A random walk from molecular dynamics to data science

Size: px
Start display at page:

Download "A random walk from molecular dynamics to data science"

Transcription

1 A random walk from molecular dynamics to data science Benedict Leimkuhler University of Edinburgh The Maxwell Institute for Mathematical Sciences and The Alan Turing Institute

2 Molecular Dynamics (MD) Biomolecules Materials cytochrome C folding: Elber and Cardenas Quasi-continuum method: molecular dynamics with coarse-graining for indentation studies. Ortiz, Phillips and Tadmor

3 Molecular Dynamics 2017: article in Drug Discovery Today Molecular dynamics-driven drug discovery: leaping forward with confidence developing a market-approved drug costs a staggering $2.6 billion Given that the dynamics of the covalent bonds involving hydrogen atoms are not crucial in biological problems, they are usually constrained using integration algorithms, such as SHAKE, RATTLE, Hence, a time-step value in the range of fs is possible and has been shown to be suitable for MD simulations of many biological systems." Examples of some 2017 simulations out of around published Ligand binding in the HIV-integrase enzyme Druggability of membrane bound Rab5 Fission fragment damage in nuclear fuel Patchy particle systems Nanoparticle cholestoral metabolism therapeutics Multiscale protein dynamics in antigen presentation Bottlebrush copolymers Modification of membrane structure by lithium Smectic C semiflexible polymers Graphene reinforced polymer nanocomposites Unsaturated Zwitterionic lipids Identifying the warfarin binding site

4 HIV-1 Virus Capsid (protective shield around virus) Molecular dynamics 64M atoms (including surroundings) Described by a potential energy function U(x) Chaotic, nonlinear dynamics, ever expanding scale Key questions are of a probabilistic nature

5 <latexit sha1_base64="rlexfyzr8cyk87qy3eae4nayum0=">aaacbnicbvdlssnafl2pr1pfuzcidbahbkoigi6lblxwsa9oqplmpu3qmstmtioldoxgx3hjqhg3fom7/8zpm4w2hhg4c8693htpkhcmton8w4wv1bx1jejmawt7z3fp3j9oqjivhdzizgpzdrcinew0oznmtj1iikxaassy3kz91ohkxeloxo8t6gvcj1ipeayn1lwpprzp5i2wtaas8ncgmk8kfe48kzpf1y47vwcgtezcnjqhr71rf3lhtfjbi004vqrjoon2myw1i5xosl6qailjepdpx9aic6r8bhbgbj0ajus9wjpnlpqpvzsyljqai8bucqwhatgbiv95nvt3rvymrumqautmg3oprzpg00xqycqlmo8nwuqysysiaywx0sa5kgnbxtx5mttpq65tde8uyrxrpi4ihmejvmcfs6jbldshaqqe4rle4c16sl6sd+tjxlqw8p5d+apr8wfywzgh</latexit> <latexit sha1_base64="rlexfyzr8cyk87qy3eae4nayum0=">aaacbnicbvdlssnafl2pr1pfuzcidbahbkoigi6lblxwsa9oqplmpu3qmstmtioldoxgx3hjqhg3fom7/8zpm4w2hhg4c8693htpkhcmton8w4wv1bx1jejmawt7z3fp3j9oqjivhdzizgpzdrcinew0oznmtj1iikxaassy3kz91ohkxeloxo8t6gvcj1ipeayn1lwpprzp5i2wtaas8ncgmk8kfe48kzpf1y47vwcgtezcnjqhr71rf3lhtfjbi004vqrjoon2myw1i5xosl6qailjepdpx9aic6r8bhbgbj0ajus9wjpnlpqpvzsyljqai8bucqwhatgbiv95nvt3rvymrumqautmg3oprzpg00xqycqlmo8nwuqysysiaywx0sa5kgnbxtx5mttpq65tde8uyrxrpi4ihmejvmcfs6jbldshaqqe4rle4c16sl6sd+tjxlqw8p5d+apr8wfywzgh</latexit> <latexit sha1_base64="rlexfyzr8cyk87qy3eae4nayum0=">aaacbnicbvdlssnafl2pr1pfuzcidbahbkoigi6lblxwsa9oqplmpu3qmstmtioldoxgx3hjqhg3fom7/8zpm4w2hhg4c8693htpkhcmton8w4wv1bx1jejmawt7z3fp3j9oqjivhdzizgpzdrcinew0oznmtj1iikxaassy3kz91ohkxeloxo8t6gvcj1ipeayn1lwpprzp5i2wtaas8ncgmk8kfe48kzpf1y47vwcgtezcnjqhr71rf3lhtfjbi004vqrjoon2myw1i5xosl6qailjepdpx9aic6r8bhbgbj0ajus9wjpnlpqpvzsyljqai8bucqwhatgbiv95nvt3rvymrumqautmg3oprzpg00xqycqlmo8nwuqysysiaywx0sa5kgnbxtx5mttpq65tde8uyrxrpi4ihmejvmcfs6jbldshaqqe4rle4c16sl6sd+tjxlqw8p5d+apr8wfywzgh</latexit> <latexit sha1_base64="rlexfyzr8cyk87qy3eae4nayum0=">aaacbnicbvdlssnafl2pr1pfuzcidbahbkoigi6lblxwsa9oqplmpu3qmstmtioldoxgx3hjqhg3fom7/8zpm4w2hhg4c8693htpkhcmton8w4wv1bx1jejmawt7z3fp3j9oqjivhdzizgpzdrcinew0oznmtj1iikxaassy3kz91ohkxeloxo8t6gvcj1ipeayn1lwpprzp5i2wtaas8ncgmk8kfe48kzpf1y47vwcgtezcnjqhr71rf3lhtfjbi004vqrjoon2myw1i5xosl6qailjepdpx9aic6r8bhbgbj0ajus9wjpnlpqpvzsyljqai8bucqwhatgbiv95nvt3rvymrumqautmg3oprzpg00xqycqlmo8nwuqysysiaywx0sa5kgnbxtx5mttpq65tde8uyrxrpi4ihmejvmcfs6jbldshaqqe4rle4c16sl6sd+tjxlqw8p5d+apr8wfywzgh</latexit> <latexit sha1_base64="5zgcieh/9te+m1b+d1lp/bb74sm=">aaacenicbvc9tsmwghtkxyl/auywiwqphagsharjbqtjkuhbqqmv4zitvtujbae1ivimllwkcwmistkx8ta4bqzoocns6e4+ff7otxivyrk+jdlk6tr6rnmzsrw9s7tn7h+0zzwktbwcs1h0fsqjoxfxffwmdbnbepcz6fij66nfesbc0ji6u5oeebwnihpsjjsw+my9cwwhqe7ytdauq+gmik5udml9dupojydfynw3q1bdmgeue7sgvvcg1te/3cdgkserwgxj2botrhkzeopirvkkm0qsidxca9ltnekcsc+bnztde60emiyffpgcm/x3ria4lbpu6yrhaigxvan4n9dlvxjpztrkukuipf8upgzqm6f9wiakghwbaikwopqvea+rqfjpfiu6bhvx5gxspmvyvso+pa82r4o6yuaihimasmefaiib0aiowoarpinx8gy8gs/gu/exj5amyuyq/ihx+qn+vpy4</latexit> <latexit sha1_base64="zohxt+42lb03snodu1wswi5h9ec=">aaab9xicbvbnswmxem3wr1q/qh69bitql2vxbd0wvxisyd+gu5zsntugzpmlma2u0v/hxymixv0v3vw3pu0etpxbwoo9gwbmhangblz32ymsrw9sbhw3szu7e/sh5cojllgzpqxjlvc6exldbjescrwe66saksqurb0ob2d+e8s04uo+wdhlqul6ksecerdsoz8ioh3wqk8jbee9cswtuxpgvellpijynhrllz9sneuybcqimv3ptsgyea2ccjyt+zlhkafd0mddsyvjmakm86un+mwqey6vtiubz9xfexosgdnoqtuzebiyzw8m/ud1m4ivgwmxaqzm0swiobmyfj5fgcougquxtorqze2tma6ijhrsucubgrf88ippxdq8t+bdx1bqn3kcrxsctleveegk1dedaqamokijz/sk3pwn58v5dz4wrqunnzlgf+b8/galo5jd</latexit> <latexit sha1_base64="zohxt+42lb03snodu1wswi5h9ec=">aaab9xicbvbnswmxem3wr1q/qh69bitql2vxbd0wvxisyd+gu5zsntugzpmlma2u0v/hxymixv0v3vw3pu0etpxbwoo9gwbmhangblz32ymsrw9sbhw3szu7e/sh5cojllgzpqxjlvc6exldbjescrwe66saksqurb0ob2d+e8s04uo+wdhlqul6ksecerdsoz8ioh3wqk8jbee9cswtuxpgvellpijynhrllz9sneuybcqimv3ptsgyea2ccjyt+zlhkafd0mddsyvjmakm86un+mwqey6vtiubz9xfexosgdnoqtuzebiyzw8m/ud1m4ivgwmxaqzm0swiobmyfj5fgcougquxtorqze2tma6ijhrsucubgrf88ippxdq8t+bdx1bqn3kcrxsctleveegk1dedaqamokijz/sk3pwn58v5dz4wrqunnzlgf+b8/galo5jd</latexit> <latexit sha1_base64="zohxt+42lb03snodu1wswi5h9ec=">aaab9xicbvbnswmxem3wr1q/qh69bitql2vxbd0wvxisyd+gu5zsntugzpmlma2u0v/hxymixv0v3vw3pu0etpxbwoo9gwbmhangblz32ymsrw9sbhw3szu7e/sh5cojllgzpqxjlvc6exldbjescrwe66saksqurb0ob2d+e8s04uo+wdhlqul6ksecerdsoz8ioh3wqk8jbee9cswtuxpgvellpijynhrllz9sneuybcqimv3ptsgyea2ccjyt+zlhkafd0mddsyvjmakm86un+mwqey6vtiubz9xfexosgdnoqtuzebiyzw8m/ud1m4ivgwmxaqzm0swiobmyfj5fgcougquxtorqze2tma6ijhrsucubgrf88ippxdq8t+bdx1bqn3kcrxsctleveegk1dedaqamokijz/sk3pwn58v5dz4wrqunnzlgf+b8/galo5jd</latexit> <latexit sha1_base64="zohxt+42lb03snodu1wswi5h9ec=">aaab9xicbvbnswmxem3wr1q/qh69bitql2vxbd0wvxisyd+gu5zsntugzpmlma2u0v/hxymixv0v3vw3pu0etpxbwoo9gwbmhangblz32ymsrw9sbhw3szu7e/sh5cojllgzpqxjlvc6exldbjescrwe66saksqurb0ob2d+e8s04uo+wdhlqul6ksecerdsoz8ioh3wqk8jbee9cswtuxpgvellpijynhrllz9sneuybcqimv3ptsgyea2ccjyt+zlhkafd0mddsyvjmakm86un+mwqey6vtiubz9xfexosgdnoqtuzebiyzw8m/ud1m4ivgwmxaqzm0swiobmyfj5fgcougquxtorqze2tma6ijhrsucubgrf88ippxdq8t+bdx1bqn3kcrxsctleveegk1dedaqamokijz/sk3pwn58v5dz4wrqunnzlgf+b8/galo5jd</latexit> Turning it into maths Physicists tell us that what they need to do is calculate Z '(x)dµ(x) observable function '( ) Gibbs measure just integration but with 180M variables!

6 <latexit sha1_base64="pohpw9humefyccb8iv+v21wdfp8=">aaack3icbvblswmxgmzwv62vqkcvwslus9kvqs9cqqoek9ghdjclm6ztajjdkmyxlpt/vphxpojbb179h2bbhmrrb4hjzdckm0heqnk2/wnlvlbx1jfym4wt7z3dvel+qvofscskgumwynaafgfukiammpf2janiasotyhid6a0rkyqg4kgpi+jx1be0rzhshvklnzcjpqic5db1xr5dd4rknkdlx1n4bv0qtj+4gdf4k85liss57kbgyg5+swrx7mnazedmqanmpu4xx91uignohmymkdvx7eh7czkaykbsghsreie8rh3smvagtpsxtlkm8mqwxdglptlcwwk770gqv2rma7ozjvolwkb+p3vi3bv0eiqiwbobpw/1ygz1clpiyjdkgjubg4cwpoavea+qrfibegumbgcx8jjonlucu+lcn5eqtvkdexaejkezooacvmedqimgwoajvib38ge9w2/wl/u9xc1zm88h+dpwzy/cwkbk</latexit> invariant measure <latexit sha1_base64="ufox4zita877+ikq+m6ienxmvh0=">aaab6nicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzqosjcxozpmhm7pltk8qqj7biwdfvppf3vwbj8kenlggoajqprsrsqww6pvfxmftfwnzq7hd2tnd2z8ohx41bzizxhsskylpr9ryktrvoedj26nhvewst6lr7cxvpxfjraifczzyungbfrfgfj300fvzr1zxq/4czjueoalajnqv/nxtjyxtxcot1npo4kcytqhbwssflrqz5sllizrghuc1vdygk/mpu3lmld6je+nki5mrvycmvfk7vphrvbshdtmbif95nqzj63aidjoh12yxkm4kwytm/iz9ythdoxaemipcryqnqaemxtolf0kw/piqav5ua78a3f9wajd5heu4gvm4hwcuoaz3uicgmbjam7zcmye9f+/d+1i0frx85hj+wpv8av1ejdy=</latexit> <latexit sha1_base64="ypu/zz/rjuesmglf2kjx3atf4h4=">aaab+3icbvbns8naen3ur1q/yj16crahxkoigl6eohepfewhtdfstpt26wytdifsepjxvhhqxkt/xjv/xm2bg7y+ghi8n8pmpd/mtiftfxultfwnza3ydmvnd2//wdysdlsuselbjokr7plyuc4ebqmdtnuxpdj0oe36k9uz332iurfipeaauzfei8ecrjboytor9aknzrxmxnv544cjaflprnknew5rltgfqaeclc/8ggwjkoruaofyqb5jx+bmwaijnoavqajojmkej2hfu4fdqtxsfntunwplaawr1cxamqu/jzickpwgvu4mmyzvsjct//p6cqrxbszenaavzleoslgfktulwhoysqnwvbnmjno3wmsmjsag46roejzll1dj57zh2a3n/qlwvcnikknjdilqyegxqinuuau1euft9ixe0zurgy/gu/gxac0zxcwr+gpj8wdvk5ql</latexit> <latexit sha1_base64="zhzqntoszix3l2pm3wlwblnlzai=">aaacinicbvdlsgmxfm3uv62vqks3wsjuhdijgroofn24rgaf0kldjs20oulmsdlfmsy3upfx3lhq1jxgx5i2s9dwa4hdoedyc48fmaq0bx9zuaxlldw1/hphy3nre6e4u9duyswxaecqhblti0uyfashqwakhumcum9iyx9et/zwiehfq3gnxxhpctqxnkayasn5xut3ghtijpcmbjt1okxcn5aij06a8bmnha6kuzeiqp3ec5jlyg+eopakjbtitwexizoreshq94ofbi/emsdcy4au6jh2plsjkppirtkcgyssitxefdixvcbovdeznpjci6p0ybbk84sgu/x3rik4umpumyrheqdmvyn4n9ejdxdrtaiiyk0eni0kygz1ccd9wr6vbgs2ngrhsc1fir4g05a2rrzmcc78yyukevpx7ipze1aqxwv15meboarl4ibzuam3oa4aainh8axewzv1zl1y79bnljqzspl98afw9w8ndapx</latexit> <latexit sha1_base64="piajc1yww/awe6ss5xb0fgy0lp0=">aaacgxicbvbps8mwhe39o+e/qkcvwshmg6mvqs/c0ivhcxybrrwkabafjw1jutko/rpe/cpepcjiuu9+g7otb918epj47/1ifi9igjxksr6nhcwl5zxv0lp5fwnza9vc2w3kobwyodhmswghsbjgi+ioqhhpj4ighjdscgzxy7/1qiskcxsrrgnxoopftesxulrytstzbydh7vk0ojycf/dozztp77njo4dex9drrg6l3na3k1bnmgdoe7sgfvcg4zufbhjjljniyyak7nhworwmcuuxi3nztsvjeb6ghulogifopjdnnsvhovzc2i2fppgce/x3ria4lcme6crhqi9nvbh4n9djvffcy2iupipeeppqn2vqxxbcewypifixksyic6r/cnefcysvlross7bnv54nzzoabdxsm9nk/bkoowt2wqgoahucgtq4bg3gaawewtn4bw/gk/fivbsf0+icuczsgt8wvn4a71ue/g==</latexit> Sampling and MCMC Typical approach: using a Markov Chain with prescribed Example method: Metropolis Monte Carlo

7 <latexit sha1_base64="ipbhajzhpzzplun7nsgjggxlzim=">aaacdxicbvdltsjafj3ic/fvdelmipq0iwdbmojghojgjsywskcq6tdahokjm1mdifyag3/fjquncevenx/jaf0oejkbnjxzb+69x48zfdkyvrxmyura+kz2m7e1vbo7p+8fvewucexchlgi130kckmhcswvjnrjtldgm1lzbzdtv/zaukbrec9hmfec1atpl2ikldtwt1xjamiraphfdoayxrdlfg2z5cacnozcwtbbet4qwtpazwknja9svnr6v7mt4sqgocqmcdgwrvh6y8qlxyxmcs1ekbjhaeqrhqihcojwxrnvjvbukr3yjbiqumkz+ntijaihrogvogmk+2lrm4r/ey1edi+9mq3jrjiqzxd1ewzlbkfrwa7lbes2ugrhttwtepcrr1iqahmqbhvx5wvsduq2vblvzvpl6zsoldgcx8aanrgazxalksafgdycz/ak3rqn7uv71z7mrrktntkef6b9/gcqezy6</latexit> <latexit sha1_base64="u++gakoc+pkxbqglatnj+qg4cfq=">aaab8hicdvdltsjafj3ic/gfunqzkzjgwqblzy7oxiumfjbqyxqyymj02sxmjathk9y40bi3fo47/8ypykjgt3ktk3puzb33ecgjulnwh5fawv1b30hvzra2d3b3svshlrleahmhbywqhq9jwignjqkkku4ocpi9rtre5clx23desbrwazunieujeaddiphs0g25jc+c/p3prj/nwwalwq4xi9ay7vq5vk9iovsu2da0twuohfii2c++9wybjnzcfwziyq5thcqnkvaumzll9cjjqoqnaes6mnlke+ng84nn8eqrazgmhc6u4fz9phejx8qp7+loh6mx/o0l4l9en1ldmhtthkakclxyniwyvafmvocdkghwbkojwolqwyeei4gw0hlldahfn8l/satg2jqiq1kucb6miw2owdhiaxtuqqncgizwaay+eabp4nkqxqpxyrwuwlpgcuyq/idx9gl2hjaw</latexit> Example: Metropolis Monte Carlo for the Uneven Double Well Gaussian prior: rare events slow convergence too much measure in the right basin

8 <latexit sha1_base64="9tto/n8ofer8lgngebhgmxsljd8=">aaacjnicbzdnsgmxfiuz/lv/qi7dbitqectmexqjig5cvndaqmcomtrtg5nmmnyrlmgexo2v4safiulorzftr9dwcygh79xlck8qc67btj+tufmfxaxlldxc2vrg5lzxe6euo0rr5tjirkozem0el8wfdoi1y8vigajwco6urn7jgsnni3klw5j5ielj3uwugeht4nnqqrb3sge+x8eejieg2c0pdnhoar9ht98rskvzd5vcjawn7wljrtjjwrpcyuuj5vvrf1+9tkstkemggmjdcuwy/jqo4fswroalmswe3peeaxkpsci0n47xzpcbir3cjzq5evcy/p5isaj1maxmz0igr6e9efzpayxqpfntlumemksth7qjwbdhuwa4wxwjiizgekq4+sumfaiibznswytgtk88k+rvimnxnjut0svlhsck2kp7qiwcdiou0dwqirdr9iie0st6s56sf+vd+pi0zln5zc76u9bxn3xho/g=</latexit> Sampling using SDEs Ito-type Stochastic Differential Equation Brownian Dynamics Wiener measure describes a particle diffusing in a potential U at fixed temperature

9 Fokker-Planck Equation The stochastic paths of an Itō SDE sample the evolving distribution with probability = L L is the L 2 adjoint of L defined by (L g)(x) = lim t!0 E[g(x( t)) x(0) = x] g(x) t

10 <latexit sha1_base64="lnwzustj1+34cpnlf+gcgyowa1o=">aaacrxicbvblaxsxgnsmetovtz3mimiczifmnwtasyc0bhp0ohyclrnoza0timkx6vsnruyf6yx33pipeumhjesaah0h8hoqjgbmq58myawweia3wdyh+yxfpewv2ura+szm/eonrs0kw3ihztizzwm1xarnoyba8rpcckosyu+ti++vfzrmxopm/4rjzvukdrvibapgpbhoibqqdkcmgi6agpndyij0cpmsw7nbi8rqcnf4dpimqclhonnvhn1d7ihrefacpsreurglitsuy0duut4l43ojbivt4lckmpegmqed12/iigof4hqypnb2ojchvqmgbjo8rjhc8pyyczrkpu81vdz23bsfeu94zydtzpijau/v5xookmsnkvhjal/72qve97xeaenxvhm6l4br9vhqwkgmga4qxqnhoam58yqyi/yumi2ooqx88tvfqvt6y29jd78vha3o5kbx9g1wxzlaqtuoisl0br2hh6inooihx+g3+ov+bdfbn+auuh+mzgwzmc/obykh/9cqsmu=</latexit> <latexit sha1_base64="ur9aqlkrsnvuaj45yzb/1dknvmy=">aaab/hicbzdnssnafiun/tb6f+3szwar6sksikaboejgzqxtftpyjtpbdugke2ymygj1vdy4umstd+lot3hazqgtbwy+zr2xe+cemwdko863tbs8srq2xtgobm5t7+zae/snjrjjwaocc9kkialoiva00xxasqqsbhyaweh6um8+gfrmrhc6jcepysbifuajnlbxlnxkufqej/elhvvsxdm47tplp+pmhrfbzagmctw79lenj2gsqqqpj0q1xsfwfkakzptdunhjfmsejsga2gyjeolys+nxy3xknb7uc2lepphu/t2rkvcpnaxmz0j0um3xjuz/txai+xd+xqi40rdr2aj+wrewejie7jejvppuakgsmvsxhrjjqdz5fu0i7vyxf6fxwnwdqnt7vq5d5xeu0ae6rbxkonnuqzeojjxeuyqe0st6s56sf+vd+pi1lln5tan9kfx5a3o/k1o=</latexit> Brownian Dynamics so is a stationary density & geometric ergodicity under mild conditions on U Ergodic limit Just need a reliable way of computing numerical solutions of SDEs (on long intervals)!

11 SDE Numerics What is a suitable definition for error for an SDE? Examples: weak, strong, ergodic How to get high accuracy in SDE discretisation? How does discretisation affect convergence to the invariant distribution?

12 Euler-Maruyama Method Numerical Method discrete Brownian path Leimkuhler-Matthews Method [L. & Matthews, AMRX, 2013] [L., Matthews & Stoltz, IMA J. Num. Anal., 2015] [L., Matthews & Tretyakov, Proc Roy Soc A, 2014]

13 Uneven Double Well ergodic error small stepsize bimodal distribution large stepsize L-M E-M

14 Invariant measures of numerical methods Sampling Applications Charlie Matthews (UoE PhD ) 5 papers + a book and over 300 citations

15 Charlie Matthews (PhD 2015, Chicago) Langevin (BAOAB) Matthias Sachs (PhD 2017, Duke) Invariant measures Overdamped Limit Constrained LD Xiaocheng Shang (PhD 2015, Langevin/AdL Ergodicity Adaptive Langevin Gabriel Stoltz (ENPC Paris) Michael Tretyakov (Nottingham) Vincent Danos (ENS Paris)

16 the most recent citations for our 2016 geodesic integrators paper: physical chemistry biomolecules data science biomolecules molecular software data science physics stats & data science stats & data science Why are statisticians reading molecular dynamics papers?

17 Wind Turbines (with industry partner) Zofia Trstanova (postdoc) Anton Martinsson (PhD student)

18 Financial giant Goldman Sachs announces that it plans to invest $150 billion in clean energy projects and technology like solar and wind farms, energy efficiency upgrades for buildings, and power grid infrastructure. Problem: Goldman Sachs analysts lack of turbine knowledge Solution: Employ a specialist energy management firm Problem: Each windfarm may have hundreds of turbines each turbine produces data at 10s to 10m intervals on dozens of properties Large data problem [10K turbine years!] Solution 1: Solution 2: Hire engineers to stare at data Get a team of mathematicians to develop a data-driven model to analyse the data.

19 Ideal power output to windspeed diagram Example data set Learn: to categorise conditions: derating, icing, Goal: Automatic analysis of data streams for maintenance, performance analysis, planning

20 <latexit sha1_base64="6st+2uni49vtkzhpfrx8lltbni8=">aaab6hicbvbns8naej3ur1q/qh69lbbbu0le0gpri8cw7ae0owy2k3btzhn3n0ij/qvepcji1z/kzx/jts1bwx8mpn6bywzekaiujet+o4w19y3nrej2awd3b/+gfhju0ngqgdzzlglvcahgwsu2dtcco4lcgguc28h4dua3n1bphst7m0nqj+hq8pazaqzueoyxk27vnyosei8nfchr75e/eooyprfkwwtvuuu5ifezqgxnaqelxqoxowxmh9i1vniitz/nd52sm6smsbgrw9kqufp7iqor1pmosj0rnso97m3e/7xuasjrp+mysq1ktlgupokymmy+jgoukbkxsyqyxe2thi2ooszybeo2bg/55vxsuqh6btvrxfzqn3kcrtibuzghd66gbndqhyywqhigv3hzhpwx5935wlqwnhzmgp7a+fwb252m9q==</latexit> <latexit sha1_base64="do2tvhsgwpjem6ngq7vwez4dw5a=">aaacj3icbzdps8mwfmft+wvwx1wpxojd8dtaiuwpytclxwludtzs0jtbwtkkjkkwyv4bl/4rxgqv0ap/idlwudcfhhzzee/x8r5ryqjsrvtplzawv1bxyuv2xubw9o6zu9dwipoytlbgqnyipaijnlq01yx0uklqejfyfw2vjvm7eyivffxwj1isjkjpay9ipa0knytmmpsygey9hufqrz7vfd8uycz6m+jwfqdqayil7ivoxvztgivck0qffnemnrc/fjhlcneyiaw6npvqiedsu8zi2pyzrvkeh6hpukzylbav5nm9x/dikbj2hdshazilvztylcg1sijtmsa9upo5cfwv18107ztiku8zttiedepldgobj6bbmeqcnrszgbck5q8qd5bewbtrbwocn7/yomjxqp5b9w5oko3lwo4yoach4bh4oa4a4bo0qqtg8acewct4sx6tz+vd+pivlqyizx/8cevrg3jrofk=</latexit> Model Models may be artificial or not, but the distinction is often artificial! Ex: convolutional neural network

21 <latexit sha1_base64="rzlbq3g0+drgaqrply9ijnsmmqu=">aaacc3icbvc9tsmwght4leuvwmhitujqlypbsdbwsdawibarmihyxke16isu7sbvaxcwxowfayryeqe23ganzqatj1k63x2fpt8fnfgplovbwfvf2nzalu2ud/f2dw7no+ootfkbsrsnlbfogcrhncztrrujdhcerqej3wb0k/vdbyiktej7nehei9agpihfsgnjnysup7xx1kldl4ueqwtmgjmd5wl1rdq47ptvq2hnavejxzaqkndyzs+3n+a0irhcdenzsy2uvawjrtejs7kbssirhqeb6wkao4hil5tnmcezrfrhmaj9ygxn6u+ndevstqjat0zidewyl4v/eb1uhvdermoekhljxaewzvbhzoubfsoivmyicckc6r9cpeqcyaxrk+ss7oxiq6rz3rcthn13uw1ef3wuwcmogbqwwsvoglvqam2awsn4bq/gzxgyxox342mxumyuoyfgd4zph56emxs=</latexit> <latexit sha1_base64="qmjny7d3nwzcz0iuuxl57xkwnik=">aaaccnicbvdlssnafj34rpuvdelmtah1uxirdfmounelfewdmhgm00k7ddkjmxoxxk7d+ctuxcji1i9w5984abpq1gmxdufcy733+dgjulnwtze3v7c4tfxyka6urw9smlvbtrklapmgjlgk2j6shffogooqrtqxicj0gwn5g/pmb90riwner9uwjm6iepwgfcoljc/cc2jabj/chsiqdorus2nvht1cwky+96g2plnkvawx4cyxc1icoeqe+ev0i5yehcvmkjqd24qvmykhkgzkvhqsswkeb6hhoppyfblppunxrvbak10yreixv3cs/p5iusjlmpr1z4hux057mfif10lucoqmlmejihxpfgujgyqcws6wswxbig01qvhqfsvefsqqvjq9og7bnn55ljspkrzvsa+os7wzpi4c2ax7oaxscajq4aluqqng8aiewst4m56mf+pd+ji0zhn5za74a+pzb7p9mp8=</latexit> DATA PARAMETERS prior model LIKELIHOOD Bayes Theorem minimise U(q) to determine optimal parameters I m not really me Data Scientist Thomas Bayes, U of Edinburgh, Class of 1721

22 Wind Turbine Benchmarking With enough data, it is straightforward to replace the engineer with a convolutional neural network for detecting a specific condition, e.g. icing Problems: 1. Mixed data sets 2. Lack of transferability Unsupervised learning to learn classes from data Generalisation error Generative networks 3. Multimodality all require sampling!

23 Multimodality in NNs With Zofia Trstanova and Frederik Heber (Turing) P(red) isolated local min 9 parameter model, multimodal loss landscape with pretty severe trapping in upper well.

24 Sampling Metastable Systems Ways forward: 1. EQN. New types of diffusions that more efficiently explore the complex geometry; in particular nonreversible diffusions. w. J. Weare & C. Matthews, Chicago. 2. ISST. Use of temperature and other collective variables to enhance and guide sampling. w. A. Martinsson, J. Lu (Duke) & E. Vanden-Eijnden (NYU). 3. DM. Data-analytic tools based on diffusion maps to perform unsupervised manifold learning from simulated data in order to enhance exploration. w. Z. Trstanova, T. Lelievre (Paris) and R. Banisch (Berlin)

25

26

27

28 (building on work of Clementi, Kevrekides )

29

30 Thermodynamic Analytics Toolkit (TATi) Frederik Heber (Rutherford-Turing Fellow) Benedict Leimkuhler Zofia Trstanova (EPSRC PDRA - Edinburgh) Vision: Exploration tool for loss landscape in ANNs Sampling methods in TensorFlow purposes Develop understanding of NN properties Assist in analysis/redesign of NNs

31 The Edinburgh Environment Maxwell Institute Union of mathematicians at Edinburgh and Heriot-Watt Universities. Currently unifying graduate programmes under the banner Maxwell Institute Graduate School. International Centre for the Mathematical Sciences Runs workshops, supports small group research and coordinates knowledge exchange and public events. Centres for Doctoral Training e.g. MIGSAA Main mechanism for funding PhD students and coordinating training across the Maxwell Institute 3 proposed in 2018: MAC-MIGS (Modelling, analysis and computation), GLAMS (Glasgow-Maxwell School in algebraic methods), and Data Science & AI (a joint venture with Informatics)

32 Thomas Bayes Centre

33 Why Edinburgh? amazing skyline: access to the highlands fringe festival folk music still part of the EU but.

34 The real reason Scottish Boletus Harvest (Porcini/Ceps)

35 Thank you for listening!

Thermostatic Controls for Noisy Gradient Systems and Applications to Machine Learning

Thermostatic Controls for Noisy Gradient Systems and Applications to Machine Learning Thermostatic Controls for Noisy Gradient Systems and Applications to Machine Learning Ben Leimkuhler University of Edinburgh Joint work with C. Matthews (Chicago), G. Stoltz (ENPC-Paris), M. Tretyakov

More information

From Physical Modelling to Big Data Analytics: Examples and Challenges

From Physical Modelling to Big Data Analytics: Examples and Challenges From Physical Modelling to Big Data Analytics: Examples and Challenges Ben Leimkuhler University of Edinburgh EPSRC/NSF ERC ATI Summit on Big Data in the Physical Sciences Outline Part I: Challenges Ideas

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

Monte Carlo methods for sampling-based Stochastic Optimization

Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Lelièvre, G. Stoltz from ENPC and E. Kuhn from

More information

Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems

Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems Ben Leimkuhler University of Edinburgh Funding: NAIS (EPSRC) & NWO MIGSEE

More information

Manifold Monte Carlo Methods

Manifold Monte Carlo Methods Manifold Monte Carlo Methods Mark Girolami Department of Statistical Science University College London Joint work with Ben Calderhead Research Section Ordinary Meeting The Royal Statistical Society October

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Lecture 1: Introduction Course Objectives: The focus of this course is on gaining understanding on how to make an

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

Development of Stochastic Artificial Neural Networks for Hydrological Prediction

Development of Stochastic Artificial Neural Networks for Hydrological Prediction Development of Stochastic Artificial Neural Networks for Hydrological Prediction G. B. Kingston, M. F. Lambert and H. R. Maier Centre for Applied Modelling in Water Engineering, School of Civil and Environmental

More information

Numerical methods in molecular dynamics and multiscale problems

Numerical methods in molecular dynamics and multiscale problems Numerical methods in molecular dynamics and multiscale problems Two examples T. Lelièvre CERMICS - Ecole des Ponts ParisTech & MicMac project-team - INRIA Horizon Maths December 2012 Introduction The aim

More information

Introduction to Computational Stochastic Differential Equations

Introduction to Computational Stochastic Differential Equations Introduction to Computational Stochastic Differential Equations Gabriel J. Lord Catherine E. Powell Tony Shardlow Preface Techniques for solving many of the differential equations traditionally used by

More information

A variational radial basis function approximation for diffusion processes

A variational radial basis function approximation for diffusion processes A variational radial basis function approximation for diffusion processes Michail D. Vrettas, Dan Cornford and Yuan Shen Aston University - Neural Computing Research Group Aston Triangle, Birmingham B4

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 K. Kremer Max Planck Institute for Polymer Research, Mainz Overview Simulations, general considerations

More information

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks Panos Stinis (joint work with T. Hagge, A.M. Tartakovsky and E. Yeung) Pacific Northwest National Laboratory

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

Applied Mathematics Methods Stream

Applied Mathematics Methods Stream Applied Mathematics Methods Stream Irene Kyza Discipline of Mathematics School of Science and Engineering University of Dundee September 2016 Overview: what are methods (for)? Most mathematical models

More information

M4A42 APPLIED STOCHASTIC PROCESSES

M4A42 APPLIED STOCHASTIC PROCESSES M4A42 APPLIED STOCHASTIC PROCESSES G.A. Pavliotis Department of Mathematics Imperial College London, UK LECTURE 1 12/10/2009 Lectures: Mondays 09:00-11:00, Huxley 139, Tuesdays 09:00-10:00, Huxley 144.

More information

Kurume University Faculty of Economics Monograph Collection 18. Theoretical Advances and Applications in. Operations Research. Kyushu University Press

Kurume University Faculty of Economics Monograph Collection 18. Theoretical Advances and Applications in. Operations Research. Kyushu University Press Kurume University Faculty of Economics Monograph Collection 18 Theoretical Advances and Applications in Operations Research Managing Editor Kangrong Tan General Advisor Joe Gani Kyushu University Press

More information

Computing ergodic limits for SDEs

Computing ergodic limits for SDEs Computing ergodic limits for SDEs M.V. Tretyakov School of Mathematical Sciences, University of Nottingham, UK Talk at the workshop Stochastic numerical algorithms, multiscale modelling and high-dimensional

More information

Handbook of Stochastic Methods

Handbook of Stochastic Methods C. W. Gardiner Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences Third Edition With 30 Figures Springer Contents 1. A Historical Introduction 1 1.1 Motivation I 1.2 Some Historical

More information

Control Theory in Physics and other Fields of Science

Control Theory in Physics and other Fields of Science Michael Schulz Control Theory in Physics and other Fields of Science Concepts, Tools, and Applications With 46 Figures Sprin ger 1 Introduction 1 1.1 The Aim of Control Theory 1 1.2 Dynamic State of Classical

More information

Deep Relaxation: PDEs for optimizing Deep Neural Networks

Deep Relaxation: PDEs for optimizing Deep Neural Networks Deep Relaxation: PDEs for optimizing Deep Neural Networks IPAM Mean Field Games August 30, 2017 Adam Oberman (McGill) Thanks to the Simons Foundation (grant 395980) and the hospitality of the UCLA math

More information

Riemann Manifold Methods in Bayesian Statistics

Riemann Manifold Methods in Bayesian Statistics Ricardo Ehlers ehlers@icmc.usp.br Applied Maths and Stats University of São Paulo, Brazil Working Group in Statistical Learning University College Dublin September 2015 Bayesian inference is based on Bayes

More information

Monte Carlo Methods. Handbook of. University ofqueensland. Thomas Taimre. Zdravko I. Botev. Dirk P. Kroese. Universite de Montreal

Monte Carlo Methods. Handbook of. University ofqueensland. Thomas Taimre. Zdravko I. Botev. Dirk P. Kroese. Universite de Montreal Handbook of Monte Carlo Methods Dirk P. Kroese University ofqueensland Thomas Taimre University ofqueensland Zdravko I. Botev Universite de Montreal A JOHN WILEY & SONS, INC., PUBLICATION Preface Acknowledgments

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

The parallel replica method for Markov chains

The parallel replica method for Markov chains The parallel replica method for Markov chains David Aristoff (joint work with T Lelièvre and G Simpson) Colorado State University March 2015 D Aristoff (Colorado State University) March 2015 1 / 29 Introduction

More information

Markov Chain Monte Carlo Method

Markov Chain Monte Carlo Method Markov Chain Monte Carlo Method Macoto Kikuchi Cybermedia Center, Osaka University 6th July 2017 Thermal Simulations 1 Why temperature 2 Statistical mechanics in a nutshell 3 Temperature in computers 4

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

A tutorial on numerical transfer operator methods. numerical analysis of dynamical systems

A tutorial on numerical transfer operator methods. numerical analysis of dynamical systems A tutorial on transfer operator methods for numerical analysis of dynamical systems Gary Froyland School of Mathematics and Statistics University of New South Wales, Sydney BIRS Workshop on Uncovering

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

V e h i c l e I C T A r e n a I n n o v a t i o n B a z a a r L i n d h o l m e n S c i e n c e P a r k

V e h i c l e I C T A r e n a I n n o v a t i o n B a z a a r L i n d h o l m e n S c i e n c e P a r k I ndustrial Mathematics Applied to M a c hine Learning, B ig Data Analytics and Data Science V e h i c l e I C T A r e n a I n n o v a t i o n B a z a a r L i n d h o l m e n S c i e n c e P a r k 2018-02-

More information

Advanced Molecular Dynamics

Advanced Molecular Dynamics Advanced Molecular Dynamics Introduction May 2, 2017 Who am I? I am an associate professor at Theoretical Physics Topics I work on: Algorithms for (parallel) molecular simulations including GPU acceleration

More information

Everyday NMR. Innovation with Integrity. Why infer when you can be sure? NMR

Everyday NMR. Innovation with Integrity. Why infer when you can be sure? NMR Everyday NMR Why infer when you can be sure? Innovation with Integrity NMR Only NMR gives you definitive answers, on your terms. Over the past half-century, scientists have used nuclear magnetic resonance

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Computational Physics. J. M. Thijssen

Computational Physics. J. M. Thijssen Computational Physics J. M. Thijssen Delft University of Technology CAMBRIDGE UNIVERSITY PRESS Contents Preface xi 1 Introduction 1 1.1 Physics and computational physics 1 1.2 Classical mechanics and statistical

More information

SMSTC: Probability and Statistics

SMSTC: Probability and Statistics SMSTC: Probability and Statistics Fraser Daly Heriot Watt University October 2018 Fraser Daly (Heriot Watt University) SMSTC: Probability and Statistics October 2018 1 / 28 Outline Probability and Statistics

More information

Second Year Chemistry 2014

Second Year Chemistry 2014 Second Year Chemistry 2014 Information Session A/Prof Siggi Schmid Second Year Coordinator Key Contacts Siggi Schmid Second Year Coordinator Room 315, e-mail: siegbert.schmid@sydney.edu.au Suzanne Kania

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde Gillespie s Algorithm and its Approximations Des Higham Department of Mathematics and Statistics University of Strathclyde djh@maths.strath.ac.uk The Three Lectures 1 Gillespie s algorithm and its relation

More information

Second Year Chemistry 2012

Second Year Chemistry 2012 Second Year Chemistry 2012 Information Session Dr Richard Payne Second Year Coordinator Key Contacts Richard Payne Second Year Coordinator Room 545, e-mail: richard.payne@sydney.edu.au Linda Kristian Assistant

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE From cell biology to Petri nets Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE Biology = Concentrations Breitling / 2 The simplest chemical reaction A B irreversible,

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 13-28 February 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Limitations of Gibbs sampling. Metropolis-Hastings algorithm. Proof

More information

Titles and Abstracts

Titles and Abstracts Titles and Abstracts Stability of the Nonlinear Filter for Random Expanding Maps Jochen Broecker A ubiquitous problem in science and engineering is to reconstruct the state of a hidden Markov process (the

More information

Introduction to asymptotic techniques for stochastic systems with multiple time-scales

Introduction to asymptotic techniques for stochastic systems with multiple time-scales Introduction to asymptotic techniques for stochastic systems with multiple time-scales Eric Vanden-Eijnden Courant Institute Motivating examples Consider the ODE {Ẋ = Y 3 + sin(πt) + cos( 2πt) X() = x

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 9: Markov Chain Monte Carlo 9.1 Markov Chain A Markov Chain Monte

More information

Homework 3 due Friday, April 26. A couple of examples where the averaging principle from last time can be done analytically.

Homework 3 due Friday, April 26. A couple of examples where the averaging principle from last time can be done analytically. Stochastic Averaging Examples Tuesday, April 23, 2013 2:01 PM Homework 3 due Friday, April 26. A couple of examples where the averaging principle from last time can be done analytically. Based on the alternative

More information

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror Molecular dynamics simulation CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror 1 Outline Molecular dynamics (MD): The basic idea Equations of motion Key properties of MD simulations Sample applications

More information

CONTENTS. Preface List of Symbols and Notation

CONTENTS. Preface List of Symbols and Notation CONTENTS Preface List of Symbols and Notation xi xv 1 Introduction and Review 1 1.1 Deterministic and Stochastic Models 1 1.2 What is a Stochastic Process? 5 1.3 Monte Carlo Simulation 10 1.4 Conditional

More information

The Kramers problem and first passage times.

The Kramers problem and first passage times. Chapter 8 The Kramers problem and first passage times. The Kramers problem is to find the rate at which a Brownian particle escapes from a potential well over a potential barrier. One method of attack

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SAMPLE EXAMINATIONS 2017/2018 MODULE: QUALIFICATIONS: Simulation for Finance MS455 B.Sc. Actuarial Mathematics ACM B.Sc. Financial Mathematics FIM YEAR OF STUDY: 4 EXAMINERS: Mr

More information

Numerical Solutions of ODEs by Gaussian (Kalman) Filtering

Numerical Solutions of ODEs by Gaussian (Kalman) Filtering Numerical Solutions of ODEs by Gaussian (Kalman) Filtering Hans Kersting joint work with Michael Schober, Philipp Hennig, Tim Sullivan and Han C. Lie SIAM CSE, Atlanta March 1, 2017 Emmy Noether Group

More information

THE UNIVERSITY OF MANCHESTER PARTICULARS OF APPOINTMENT FACULTY OF ENGINEERING AND PHYSICAL SCIENCES SCHOOL OF PHYSICS AND ASTRONOMY

THE UNIVERSITY OF MANCHESTER PARTICULARS OF APPOINTMENT FACULTY OF ENGINEERING AND PHYSICAL SCIENCES SCHOOL OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF MANCHESTER PARTICULARS OF APPOINTMENT FACULTY OF ENGINEERING AND PHYSICAL SCIENCES SCHOOL OF PHYSICS AND ASTRONOMY JODRELL BANK CENTRE FOR ASTROPHYSICS CRYOGENICS ENGINEER IN NEXT GENERATION

More information

Algorithms for Ensemble Control. B Leimkuhler University of Edinburgh

Algorithms for Ensemble Control. B Leimkuhler University of Edinburgh Algorithms for Ensemble Control B Leimkuhler University of Edinburgh Model Reduction Across Disciplines Leicester 2014 (Stochastic) Ensemble Control extended ODE/SDE system design target ensemble SDE invariant

More information

Unravelling the nuclear pore complex

Unravelling the nuclear pore complex Unravelling the nuclear pore complex Ian Ford + Dino Osmanović, Tony Harker, Aizhan Bestembayeva, Bart Hoogenboom (UCL P&A/LCN) Ariberto Fassati (UCL Virology) Armin Kramer, Ivan Leshkovich (Univ Münster)

More information

Random Walks A&T and F&S 3.1.2

Random Walks A&T and F&S 3.1.2 Random Walks A&T 110-123 and F&S 3.1.2 As we explained last time, it is very difficult to sample directly a general probability distribution. - If we sample from another distribution, the overlap will

More information

Basics of Statistical Mechanics

Basics of Statistical Mechanics Basics of Statistical Mechanics Review of ensembles Microcanonical, canonical, Maxwell-Boltzmann Constant pressure, temperature, volume, Thermodynamic limit Ergodicity (see online notes also) Reading assignment:

More information

2.3 Modeling Interatomic Interactions Pairwise Potentials Many-Body Potentials Studying Biomolecules: The Force

2.3 Modeling Interatomic Interactions Pairwise Potentials Many-Body Potentials Studying Biomolecules: The Force Contents 1 Introduction to Computational Meso-Bio-Nano (MBN) Science and MBN EXPLORER.... 1 1.1 Meso-Bio-Nano Science: A Novel Field of Interdisciplinary Research.... 1 1.1.1 Structure and Dynamics of

More information

Numerical Integration of SDEs: A Short Tutorial

Numerical Integration of SDEs: A Short Tutorial Numerical Integration of SDEs: A Short Tutorial Thomas Schaffter January 19, 010 1 Introduction 1.1 Itô and Stratonovich SDEs 1-dimensional stochastic differentiable equation (SDE) is given by [6, 7] dx

More information

Approximation of Top Lyapunov Exponent of Stochastic Delayed Turning Model Using Fokker-Planck Approach

Approximation of Top Lyapunov Exponent of Stochastic Delayed Turning Model Using Fokker-Planck Approach Approximation of Top Lyapunov Exponent of Stochastic Delayed Turning Model Using Fokker-Planck Approach Henrik T. Sykora, Walter V. Wedig, Daniel Bachrathy and Gabor Stepan Department of Applied Mechanics,

More information

Speeding up Convergence to Equilibrium for Diffusion Processes

Speeding up Convergence to Equilibrium for Diffusion Processes Speeding up Convergence to Equilibrium for Diffusion Processes G.A. Pavliotis Department of Mathematics Imperial College London Joint Work with T. Lelievre(CERMICS), F. Nier (CERMICS), M. Ottobre (Warwick),

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0 Introduction to multiscale modeling and simulation Lecture 5 Numerical methods for ODEs, SDEs and PDEs The need for multiscale methods Two generic frameworks for multiscale computation Explicit methods

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Handbook of Stochastic Methods

Handbook of Stochastic Methods Springer Series in Synergetics 13 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences von Crispin W Gardiner Neuausgabe Handbook of Stochastic Methods Gardiner schnell und portofrei

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

What Can Physics Say About Life Itself?

What Can Physics Say About Life Itself? What Can Physics Say About Life Itself? Science at the Interface of Physics and Biology Michael Manhart Department of Physics and Astronomy BioMaPS Institute for Quantitative Biology Source: UIUC, Wikimedia

More information

Syllabus BINF Computational Biology Core Course

Syllabus BINF Computational Biology Core Course Course Description Syllabus BINF 701-702 Computational Biology Core Course BINF 701/702 is the Computational Biology core course developed at the KU Center for Computational Biology. The course is designed

More information

Systematic Closure Approximations for Multiscale Simulations

Systematic Closure Approximations for Multiscale Simulations Systematic Closure Approximations for Multiscale Simulations Qiang Du Department of Mathematics/Materials Sciences Penn State University http://www.math.psu.edu/qdu Joint work with C. Liu, Y. Hyon and

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Different approaches to model wind speed based on stochastic differential equations

Different approaches to model wind speed based on stochastic differential equations 1 Universidad de Castilla La Mancha Different approaches to model wind speed based on stochastic differential equations Rafael Zárate-Miñano Escuela de Ingeniería Minera e Industrial de Almadén Universidad

More information

A Degree In Chemistry

A Degree In Chemistry A Degree In Chemistry Why chemistry? It is the central science Chemists contribute a lot to our quality of life New drugs Detecting disease Nanotechnology Batteries New materials Food production CHEMISTRY

More information

MSc Dissertation topics:

MSc Dissertation topics: .... MSc Dissertation topics: Omar Lakkis Mathematics University of Sussex Brighton, England November 6, 2013 Office Location: Pevensey 3 5C2 Office hours: Autumn: Tue & Fri 11:30 12:30; Spring: TBA. O

More information

Chapter 2. Brownian dynamics. 2.1 Introduction

Chapter 2. Brownian dynamics. 2.1 Introduction Chapter 2 Brownian dynamics 2.1 Introduction The equations of physics are deterministic rather than stochastic in nature. Stochastic differential equations are used to approximate reality. They are introduced

More information

Molecular Dynamics Lecture 3

Molecular Dynamics Lecture 3 Molecular Dynamics Lecture 3 Ben Leimkuhler the problem of the timestep in MD constraints - SHAKE/RATTLE multiple timestepping stochastic methods for holonomic constraints stochastic multiple timestepping

More information

J. Sadeghi E. Patelli M. de Angelis

J. Sadeghi E. Patelli M. de Angelis J. Sadeghi E. Patelli Institute for Risk and, Department of Engineering, University of Liverpool, United Kingdom 8th International Workshop on Reliable Computing, Computing with Confidence University of

More information

Density estimation. Computing, and avoiding, partition functions. Iain Murray

Density estimation. Computing, and avoiding, partition functions. Iain Murray Density estimation Computing, and avoiding, partition functions Roadmap: Motivation: density estimation Understanding annealing/tempering NADE Iain Murray School of Informatics, University of Edinburgh

More information

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling G. B. Kingston, H. R. Maier and M. F. Lambert Centre for Applied Modelling in Water Engineering, School

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2015 Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility),

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

Recommended Courses by ECE Topic Area Graduate Students

Recommended Courses by ECE Topic Area Graduate Students Recommended s by ECE Topic Area Graduate Students The course recommendations below do not represent full plans of study. The courses listed under each heading represent appropriate courses to take if you

More information

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY Third edition N.G. VAN KAMPEN Institute for Theoretical Physics of the University at Utrecht ELSEVIER Amsterdam Boston Heidelberg London New York Oxford Paris

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos Contents Markov Chain Monte Carlo Methods Sampling Rejection Importance Hastings-Metropolis Gibbs Markov Chains

More information

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena Path Integrals Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz 1 07743 Jena 5. Auflage WS 2008/09 1. Auflage, SS 1991 (ETH-Zürich) I ask readers to report

More information

Sampling-based probabilistic inference through neural and synaptic dynamics

Sampling-based probabilistic inference through neural and synaptic dynamics Sampling-based probabilistic inference through neural and synaptic dynamics Wolfgang Maass for Robert Legenstein Institute for Theoretical Computer Science Graz University of Technology, Austria Institute

More information

A mathematical framework for Exact Milestoning

A mathematical framework for Exact Milestoning A mathematical framework for Exact Milestoning David Aristoff (joint work with Juan M. Bello-Rivas and Ron Elber) Colorado State University July 2015 D. Aristoff (Colorado State University) July 2015 1

More information

Elementary Applications of Probability Theory

Elementary Applications of Probability Theory Elementary Applications of Probability Theory With an introduction to stochastic differential equations Second edition Henry C. Tuckwell Senior Research Fellow Stochastic Analysis Group of the Centre for

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Seminar: Data Assimilation

Seminar: Data Assimilation Seminar: Data Assimilation Jonas Latz, Elisabeth Ullmann Chair of Numerical Mathematics (M2) Technical University of Munich Jonas Latz, Elisabeth Ullmann (TUM) Data Assimilation 1 / 28 Prerequisites Bachelor:

More information

String method for the Cahn-Hilliard dynamics

String method for the Cahn-Hilliard dynamics String method for the Cahn-Hilliard dynamics Tiejun Li School of Mathematical Sciences Peking University tieli@pku.edu.cn Joint work with Wei Zhang and Pingwen Zhang Outline Background Problem Set-up Algorithms

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo 1 Motivation 1.1 Bayesian Learning Markov Chain Monte Carlo Yale Chang In Bayesian learning, given data X, we make assumptions on the generative process of X by introducing hidden variables Z: p(z): prior

More information