Outline 1. Density Functional Theory in a Nutshell 2. Van der Waals Forces: Surface / Adsorption Energies 3. Step-Edge Barrier in Organic Thin Film Growth 4. Orbitals from Angle-Resolved Photoemission 5. Dissecting Orbitals: Tomography in Reciprocal Space Slide 3

26 Photoemission Spectroscopy Slide 18

27 Photoemission Intensity One Step Model Slide 19

28 Photoemission Intensity One Step Model molecular orbital Slide 19

29 Photoemission Intensity One Step Model molecular orbital plane wave ei k r Approximation: final state = plane wave Fourier Transform of Initial State Orbital [Feibelman and Eastman, Phys. Rev. B 10, 4932 (1974).] Slide 19

30 Comparison with DFT Molecular Orbital in Real Space z y x ky (1 /Å) k z(1/å) Calculation of the Fourier Transform kx (1/Å ) Slide 20

31 Comparison with DFT Hemispherical Cut Through 3D Fourier Transform Molecular Orbital in Real Space z y x k y(1/å) ky (1 /Å) k z(1/å) Calculation of the Fourier Transform kx (1/Å) kx (1/Å ) Slide 20

32 Comparison with DFT Hemispherical Cut Through 3D Fourier Transform Molecular Orbital in Real Space 2π/a k y(1/å) ky (1 /Å) k z(1/å) a~4.2 Å Calculation of the Fourier Transform kx (1/Å) kx (1/Å ) Slide 20

33 Toroidal Electron Energy Analyzer The Toroidal Electron Spectrometer for AngleResolved Photoelectron Spectroscopy with Synchrotron Radiation at BESSY II Slide 21

34 Sexiphenyl Monolayer on Cu(110) Slide 22

35 ky (1/Å) EF ky (1/Å) Constant Binding Energy Scans 2D-Momentum Maps CBE EHOMO=-1.9 ev CBE ELUMO=-0.4 ev kx (1/Å) Slide 23

36 2D-Momentum Maps ARPES Theory HOMO Filled LUMO Puschnig et al., Science 326, 702 (2009). Slide 23

37 Reconstruction of Orbitals ARPES IFT

38 Reconstruction of Orbitals HOMO Filled LUMO Puschnig et al., Science 326, 702 (2009). Slide 24

39 Outline 1. Density Functional Theory in a Nutshell 2. Van der Waals Forces: Surface / Adsorption Energies 3. Step-Edge Barrier in Organic Thin Film Growth 4. Orbital Densities from Angle-Resolved Photoemission 5. Dissecting Orbitals: Tomography in Fourier Space Slide 3

40 ARPES of PTCDA / Ag(110) STM Glöckler et al, Surf. Sci. 405, 1-20 (1998). Slide 25

41 Identifying Orbitals Self-interaction corrected functional Slide 26

42 HOMO and Filled LUMO M1= FLUMO M2= HOMO Puschnig et al. PRB 84, (2011), Ziroff et al., PRL 104, (2010). Slide 27

43 What is the nature of M3? M1= FLUMO M2= HOMO? Slide 28

44 ARPES Data-Cube Eb ky kx Slide 29

45 π- Bands of PTCDA Slide 30

46 What is the Origin of M3? E C F Slide 31

47 What is the Origin of M3? E C F Puschnig et al. PRB 84, (2011), see also: Dauth et al., PRL 107, (2011). Slide 32

48 Projected DOS from ARPES! C Eb (ev) Fit parameters = PDOS D calculated orbitals E measured photemission data cube F Slide 33

49 Ag-row direction [1-10] Benchmark for Theory C D E F Slide 34

50 Identification of Orbitals Mixed Monolayers ARPES Tomography PTCDA STM CuPc Slide 35

51 Conclusion Van der Waals Interactions within DFT Organic / organic works fine; organic / metal interactions more problematic Nabok et al., PRB 77, (2008). Sony et al., PRL. 99, (2007). Romaner et al., NJP 11, (2009). Island Growth and Step-Edge Barriers Critical cluster = 2-3, Transition lying standing p-6p about 15 molecules Potocar et al., PRB 83, (2011). Some success in understanding certain kinetic barrieres, but still a lot of work to do... G. Hlawacek et al., Science 321, 108 (2008); see also: Goose et al., PRB 81, (2010). Orbital Densities and Hybridization with Metallic States Puschnig et al., Science 326, 702 (2009); Ziroff et al., Phys. Rev. Lett. 104, (2010). Berkebile et al., Phys. Chem. Chem. Phys. 13, 3604 (2011). Orbital Tomography [Puschnig et al. PRB 84, (2011)] Make use of characteristic momentum space patterns Unambiguous identification of molecular features Density of states projected onto molecular orbitals Deconvolution beyond limits of energy resolution Slide 37

52 Collaborations and Funding Lehrstuhl für Atomistic Modelling and Design of Materials MU Leoben Dmitrii Nabok, Priya Sony, Lorenz Romaner, Claudia Ambrosch-Draxl Institut für Physik, Montanuniversität Leoben, Austria Gregor Hlawacek, Stefan Lorbek, Quan Shen, Christian Teichert Theoretical Physics University Graz, Austria Daniel Lüftner, Matus Milko, Peter Puschnig Experimental Surface Science Group University Graz, Austria Thomas Ules, Eva-Maria Reinisch, Stephen Berkebile, Alexander Fleming Georg Koller, Mike Ramsey Institut für Festkörperphysik, TU Graz, Austria Thomas Potocar, Paul Frank, Adolf Winkler Peter Grünberg Institut (PGI-3), JARA, Forschungszentrum Jülich, Sergey Soubatch Stefan Tautz The work is part of the National Research Network Interface controlled and functionalized organic films and the single project P N16 Understanding photoemission of organic thin films Slide 36

53 Layer-Dependent ESB ESB 0.26 v s

54 Layer-Dependent ESB ab in itio DFT E xpe rim e nt S im u la tio n E m p irica l po te ntials G. Hlawacek et al., Science 321, 108 (2008).

55 ARPES Map of σ-orbital

Modellierung molekularer Prozesse beim Wachstum organischer Schichten

Modellierung molekularer Prozesse beim Wachstum organischer Schichten Modellierung molekularer Prozesse beim Wachstum organischer Schichten Slide 1 Motivation OLED para Sexiphenyl (6P) (C36H26) OFET Pentacene (5A) (C22H14) Slide 2 Outline Methods and Materials Cohesive,

More information

Orbital Tomography: A Method to Obtain the Orbital-Projected DOS from ARPES

Orbital Tomography: A Method to Obtain the Orbital-Projected DOS from ARPES Orbital Tomography: A Method to Obtain the Orbital-Projected DOS from ARPES Motivation ARPES data from Stephen Berkebile et al. (2007) hν (21eV) ARPES Intensity e- (20-3) Uniaxially ordered para-sexiphenyl

More information

Theoretical approaches towards the understanding of organic semiconductors:

Theoretical approaches towards the understanding of organic semiconductors: Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University of Leoben Theoretical approaches towards the understanding of organic semiconductors: from electronic and optical

More information

Contrasting Pentacene on Cu(110) and Ag(110): interactions revealed by valence band tomography

Contrasting Pentacene on Cu(110) and Ag(110): interactions revealed by valence band tomography Contrasting Pentacene on Cu(110) and Ag(110): interactions revealed by valence band tomography Ules Thomas Surface Science Group, KFUni Graz Outline Angle Resolved UPS; Orbital Tomography Influence of

More information

Substrate-mediated band-dispersion of adsorbate molecular states - Supplementary Information

Substrate-mediated band-dispersion of adsorbate molecular states - Supplementary Information Substrate-mediated band-dispersion of adsorbate molecular states - Supplementary Information M. Wießner, 1, 2 J. Ziroff, 1, 2 F. Forster, 1, 2 M. Arita, 3 K. Shimada, 3 P. Puschnig, 4 A. Schöll*, 1, 2,

More information

A Momentum Space View of the Surface Chemical Bond - Supplementary Information

A Momentum Space View of the Surface Chemical Bond - Supplementary Information A Momentum Space View of the Surface Chemical Bond - Supplementary Information Stephen Berkebile, a Thomas Ules, a Peter Puschnig, b Lorenz Romaner, b Georg Koller, a Alexander J. Fleming, a Konstantin

More information

PCCP PERSPECTIVE. The interplay between interface structure, energy level alignment and chemical bonding strength at organic metal interfaces

PCCP PERSPECTIVE. The interplay between interface structure, energy level alignment and chemical bonding strength at organic metal interfaces PERSPECTIVE View Article Online View Journal View Issue Cite this: Phys. Chem. Chem. Phys., 2015, 17, 1530 Received 10th October 2014, Accepted 19th November 2014 DOI: 10.1039/c4cp04595e www.rsc.org/pccp

More information

Help me understanding the effect of organic acceptor molecules on coinage metals.

Help me understanding the effect of organic acceptor molecules on coinage metals. Help me understanding the effect of organic acceptor molecules on coinage metals. Gerold M. Rangger, 1 Oliver T. Hofmann, 1 Anna M. Track, 1 Ferdinand Rissner, 1 Lorenz Romaner, 1,2 Georg Heimel, 2 Benjamin

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

X-ray diffraction and Crystal Structure Solutions from Thin Films

X-ray diffraction and Crystal Structure Solutions from Thin Films X-ray diffraction and Crystal Structure Solutions from Thin Films Ingo Salzmann Humboldt-Universität zu Berlin Institut für Physik Overview Experimental technique X-ray diffraction The principal phenomenon

More information

Pattern formation by step edge barriers: The growth of spirals and wedding cakes

Pattern formation by step edge barriers: The growth of spirals and wedding cakes Pattern formation by step edge barriers: The growth of spirals and wedding cakes Joachim Krug Institut für Theoretische Physik, Universität zu Köln MRS Fall Meeting, Boston, 11/26/2007 Kinetic growth modes

More information

Metal/Organic Interfaces

Metal/Organic Interfaces Metal/Organic Interfaces from first-principles Georg Heimel Institut für f r Physik, Humboldt-Universit Universität t zu Berlin Dresden, 12.02.2009 Outline Investigated Systems / Motivation Methods Overview

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver Supporting Information

Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver Supporting Information Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver Supporting Information Katharina Diller, Florian Klappenberger, Francesco Allegretti, Anthoula C.

More information

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory Noa Marom Center for Computational Materials Institute for Computational Engineering and Sciences The University

More information

Determination of critical island size in -sexiphenyl islands on SiO using capture-zone scaling

Determination of critical island size in -sexiphenyl islands on SiO using capture-zone scaling Determination of critical island size in -sexiphenyl islands on SiO using capture-zone scaling S. Lorbek, G. Hlawacek, C. Teichert To cite this version: S. Lorbek, G. Hlawacek, C. Teichert. Determination

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Methods for van der Waals Interactions

Methods for van der Waals Interactions Methods for van der Waals Interactions Alexandre Tkatchenko Theory Department, Fritz Haber Institut der MPG Berlin, Germany tkatchen@fhi berlin.mpg.de Haber Institute FHI DFT and Beyond Workshop, Jul.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide Supporting online material Konstantin V. Emtsev 1, Aaron Bostwick 2, Karsten Horn

More information

Designing Graphene for Hydrogen Storage

Designing Graphene for Hydrogen Storage Designing Graphene for Hydrogen Storage Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy Outline Introduction to Hydrogen Storage Epitaxial Graphene Hydrogen Storage

More information

Adsorption, desorption, and diffusion on surfaces. Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics

Adsorption, desorption, and diffusion on surfaces. Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics Adsorption, desorption, and diffusion on surfaces Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics Adsorption and desorption Adsorption Desorption Chemisorption: formation

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology How can we describe vdw forces in materials accurately? Failure of DFT Approximations for (Long-Range) Van der Waals Interactions 1

More information

5/27/2012. Role of van der Waals Interactions in Physics, Chemistry, and Biology

5/27/2012. Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology 1 Role of van der Waals Interactions in Physics, Chemistry, and Biology Karin Jacobs: Take van der Waals forces into account in theory,

More information

Table S2. Pseudopotentials PBE 5.2 applied in the calculations using VASP

Table S2. Pseudopotentials PBE 5.2 applied in the calculations using VASP Supporting Information for Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining Quantum-Mechanical Modelling and Photoelectron Spectroscopy 1. Used vdw Coefficients PBE-vdW

More information

Spin-orbit coupling fields in Fe/GaAs heterostructures

Spin-orbit coupling fields in Fe/GaAs heterostructures Spin-orbit coupling fields in Fe/GaAs heterostructures Outline motivation a simplified model of the Fe/GaAs heterostructure extracting spin-orbit coupling parameters spin-orbit coupling field conclusions

More information

Spring College on Computational Nanoscience

Spring College on Computational Nanoscience 2145-29 Spring College on Computational Nanoscience 17-28 May 2010 At the Fifth Rung of Jacob's Ladder: A Discussion of Exact Exchange plus Local- and Nonlocal-density Approximations to the Correlation

More information

Hydrogenated Graphene

Hydrogenated Graphene Hydrogenated Graphene Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy Outline Epitaxial Graphene Hydrogen Chemisorbed on Graphene Hydrogen-Intercalated Graphene Outline

More information

Supplementary Information. Reversible Spin Control of Individual Magnetic Molecule by. Hydrogen Atom Adsorption

Supplementary Information. Reversible Spin Control of Individual Magnetic Molecule by. Hydrogen Atom Adsorption Supplementary Information Reversible Spin Control of Individual Magnetic Molecule by Hydrogen Atom Adsorption Liwei Liu 1, Kai Yang 1, Yuhang Jiang 1, Boqun Song 1, Wende Xiao 1, Linfei Li 1, Haitao Zhou

More information

Van der Waals density functional applied to adsorption systems

Van der Waals density functional applied to adsorption systems Van der Waals density functional applied to adsorption systems Ikutaro Hamada Advanced Institute for Materials Research (AIMR) Tohoku University Contents Introduction The van der Waals density functional

More information

Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory

Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory Supporting Information Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory Qiang Fu, Dmitrii Nabok, and Claudia

More information

Photoelectron Interference Pattern (PEIP): A Two-particle Bragg-reflection Demonstration

Photoelectron Interference Pattern (PEIP): A Two-particle Bragg-reflection Demonstration Photoelectron Interference Pattern (PEIP): A Two-particle Bragg-reflection Demonstration Application No. : 2990 Beamlime: BL25SU Project Leader: Martin Månsson 0017349 Team Members: Dr. Oscar Tjernberg

More information

Magnetic interaction at the metalorganic molecule substrate interface: Insights from first-principles calculations

Magnetic interaction at the metalorganic molecule substrate interface: Insights from first-principles calculations Magnetic interaction at the metalorganic molecule substrate interface: Insights from first-principles calculations Peter M. Oppeneer with Kartick Tarafder and Ehesan Ali Department of Physics and Astronomy,

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces

Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL The fhi-aims code [1] was employed for the DFT calculations. The repeated slab method was used to model all the systems with the size of the vacuum gap chosen between 16 and 25 Å.

More information

In order to determine the energy level alignment of the interface between cobalt and

In order to determine the energy level alignment of the interface between cobalt and SUPPLEMENTARY INFORMATION Energy level alignment of the CuPc/Co interface In order to determine the energy level alignment of the interface between cobalt and CuPc, we have performed one-photon photoemission

More information

Van der Waals interactions in DFT

Van der Waals interactions in DFT Van der Waals interactions in DFT Maxime Dion*, Aaron Puzder*, T. Thonhauser,* Valentino R. Cooper*, Shen Li*, Eamonn Murray, Lingzhu Kong, Kyuho Lee, and David C. Langreth Department of Physics and Astronomy,

More information

Christian Ratsch, UCLA

Christian Ratsch, UCLA Strain Dependence of Microscopic Parameters and its Effects on Ordering during Epitaxial Growth Christian Ratsch, UCLA Institute for Pure and Applied Mathematics, and Department of Mathematics Collaborators:

More information

Supplementary Information:

Supplementary Information: Supplementary Figures Supplementary Information: a b 1 2 3 0 ΔZ (pm) 66 Supplementary Figure 1. Xe adsorbed on a Cu(111) surface. (a) Scanning tunnelling microscopy (STM) topography of Xe layer adsorbed

More information

Growth morphology evolution in real time and real space

Growth morphology evolution in real time and real space Growth morphology evolution in real time and real space Joachim Krug Institut für Theoretische Physik, Universität zu Köln Multilayer growth modes and interlayer transport The Ehrlich-Schwoebel effect

More information

Institut des NanoSciences de Paris

Institut des NanoSciences de Paris CNRS / Photothèque Cyril Frésillon Institut des NanoSciences de Paris Polarity in low dimensions: MgO nano-ribbons on Au(111) J. Goniakowski, C. Noguera Institut des Nanosciences de Paris, CNRS & Université

More information

Electronic level alignment at metal-organic contacts with a GW approach

Electronic level alignment at metal-organic contacts with a GW approach Electronic level alignment at metal-organic contacts with a GW approach Jeffrey B. Neaton Molecular Foundry, Lawrence Berkeley National Laboratory Collaborators Mark S. Hybertsen, Center for Functional

More information

Electronic Supporting Information for

Electronic Supporting Information for Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information for Probing the Energy Levels in Hole-doped Molecular

More information

Introduction of XPS Absolute binding energies of core states Applications to silicene

Introduction of XPS Absolute binding energies of core states Applications to silicene Core level binding energies in solids from first-principles Introduction of XPS Absolute binding energies of core states Applications to silicene arxiv:1607.05544 arxiv:1610.03131 Taisuke Ozaki and Chi-Cheng

More information

Energy level alignment and two-dimensional structure of pentacene on Au 111 surfaces

Energy level alignment and two-dimensional structure of pentacene on Au 111 surfaces JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 5 1 MARCH 2002 Energy level alignment and two-dimensional structure of pentacene on Au 111 surfaces P. G. Schroeder, C. B. France, J. B. Park, and B. A. Parkinson

More information

POST-ADSORPTION WORK FUNCTION TUNING

POST-ADSORPTION WORK FUNCTION TUNING Supporting Information POST-ADSORPTION WORK FUNCTION TUNING VIA HYDROGEN PRESSURE CONTROL Hermann Edlbauer, Egbert Zojer, and Oliver T. Hofmann* Institute for Solid State Physics, NAWI Graz, Graz University

More information

Self-assembly of molecules on surfaces. Manuel Alcamí Departamento de Química Universidad Autónoma de Madrid

Self-assembly of molecules on surfaces. Manuel Alcamí Departamento de Química Universidad Autónoma de Madrid Self-assembly of molecules on surfaces Manuel Alcamí Departamento de Química Universidad Autónoma de Madrid Outline Outline Motivation Examples of molecules deposited on surfaces Graphene/Ru(0001) TQ /

More information

Method development at SUNCAT in general

Method development at SUNCAT in general Bayesian error estimation functionals and further method development at SUNCAT GPAW 2016 University of Jyväskylä June 8th, 2016 Johannes Voss vossj@stanford.edu Method development at SUNCAT in general

More information

Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris

Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris Self-organisation on noble metal surfaces Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris Collaborations Alexandre Dmitriev, Nian Lin, Johannes Barth, Klaus Kern,... Thomas Greber, Jürg

More information

CO Adsorption Site Preference on Platinum: Charge Is the Essence

CO Adsorption Site Preference on Platinum: Charge Is the Essence Supporting Information CO Adsorption Site Preference on Platinum: Charge Is the Essence G.T. Kasun Kalhara Gunasooriya, and Mark Saeys *, Laboratory for Chemical Technology, Ghent University, Technologiepark

More information

structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting Information

structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting Information At the interface between organic radicals and TiO 2 (110) single crystals: electronic structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting

More information

XYZ of ground-state DFT

XYZ of ground-state DFT XYZ of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) XYZ of ground-state

More information

Surface Physics Surface Diffusion. Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science

Surface Physics Surface Diffusion. Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science Surface Physics 008 8. Surface Diffusion Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science Random-Walk Motion Thermal motion of an adatom on an ideal crystal surface: - Thermal excitation the adatom

More information

Intermolecular Forces in Density Functional Theory

Intermolecular Forces in Density Functional Theory Intermolecular Forces in Density Functional Theory Problems of DFT Peter Pulay at WATOC2005: There are 3 problems with DFT 1. Accuracy does not converge 2. Spin states of open shell systems often incorrect

More information

Graphene on metals: A van der Waals density functional study

Graphene on metals: A van der Waals density functional study Downloaded from orbit.dtu.dk on: Sep 0, 018 Graphene on metals: A van der Waals density functional study Vanin, Marco; Mortensen, Jens Jørgen; Kelkkanen, Kari André; García Lastra, Juan Maria; Thygesen,

More information

Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and

Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and the envelope from free vibration theory (red curve). (b) The FFT of the displacement-time curve

More information

Identifying and Visualizing the Edge Terminations of Single-Layer MoSe2 Island Epitaxially Grown on Au(111)

Identifying and Visualizing the Edge Terminations of Single-Layer MoSe2 Island Epitaxially Grown on Au(111) Supporting Information Identifying and Visualizing the Edge Terminations of Single-Layer MoSe2 Island Epitaxially Grown on Au(111) Jianchen Lu, De-Liang Bao, Kai Qian, Shuai Zhang, Hui Chen, Xiao Lin*,

More information

Angle Resolved Photoemission studies of the Charge Density Wave in RTe 3

Angle Resolved Photoemission studies of the Charge Density Wave in RTe 3 Angle Resolved Photoemission studies of the Charge Density Wave in RTe 3 (R = Y, La, Ce ) Véronique Brouet,,3 Laboratoire de physique des solides d Orsay (France) W.L. Yang,3, X.J. Zhou,3, Z. Hussain 3,

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook Core level binding energies in solids from first-principles Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook TO and C.-C. Lee, Phys. Rev. Lett. 118, 026401

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer Supporting Information Design of Efficient Catalysts with Double Transition Metal Atoms on C 2 N Layer Xiyu Li, 1, Wenhui Zhong, 2, Peng Cui, 1 Jun Li, 1 Jun Jiang 1, * 1 Hefei National Laboratory for

More information

WINTERSCHOOL ON ORGANIC ELECTRONICS Fundamental Properties of Devices Sensors, Transistors and Solar Cells

WINTERSCHOOL ON ORGANIC ELECTRONICS Fundamental Properties of Devices Sensors, Transistors and Solar Cells WINTERSCHOOL ON ORGANIC ELECTRONICS March 6 th March 12 th, 2010 Universitäts-Sportheim Planneralm Donnersbach, Austria March 6th March 7th March 8th March 9th March 10th March 11th March 12th Saturday

More information

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Intermediate DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Intermediate DFT Lausanne12

More information

Surface Characte i r i zat on LEED Photoemission Phot Linear optics

Surface Characte i r i zat on LEED Photoemission Phot Linear optics Surface Characterization i LEED Photoemission Linear optics Surface characterization with electrons MPS M.P. Seah, WA W.A. Dench, Surf. Interf. Anal. 1 (1979) 2 LEED low energy electron diffraction De

More information

New applications of Diffusion Quantum Monte Carlo

New applications of Diffusion Quantum Monte Carlo New applications of Diffusion Quantum Monte Carlo Paul R. C. Kent (ORNL) Graphite: P. Ganesh, J. Kim, C. Park, M. Yoon, F. A. Reboredo (ORNL) Platinum: W. Parker, A. Benali, N. Romero (ANL), J. Greeley

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene

Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene GCOE Symposium Tohoku University 2011 Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene Danny Haberer Leibniz Institute for Solid State and Materials Research Dresden Co-workers Supervising

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/7/e1600322/dc1 Supplementary Materials for Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering Simin Feng, Maria Cristina

More information

Polaron Transport in Organic Crystals: Theory and Modelling

Polaron Transport in Organic Crystals: Theory and Modelling Polaron Transport in Organic Crystals: Theory and Modelling Karsten Hannewald Institut für Physik & IRIS Adlershof Humboldt-Universität zu Berlin (Germany) Karsten Hannewald (HU Berlin/Germany) www.ifto.uni-jena.de/~hannewald/

More information

Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and

Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and Nucleation Today s topics Understanding the basics of epitaxial techniques used for surface growth of crystalline structures (films, or layers).

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2491 Experimental Realization of Two-dimensional Boron Sheets Baojie Feng 1, Jin Zhang 1, Qing Zhong 1, Wenbin Li 1, Shuai Li 1, Hui Li 1, Peng Cheng 1, Sheng Meng 1,2, Lan Chen 1 and

More information

tunneling theory of few interacting atoms in a trap

tunneling theory of few interacting atoms in a trap tunneling theory of few interacting atoms in a trap Massimo Rontani CNR-NANO Research Center S3, Modena, Italy www.nano.cnr.it Pino D Amico, Andrea Secchi, Elisa Molinari G. Maruccio, M. Janson, C. Meyer,

More information

Kinetic Monte Carlo: from transition probabilities to transition rates

Kinetic Monte Carlo: from transition probabilities to transition rates Kinetic Monte Carlo: from transition probabilities to transition rates With MD we can only reproduce the dynamics of the system for 100 ns. Slow thermallyactivated processes, such as diffusion, cannot

More information

Physics in two dimensions in the lab

Physics in two dimensions in the lab Physics in two dimensions in the lab Nanodevice Physics Lab David Cobden PAB 308 Collaborators at UW Oscar Vilches (Low Temperature Lab) Xiaodong Xu (Nanoscale Optoelectronics Lab) Jiun Haw Chu (Quantum

More information

Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals Dominik Meyer*,1, Tobias Schäfer 1, Philip Schulz 1,2,3, Sebastian Jung 1, Daniel Mokros 1, Ingolf

More information

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Supplementary Information Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Shiheng Liang 1, Rugang Geng 1, Baishun Yang 2, Wenbo Zhao 3, Ram Chandra Subedi 1,

More information

Molecular Dynamics on the Angstrom Scale

Molecular Dynamics on the Angstrom Scale Probing Interface Reactions by STM: Molecular Dynamics on the Angstrom Scale Zhisheng Li Prof. Richard Osgood Laboratory for Light-Surface Interactions, Columbia University Outline Motivation: Why do we

More information

Application of Photoelectron Diffraction for studies of random and ordered metal surface alloys. Abner de Siervo Instituto de Física - Unicamp

Application of Photoelectron Diffraction for studies of random and ordered metal surface alloys. Abner de Siervo Instituto de Física - Unicamp Application of Photoelectron Diffraction for studies of random and ordered metal surface alloys Abner de Siervo Instituto de Física - Unicamp Outline Introduction Overview on experimental Aspects of PED

More information

Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface

Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface LI, Yang, MPhil candidate, Physics, HKUST Supervisor, Prof. LIN, Nian 2012-08-08 Outline

More information

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig Electron Density Matrices Density matrices Γ, an alternative to the wavefunction Ψ, for the description of a quantum system Electronic Structure The N-particle density matrix Electrons in Momentum Space

More information

Report on TS-vdW Method, and Code Development, and. Results

Report on TS-vdW Method, and Code Development, and. Results Michael Pawley July, 21, 2010 Report on TS-vdW Method, and Code Development, and Results Introduction: Non-covalent Interactions have long been difficult to account for using Density Functional Theory(DFT),

More information

When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany

When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany QMC@TTI, Apuan Alps, Jul 29, 2013 When (2 + 2) 4 or Van der Waals Interactions in Complex (and Simple)

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Sangeeta Sharma 1,2, J. K. Dewhurst 3, C. Ambrosch-Draxl 4, S. Pittalis 2, S. Kurth 2, N. Helbig 2, S. Shallcross

More information

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Scanning Probe Microscopy of Adsorbates on Insulating Films: From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Gerhard Meyer, Jascha Repp, Peter Liljeroth

More information

Supporting Information: From Permeation to Cluster Arrays: Graphene on. Ir(111) Exposed to Carbon Vapor

Supporting Information: From Permeation to Cluster Arrays: Graphene on. Ir(111) Exposed to Carbon Vapor Supporting Information: From Permeation to Cluster Arrays: Graphene on Ir(111) Exposed to Carbon Vapor Charlotte Herbig,, Timo Knispel, Sabina Simon,, Ulrike A. Schröder, Antonio J. Martínez-Galera, Mohammad

More information

Surfing q-space of a high temperature superconductor

Surfing q-space of a high temperature superconductor Surfing q-space of a high temperature superconductor Adam Kaminski Ames Laboratory and Iowa State University Funded by: US Department of Energy National Science Foundation The Royal Society of Great Britain

More information

Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene

Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene Mohamed Hassan, Michael Walter *,,, and Michael Moseler, Freiburg

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Part III: Theoretical Surface Science Adsorption at Surfaces

Part III: Theoretical Surface Science Adsorption at Surfaces Technische Universität München Part III: Theoretical Surface Science Adsorption at Surfaces Karsten Reuter Lecture course: Solid State Theory Adsorption at surfaces (T,p) Phase II Phase I Corrosion Growth

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/10/e1701661/dc1 Supplementary Materials for Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface Jun Hong Park,

More information

High Resolution Photoemission Study of the Spin-Dependent Band Structure of Permalloy and Ni

High Resolution Photoemission Study of the Spin-Dependent Band Structure of Permalloy and Ni High Resolution Photoemission Study of the Spin-Dependent Band Structure of Permalloy and Ni K. N. Altmann, D. Y. Petrovykh, and F. J. Himpsel Department of Physics, University of Wisconsin, Madison, 1150

More information

Polar oxide surfaces and ultra-thin films

Polar oxide surfaces and ultra-thin films Polar oxide surfaces and ultra-thin films Claudine Noguera Institut des Nanosciences de Paris, CNRS UMR 7588, Université Pierre et Marie Curie (Paris VI) Campus de Boucicaut, 140 rue Lourmel, 75015 Paris

More information

DIFFUSION AND GROWTH ON STRAINED SURFACES

DIFFUSION AND GROWTH ON STRAINED SURFACES DIFFUSION AND GROWTH ON STRAINED SURFACES A.C. SCHINDLER AND D.E. WOLF Theoretische Physik, FB 10, Gerhard Mercator Universität Duisburg, 47048 Duisburg, Germany E-mail: A.Schindler@Uni-Duisburg.de Using

More information

Pre-nucleation dynamics of organic molecule self-assembly investigated by PEEM

Pre-nucleation dynamics of organic molecule self-assembly investigated by PEEM PCCP Dynamic Article Links View Online Cite this: DOI: 10.1039/c0cp01516d www.rsc.org/pccp PAPER Pre-nucleation dynamics of organic molecule self-assembly investigated by PEEM Alexander J. Fleming,* Stephen

More information

Atomic-Scale Simulations in the Nanoscience of Interfaces

Atomic-Scale Simulations in the Nanoscience of Interfaces Atomic-Scale Simulations in the Nanoscience of Interfaces Kristen A. Fichthorn Departments of Chemical Engineering and Physics The Pennsylvania State University University Park, PA 16802 USA We Care About

More information