String method for the Cahn-Hilliard dynamics

Size: px
Start display at page:

Download "String method for the Cahn-Hilliard dynamics"

Transcription

1 String method for the Cahn-Hilliard dynamics Tiejun Li School of Mathematical Sciences Peking University Joint work with Wei Zhang and Pingwen Zhang

2 Outline Background Problem Set-up Algorithms and Results Summary

3 Background

4 Polymer Polymers or soft matters are extremely important for its softness, self-assembly and relatively easy response to fluctuations. Rich phase behavior (diblock copolymer) N A N B L G Composition f = N A /N, Flory-Huggins parameter χn C S

5 Triblock copolymer Richer phases than diblock case

6 Mathematical models Landau-Brazovski energy functional f[ϕ] = 1 V dr ξ 2 2 [( 2 + 1)ϕ(r)] 2 + τ 2 ϕ2 (r) γ 3! ϕ3 (r)+ 1 4! ϕ4 (r) Self-Consistent Field Theory H[w,w + ]= where dr 1 χn w2 w + V ln Q[w,w + ] Q = 1 drq(r, 1) V q(r, s) = 2 s rq(r, s) w(r, s)q(r, s), q(r, 0) = 1 w(r, s) =w + (r) w (r), s [0,f] w(r, s) =w + (r)+w (r), s [f,1]

7 Rare events and nucleation Metastable polymer phases can make transition because of the thermal noise Rare events: Wigner, Eyring, Kramers, Chandler, Jonsson, Elber, E-Ren-Vanden-Eijnden et al....

8 Some theory and methods Large deviation theory, potential theory, etc. Minimum action method, GMAM, string method, finite temperature string method, GAD method, TPT, NEB, dimer method, Max-flux, etc. Wentzell-Freidlin, Bovier, E-Ren-Vanden-Eijnden, Jonsson, Elber, Schutte,...

9 Key issues Numerical method to identify the transition path Locate the transition state Compute the transition rate

10 Nucleation study for diblock copolymer Landau-Brazovski model Lamella to cylinder Lin-Cheng-E-Shi-Zhang, JCP 2010 Self Consistent Field Theory Gyroid to cylinder Cheng-Lin-E-Zhang-Shi, PRL 2011

11 Large domain dynamics Multiple droplets: Nucleation and growth in large domain Slow nucleation and fast growth Heo-Zhang-Du-Cheng, Scipt. Mater. 2010

12 Problem: 1. What will happen if different dynamics are considered? 2. How to couple the slow and fast dynamics on the large domain?

13 Problem Set-up

14 Dynamics Allen-Cahn dynamics (E-Ren-Vanden-Eijnden, CPAM,2004) u t = δf (u) δu Cahn-Hilliard dynamics u t = δf (u) δu First consider the simplest case: 1D, double well potential, Cahn-Hilliard

15 Stochastic Cahn- Hilliard model Mathematical equations u t = 2 δf (u) x 2 δu Energy functional + 2ξ x [0, 1] F (u) = Noise 1 0 κ 2 2 u 2 + f(u) dx, x ξ = x η(x, t) f(u) = (u2 1) 2 4 η(x, t) Space-time Gaussian white noise.

16 Boundary conditions Neumann BC x u = xu 3 = 0 at x =0, 1, Periodic BC u, x u, xu 3 are periodic in R with period 1, η(x, t) =η(x +1,t). Both BCs can preserve the mass conservation 1 0 u(x, t)dx = 1 0 u(x, 0)dx = m

17 Analytical studies Stochastic PDE: well-posedness of the mild solution Da Prato-Debussche, Nonlinear Anal Debussche-Zamboti, Ann. Prob Large deviations and dynamical analysis Feng, Meth. Funct. Anal. Topol Blomker-Gawron-Wanner, DCDS-A, 2010

18 Discretize to finite dimensions Define the grids x =1/n, x i =(i 1/2) x, i =1, 2,...,n and approximating function X i t u(x i,t) with centered difference to derivatives, we have dx t = A V (X t )dt + 2 x σdw t, where A 2 x 2, σ x

19 Neumann BC A = 1 x 2 σ = 1 x n (n 1). We have A = σσ T

20 Periodic BC A = 1 x 2 σ = 1 x n n. We have A = σσ T

21 Potential function The potential function with the form V (w) =F n (w)/ x F n (w) = n κ 2 i=2 2 wi w i 1 x 2 + f(wi ) + κ2 2 wn w 1 x 2 + f(w1 ) x for Periodic BC F n (w) = n κ 2 i=2 2 wi w i 1 x 2 + f(wi ) + f(w 1 ) x for Neumann BC

22 Meta-stable states Metastable states (homogeneous state, global minimum) and saddles Neumann BC Periodic BC Red: Homogeneous state. Black: Global minimum. Blue: Saddle points Bates-Fife, SIAM Appl Math 1993, Blomker-Gawron-Wanner, DCDS-A 2010

23 To be solved Numerical method to identify the transition path Locate the transition state Compute the transition rate

24 Algorithms and Results

25 Large deviation theory for Cahn-Hilliard dynamics Consider the transition between two metastable states a and b Define the considered path space B T = {u u(0) = a, u(t )=b, u P} we have from large deviation theory lim lnp T =limlnp (u B T )= min I(u) 0 0 u B T where the action functional I(u) = 1 2 I 0(u(0)) + and the negative norm T u t δf δu 2 1dt, ρ 2 1 = ( ) 1 ρ, ρ

26 Minimal energy path The object is to minimize the action functional inf T inf I(u) u B T We have the relation u t δf δu 2 1dt = +4 T T u t + δf δu 2 1dt + df dt dt F (c) F (a) T u t δf δu 2 1dt If we take the MEP The minimum will be achieved. u ( ) =a, u (T )=c, u ( ) =b, u δf δu, <t<t t = δf δu, T <t<,

27 Minimal energy path We have the string equation for stochastic Cahn-Hilliard dynamics ϕ (s) δf δϕ (ϕ )

28 String method for Cahn-Hilliard dynamics Algorithm: Set up the initial string: ϕ 0 i,k =0 Update according to MEP equation with stepsize ϕ i = τ δf δu + ϕk i, i =0, 1, 2,,n, Reparameterize to get with equal arclength. τ ϕ k+1 i = L j+1 L i L j+1 L j ϕ j + L i L j L j+1 L j Iterate until the string converges. ϕ j+1

29 Transition path for the Neumann BC

30 Transition path for the periodic BC

31 Nucleation rates Focusing on the nucleation rates in the zero temperature limit, the finite temperature case is much more difficult The nucleation rates will involve the energy barrier, local geometry of the metastable state and the saddle point

32 Degeneracy of the saddle in periodic BC For periodic BC, if φ c (θ) S = is a saddle, then c := u c (x) φ c (θ, ) φ c (θ, ) =u c ( θ), θ [0, 1] are all saddles for any θ. We can obtain the degeneracy direction as v d = u c(x) u c(x) L 2.

33 Nucleation rate formula By asymptotic analysis of the mean first exit time in the zero temperature limit Neumann BC Periodic BC where k n = µ π k n = µ 2π (2π) 1 2 H means the Hessian confined in the space of mass conservation, nonzero eigenvalues. deth (a) Fn deth (c) e. deth (a) deth (c) u c L2 (R n ) e Fn. det means the product of

34 Computation of determinant ratio To compute the determinant ratio, we should modify the Hessian to SPD case. For Neumann BC, we take H 1 = H (c) 2λ 1 v 1 v T 1 For periodic BC, we take H 1 = H (c)+v d v T d 2λ 1 v 1 v T 1 We have deth 1 = deth (c)

35 Computation of determinant ratio Define U α (q) = 1 2 qt [αh 1 +(1 α)h (a)]q and then Z(α) = E 0 n dq exp =(2πβ 1 ) n 1 2 d dα lnz(α) = 1 Z(α) E 0 n βu α (q) det[αh 1 +(1 α)h (a)] 1/2. β dq 2 qt (H (a) H 1 )q exp β = 2 qt (H (a) H 1 )q α Q(α), βu α (q)

36 Computation of determinant ratio where α is the expectation w.r.t. π α (q) = 1 Z(α) exp βu α (q) We have the relation deth (a) deth 1 = Z(1) 2 =exp 2 Z(0) 1 0 Q(α)dα. Q(α) can be computed with infinite dimensional sampling algorithm.

37 Infinite dimensional sampling MCMC with Metropolis acceptancerejection strategy Random walk proposal MALA proposal q N(q k, σ 2 ni n ) q N(q k + σ2 n 2 logπ α(q k ), σ 2 ni n )

38 Nucleation rates: Neumann case MALA can significantly improve the RW proposal. When rate decreases. κ increases, the nucleation Beskos-Roberts-Stuart, Ann. Appl. Prob Beskos-Pinski-Sanz Serna-Stuart, Stoch. Proc. Appl. 2011

39 Nucleation rates: Periodic case MALA can significantly improve the RW proposal. When rate decreases. κ increases, the nucleation

40 Nucleation rates Direct is the result by eigenvalues computation

41 Nucleation in the large domain Investigating the nucleation in the large domain corresponds to the multiple droplets formation With the rescaling x = x/l, t = t/l 2, κ = κ/l, = /L, m = m/l The equation reduces to with energy functional This corresponds to the small case in the zero temperature limit ũ t = 2 δ F (ũ) x 2 δũ + 2 ξ 1 κ 2 F (ũ) = 2 0 κ ũ 2 + f(ũ) d x x

42 Multiple droplets The saddle tends to have higher Morse index.

43 Compared with projection methods Previous projection method for computing the string actually corresponds to the SPDE u t = P δf δu + 2εη where P is the orthogonal projection to the space of mass conservation Cahn-Hilliard dynamics corresponds to some type of oblique projection

44 Summary

45 Summary String method for the stochastic Cahn-Hilliard dynamics is proposed and successfully applied to the 1D problem Infinite dimensional sampling methods are supposed to be useful for the high dimensional computations Further issues: higher dimensions, more complex models, algorithms on very large domain, finite temperature case... Thank you for your attention!

Metastability for interacting particles in double-well potentials and Allen Cahn SPDEs

Metastability for interacting particles in double-well potentials and Allen Cahn SPDEs Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ SPA 2017 Contributed Session: Interacting particle systems Metastability for interacting particles in double-well

More information

Droplet Formation in Binary and Ternary Stochastic Systems

Droplet Formation in Binary and Ternary Stochastic Systems Droplet Formation in Binary and Ternary Stochastic Systems Thomas Wanner Department of Mathematical Sciences George Mason University Fairfax, Virginia 22030, USA Work supported by DOE and NSF. IMA Workshop

More information

Dynamics and stochastic limit for phase transition problems. problems with noise. Dimitra Antonopoulou IACM-FORTH

Dynamics and stochastic limit for phase transition problems. problems with noise. Dimitra Antonopoulou IACM-FORTH Dynamics and stochastic limit for phase transition problems with noise IACM-FORTH International Conference on Applied Mathematics, September 16-20, 2013, ACMAC, Heraklion, Greece Table of contents 1 1.1

More information

Metastability for the Ginzburg Landau equation with space time white noise

Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz University of Bielefeld, Germany

More information

SPDEs, criticality, and renormalisation

SPDEs, criticality, and renormalisation SPDEs, criticality, and renormalisation Hendrik Weber Mathematics Institute University of Warwick Potsdam, 06.11.2013 An interesting model from Physics I Ising model Spin configurations: Energy: Inverse

More information

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations Weak Convergence of Numerical Methods for Dynamical Systems and, and a relation with Large Deviations for Stochastic Equations Mattias Sandberg KTH CSC 2010-10-21 Outline The error representation for weak

More information

Metastability in a class of parabolic SPDEs

Metastability in a class of parabolic SPDEs Metastability in a class of parabolic SPDEs Nils Berglund MAPMO, Université d Orléans CNRS, UMR 6628 et Fédération Denis Poisson www.univ-orleans.fr/mapmo/membres/berglund Collaborators: Florent Barret,

More information

Adaptive algorithm for saddle point problem for Phase Field model

Adaptive algorithm for saddle point problem for Phase Field model Adaptive algorithm for saddle point problem for Phase Field model Jian Zhang Supercomputing Center, CNIC,CAS Collaborators: Qiang Du(PSU), Jingyan Zhang(PSU), Xiaoqiang Wang(FSU), Jiangwei Zhao(SCCAS),

More information

with deterministic and noise terms for a general non-homogeneous Cahn-Hilliard equation Modeling and Asymptotics

with deterministic and noise terms for a general non-homogeneous Cahn-Hilliard equation Modeling and Asymptotics 12-3-2009 Modeling and Asymptotics for a general non-homogeneous Cahn-Hilliard equation with deterministic and noise terms D.C. Antonopoulou (Joint with G. Karali and G. Kossioris) Department of Applied

More information

Stability Analysis of Stationary Solutions for the Cahn Hilliard Equation

Stability Analysis of Stationary Solutions for the Cahn Hilliard Equation Stability Analysis of Stationary Solutions for the Cahn Hilliard Equation Peter Howard, Texas A&M University University of Louisville, Oct. 19, 2007 References d = 1: Commun. Math. Phys. 269 (2007) 765

More information

Uncertainty quantification and systemic risk

Uncertainty quantification and systemic risk Uncertainty quantification and systemic risk Josselin Garnier (Université Paris Diderot) with George Papanicolaou and Tzu-Wei Yang (Stanford University) February 3, 2016 Modeling systemic risk We consider

More information

Step Bunching in Epitaxial Growth with Elasticity Effects

Step Bunching in Epitaxial Growth with Elasticity Effects Step Bunching in Epitaxial Growth with Elasticity Effects Tao Luo Department of Mathematics The Hong Kong University of Science and Technology joint work with Yang Xiang, Aaron Yip 05 Jan 2017 Tao Luo

More information

Splitting methods with boundary corrections

Splitting methods with boundary corrections Splitting methods with boundary corrections Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Strang s paper, SIAM J. Numer. Anal., 1968 S (5)

More information

Project Mentor(s): Dr. Evelyn Sander and Dr. Thomas Wanner

Project Mentor(s): Dr. Evelyn Sander and Dr. Thomas Wanner STABILITY OF EQUILIBRIA IN ONE DIMENSION FOR DIBLOCK COPOLYMER EQUATION Olga Stulov Department of Mathematics, Department of Electrical and Computer Engineering State University of New York at New Paltz

More information

The Dynamics of Nucleation in Stochastic Cahn Morral Systems

The Dynamics of Nucleation in Stochastic Cahn Morral Systems SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 10, No. 2, pp. 707 743 c 2011 Society for Industrial and Applied Mathematics The Dynamics of Nucleation in Stochastic Cahn Morral Systems Jonathan P. Desi, Hanein

More information

Metastability for interacting particle systems

Metastability for interacting particle systems Metastability for interacting particle systems Frank den Hollander Leiden University, The Netherlands Minerva Lectures, Columbia University, New York, 28 September - 2 October 2015 Lecture 1 Introduction:

More information

Monte Carlo methods for sampling-based Stochastic Optimization

Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Lelièvre, G. Stoltz from ENPC and E. Kuhn from

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Sharp estimates on metastable lifetimes for one- and two-dimensional Allen Cahn SPDEs

Sharp estimates on metastable lifetimes for one- and two-dimensional Allen Cahn SPDEs Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ COSMOS Workshop, École des Ponts ParisTech Sharp estimates on metastable lifetimes for one- and two-dimensional

More information

Allen Cahn Equation in Two Spatial Dimension

Allen Cahn Equation in Two Spatial Dimension Allen Cahn Equation in Two Spatial Dimension Yoichiro Mori April 25, 216 Consider the Allen Cahn equation in two spatial dimension: ɛ u = ɛ2 u + fu) 1) where ɛ > is a small parameter and fu) is of cubic

More information

Dimension-Independent likelihood-informed (DILI) MCMC

Dimension-Independent likelihood-informed (DILI) MCMC Dimension-Independent likelihood-informed (DILI) MCMC Tiangang Cui, Kody Law 2, Youssef Marzouk Massachusetts Institute of Technology 2 Oak Ridge National Laboratory 2 August 25 TC, KL, YM DILI MCMC USC

More information

2012 NCTS Workshop on Dynamical Systems

2012 NCTS Workshop on Dynamical Systems Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz 2012 NCTS Workshop on Dynamical Systems National Center for Theoretical Sciences, National Tsing-Hua University Hsinchu,

More information

A simple model for block-copolymer layer morphology formation

A simple model for block-copolymer layer morphology formation A simple model for block-copolymer layer morphology formation A. J. Wagner and A. Croll, Department of Physics, North Dakota State University, Fargo, ND 58102 Prato Workshop, February 12, 2016 A big thanks

More information

Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems

Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems Reimer Kühn Disordered Systems Group Department of Mathematics, King s College London Random Graphs and Random Processes, KCL

More information

THE SHARP INTERFACE LIMIT FOR THE STOCHASTIC CAHN-HILLIARD EQUATION

THE SHARP INTERFACE LIMIT FOR THE STOCHASTIC CAHN-HILLIARD EQUATION THE SHARP INTERFACE LIMIT FOR THE STOCHASTIC CAHN-HILLIARD EQUATION D.C. ANTONOPOULOU $, D. BLÖMKER, AND G.D. KARALI Abstract. We study the -dependent two and three dimensional stochastic Cahn-Hilliard

More information

Stochastic differential equations in neuroscience

Stochastic differential equations in neuroscience Stochastic differential equations in neuroscience Nils Berglund MAPMO, Orléans (CNRS, UMR 6628) http://www.univ-orleans.fr/mapmo/membres/berglund/ Barbara Gentz, Universität Bielefeld Damien Landon, MAPMO-Orléans

More information

Numerical methods in molecular dynamics and multiscale problems

Numerical methods in molecular dynamics and multiscale problems Numerical methods in molecular dynamics and multiscale problems Two examples T. Lelièvre CERMICS - Ecole des Ponts ParisTech & MicMac project-team - INRIA Horizon Maths December 2012 Introduction The aim

More information

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0 Introduction to multiscale modeling and simulation Lecture 5 Numerical methods for ODEs, SDEs and PDEs The need for multiscale methods Two generic frameworks for multiscale computation Explicit methods

More information

The dynamical Sine-Gordon equation

The dynamical Sine-Gordon equation The dynamical Sine-Gordon equation Hao Shen (University of Warwick) Joint work with Martin Hairer October 9, 2014 Dynamical Sine-Gordon Equation Space dimension d = 2. Equation depends on parameter >0.

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Residence-time distributions as a measure for stochastic resonance

Residence-time distributions as a measure for stochastic resonance W e ie rstra ß -In stitu t fü r A n g e w a n d te A n a ly sis u n d S to ch a stik Period of Concentration: Stochastic Climate Models MPI Mathematics in the Sciences, Leipzig, 23 May 1 June 2005 Barbara

More information

THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS

THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS Alain Miranville Université de Poitiers, France Collaborators : L. Cherfils, G. Gilardi, G.R. Goldstein, G. Schimperna,

More information

Degenerate Nucleation in the Cahn Hilliard Cook Model

Degenerate Nucleation in the Cahn Hilliard Cook Model SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 15, No. 1, pp. 459 494 216 Society for Industrial and Applied Mathematics Degenerate Nucleation in the Cahn Hilliard Cook Model Dirk Blömker, Evelyn Sander, and Thomas

More information

Numerical Approximation of Phase Field Models

Numerical Approximation of Phase Field Models Numerical Approximation of Phase Field Models Lecture 2: Allen Cahn and Cahn Hilliard Equations with Smooth Potentials Robert Nürnberg Department of Mathematics Imperial College London TUM Summer School

More information

Mean Field Games on networks

Mean Field Games on networks Mean Field Games on networks Claudio Marchi Università di Padova joint works with: S. Cacace (Rome) and F. Camilli (Rome) C. Marchi (Univ. of Padova) Mean Field Games on networks Roma, June 14 th, 2017

More information

Finite element approximation of the stochastic heat equation with additive noise

Finite element approximation of the stochastic heat equation with additive noise p. 1/32 Finite element approximation of the stochastic heat equation with additive noise Stig Larsson p. 2/32 Outline Stochastic heat equation with additive noise du u dt = dw, x D, t > u =, x D, t > u()

More information

arxiv: v2 [physics.flu-dyn] 5 Nov 2015

arxiv: v2 [physics.flu-dyn] 5 Nov 2015 arxiv:157.5577v [physics.flu-dyn] 5 Nov 5 Computing transition rates for the 1-D stochastic Ginzburg Landau Allen Cahn equation for finite-amplitude noise with a rare event algorithm Joran Rolland, Freddy

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

Modeling using conservation laws. Let u(x, t) = density (heat, momentum, probability,...) so that. u dx = amount in region R Ω. R

Modeling using conservation laws. Let u(x, t) = density (heat, momentum, probability,...) so that. u dx = amount in region R Ω. R Modeling using conservation laws Let u(x, t) = density (heat, momentum, probability,...) so that u dx = amount in region R Ω. R Modeling using conservation laws Let u(x, t) = density (heat, momentum, probability,...)

More information

Importance splitting for rare event simulation

Importance splitting for rare event simulation Importance splitting for rare event simulation F. Cerou Frederic.Cerou@inria.fr Inria Rennes Bretagne Atlantique Simulation of hybrid dynamical systems and applications to molecular dynamics September

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Computations of Critical Groups at a Degenerate Critical Point for Strongly Indefinite Functionals

Computations of Critical Groups at a Degenerate Critical Point for Strongly Indefinite Functionals Journal of Mathematical Analysis and Applications 256, 462 477 (2001) doi:10.1006/jmaa.2000.7292, available online at http://www.idealibrary.com on Computations of Critical Groups at a Degenerate Critical

More information

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations.

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint works with Michael Salins 2 and Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

Weak solutions for the Cahn-Hilliard equation with degenerate mobility

Weak solutions for the Cahn-Hilliard equation with degenerate mobility Archive for Rational Mechanics and Analysis manuscript No. (will be inserted by the editor) Shibin Dai Qiang Du Weak solutions for the Cahn-Hilliard equation with degenerate mobility Abstract In this paper,

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

On different notions of timescales in molecular dynamics

On different notions of timescales in molecular dynamics On different notions of timescales in molecular dynamics Origin of Scaling Cascades in Protein Dynamics June 8, 217 IHP Trimester Stochastic Dynamics out of Equilibrium Overview 1. Motivation 2. Definition

More information

Theory and applications of random Poincaré maps

Theory and applications of random Poincaré maps Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ Random Dynamical Systems Theory and applications of random Poincaré maps Nils Berglund MAPMO, Université d'orléans,

More information

Research Article Soliton Solutions for the Wick-Type Stochastic KP Equation

Research Article Soliton Solutions for the Wick-Type Stochastic KP Equation Abstract and Applied Analysis Volume 212, Article ID 327682, 9 pages doi:1.1155/212/327682 Research Article Soliton Solutions for the Wick-Type Stochastic KP Equation Y. F. Guo, 1, 2 L. M. Ling, 2 and

More information

Regularity of the density for the stochastic heat equation

Regularity of the density for the stochastic heat equation Regularity of the density for the stochastic heat equation Carl Mueller 1 Department of Mathematics University of Rochester Rochester, NY 15627 USA email: cmlr@math.rochester.edu David Nualart 2 Department

More information

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou 1 / 41 Journal Club Presentation Xiaowei Zhou Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology 2009-12-11 2 / 41 Outline 1 Motivation Diffusion process

More information

Minimum Action Method for the Study of Rare Events

Minimum Action Method for the Study of Rare Events Minimum Action Method for the Study of Rare Events WEINAN E Princeton University and Institute for Advanced Study WEIQING REN Institute for Advanced Study AND ERIC VANDEN-EIJNDEN Courant Institute and

More information

Uncertainty quantification and systemic risk

Uncertainty quantification and systemic risk Uncertainty quantification and systemic risk Josselin Garnier (Université Paris 7) with George Papanicolaou and Tzu-Wei Yang (Stanford University) April 9, 2013 Modeling Systemic Risk We consider evolving

More information

NONLOCAL DIFFUSION EQUATIONS

NONLOCAL DIFFUSION EQUATIONS NONLOCAL DIFFUSION EQUATIONS JULIO D. ROSSI (ALICANTE, SPAIN AND BUENOS AIRES, ARGENTINA) jrossi@dm.uba.ar http://mate.dm.uba.ar/ jrossi 2011 Non-local diffusion. The function J. Let J : R N R, nonnegative,

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

Part IV: Numerical schemes for the phase-filed model

Part IV: Numerical schemes for the phase-filed model Part IV: Numerical schemes for the phase-filed model Jie Shen Department of Mathematics Purdue University IMS, Singapore July 29-3, 29 The complete set of governing equations Find u, p, (φ, ξ) such that

More information

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2 Surface x(u, v)

More information

On Multigrid for Phase Field

On Multigrid for Phase Field On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004 Synopsis

More information

Finite temperature analysis of stochastic networks

Finite temperature analysis of stochastic networks Finite temperature analysis of stochastic networks Maria Cameron University of Maryland USA Stochastic networks with detailed balance * The generator matrix L = ( L ij ), i, j S L ij 0, i, j S, i j j S

More information

Numerical analysis for the BCF method in complex fluids simulations

Numerical analysis for the BCF method in complex fluids simulations for the BCF method in complex fluids simulations Tiejun Li School of Mathematical Sciences, Peking University, Beijing 100871 tieli@pku.edu.cn Joint work with Weinan E and Pingwen Zhang CSCAMM conference,

More information

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term 1 Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term Enrico Priola Torino (Italy) Joint work with G. Da Prato, F. Flandoli and M. Röckner Stochastic Processes

More information

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx.

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx. Problem set 3: Solutions Math 27B, Winter 216 1. Suppose that u(x) is a non-zero solution of the eigenvalue problem u = λu < x < 1, u() =, u(1) =. Show that λ = (u ) 2 dx u2 dx. Deduce that every eigenvalue

More information

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd College of William and Mary Williamsburg, Virginia 23187 Mathematical Applications in Ecology and Evolution Workshop

More information

Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions

Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ EPFL, Seminar of Probability and Stochastic Processes Regularity structures and renormalisation of FitzHugh-Nagumo

More information

Structures de regularité. de FitzHugh Nagumo

Structures de regularité. de FitzHugh Nagumo Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ Strasbourg, Séminaire Calcul Stochastique Structures de regularité et renormalisation d EDPS de FitzHugh Nagumo

More information

Regularization by noise in infinite dimensions

Regularization by noise in infinite dimensions Regularization by noise in infinite dimensions Franco Flandoli, University of Pisa King s College 2017 Franco Flandoli, University of Pisa () Regularization by noise King s College 2017 1 / 33 Plan of

More information

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Ecole Polytechnique, France April 4, 218 Outline The Principal-Agent problem Formulation 1 The Principal-Agent problem

More information

NONLINEAR DIFFUSION PDES

NONLINEAR DIFFUSION PDES NONLINEAR DIFFUSION PDES Erkut Erdem Hacettepe University March 5 th, 0 CONTENTS Perona-Malik Type Nonlinear Diffusion Edge Enhancing Diffusion 5 References 7 PERONA-MALIK TYPE NONLINEAR DIFFUSION The

More information

Systemic risk and uncertainty quantification

Systemic risk and uncertainty quantification Systemic risk and uncertainty quantification Josselin Garnier (Université Paris 7) with George Papanicolaou and Tzu-Wei Yang (Stanford University) October 6, 22 Modeling Systemic Risk We consider evolving

More information

EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY

EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY Electronic Journal of Differential Equations, Vol. 216 216), No. 329, pp. 1 22. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN

More information

Computational Complexity of Metropolis-Hastings Methods in High Dimensions

Computational Complexity of Metropolis-Hastings Methods in High Dimensions Computational Complexity of Metropolis-Hastings Methods in High Dimensions Alexandros Beskos and Andrew Stuart Abstract This article contains an overview of the literature concerning the computational

More information

On the fast convergence of random perturbations of the gradient flow.

On the fast convergence of random perturbations of the gradient flow. On the fast convergence of random perturbations of the gradient flow. Wenqing Hu. 1 (Joint work with Chris Junchi Li 2.) 1. Department of Mathematics and Statistics, Missouri S&T. 2. Department of Operations

More information

Sequential Monte Carlo Methods in High Dimensions

Sequential Monte Carlo Methods in High Dimensions Sequential Monte Carlo Methods in High Dimensions Alexandros Beskos Statistical Science, UCL Oxford, 24th September 2012 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Andrew Stuart Imperial College,

More information

Random and Deterministic perturbations of dynamical systems. Leonid Koralov

Random and Deterministic perturbations of dynamical systems. Leonid Koralov Random and Deterministic perturbations of dynamical systems Leonid Koralov - M. Freidlin, L. Koralov Metastability for Nonlinear Random Perturbations of Dynamical Systems, Stochastic Processes and Applications

More information

Hypothesis testing for Stochastic PDEs. Igor Cialenco

Hypothesis testing for Stochastic PDEs. Igor Cialenco Hypothesis testing for Stochastic PDEs Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology igor@math.iit.edu Joint work with Liaosha Xu Research partially funded by NSF grants

More information

Igor Cialenco. Department of Applied Mathematics Illinois Institute of Technology, USA joint with N.

Igor Cialenco. Department of Applied Mathematics Illinois Institute of Technology, USA joint with N. Parameter Estimation for Stochastic Navier-Stokes Equations Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology, USA igor@math.iit.edu joint with N. Glatt-Holtz (IU) Asymptotical

More information

Asymptotic Analysis 88 (2014) DOI /ASY IOS Press

Asymptotic Analysis 88 (2014) DOI /ASY IOS Press Asymptotic Analysis 88 4) 5 DOI.333/ASY-4 IOS Press Smoluchowski Kramers approximation and large deviations for infinite dimensional gradient systems Sandra Cerrai and Michael Salins Department of Mathematics,

More information

Yin Huang. Education. Research Interests. Rice University, Houston, TX, USA. Shanghai Jiao Tong University, Shanghai, China

Yin Huang. Education. Research Interests. Rice University, Houston, TX, USA. Shanghai Jiao Tong University, Shanghai, China Yin Huang Education Rice University, Houston, TX, USA Ph.D. Candidate, Computational and Applied Mathematics 08/2010 - Present Expected Dissertation Topic: Inverse problems for wave propagation for nonsmooth

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

Reaction Pathways of Metastable Markov Chains - LJ clusters Reorganization

Reaction Pathways of Metastable Markov Chains - LJ clusters Reorganization Reaction Pathways of Metastable Markov Chains - LJ clusters Reorganization Eric Vanden-Eijnden Courant Institute Spectral approach to metastability - sets, currents, pathways; Transition path theory or

More information

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

High Order Semi-Lagrangian WENO scheme for Vlasov Equations High Order WENO scheme for Equations Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Andrew Christlieb Supported by AFOSR. Computational Mathematics Seminar, UC Boulder

More information

arxiv: v1 [math.ap] 24 Oct 2014

arxiv: v1 [math.ap] 24 Oct 2014 Multiple solutions for Kirchhoff equations under the partially sublinear case Xiaojing Feng School of Mathematical Sciences, Shanxi University, Taiyuan 030006, People s Republic of China arxiv:1410.7335v1

More information

Scaling limit of the two-dimensional dynamic Ising-Kac model

Scaling limit of the two-dimensional dynamic Ising-Kac model Scaling limit of the two-dimensional dynamic Ising-Kac model Jean-Christophe Mourrat Hendrik Weber Mathematics Institute University of Warwick Statistical Mechanics Seminar, Warwick A famous result Theorem

More information

Estimating transition times for a model of language change in an age-structured population

Estimating transition times for a model of language change in an age-structured population Estimating transition times for a model of language change in an age-structured population W. Garrett Mitchener MitchenerG@cofc.edu http://mitchenerg.people.cofc.edu Abstract: Human languages are stable

More information

SPECTRWM: Spectral Random Walk Method for the Numerical Solution of Stochastic Partial Differential Equations. Abstract

SPECTRWM: Spectral Random Walk Method for the Numerical Solution of Stochastic Partial Differential Equations. Abstract SPECTRWM: Spectral Random Walk Method for the Numerical Solution of Stochastic Partial Differential Equations Nawaf Bou-Rabee Department of Mathematical Sciences Rutgers University 311 N 5th Street Camden,

More information

A random perturbation approach to some stochastic approximation algorithms in optimization.

A random perturbation approach to some stochastic approximation algorithms in optimization. A random perturbation approach to some stochastic approximation algorithms in optimization. Wenqing Hu. 1 (Presentation based on joint works with Chris Junchi Li 2, Weijie Su 3, Haoyi Xiong 4.) 1. Department

More information

Non-radial solutions to a bi-harmonic equation with negative exponent

Non-radial solutions to a bi-harmonic equation with negative exponent Non-radial solutions to a bi-harmonic equation with negative exponent Ali Hyder Department of Mathematics, University of British Columbia, Vancouver BC V6TZ2, Canada ali.hyder@math.ubc.ca Juncheng Wei

More information

Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors

Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors Division of Engineering & Applied Science Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors IPAM, UCLA, November 14, 2017 Matt Dunlop Victor Chen (Caltech) Omiros Papaspiliopoulos (ICREA,

More information

Bayesian inverse problems with Laplacian noise

Bayesian inverse problems with Laplacian noise Bayesian inverse problems with Laplacian noise Remo Kretschmann Faculty of Mathematics, University of Duisburg-Essen Applied Inverse Problems 2017, M27 Hangzhou, 1 June 2017 1 / 33 Outline 1 Inverse heat

More information

Some Topics in Stochastic Partial Differential Equations

Some Topics in Stochastic Partial Differential Equations Some Topics in Stochastic Partial Differential Equations November 26, 2015 L Héritage de Kiyosi Itô en perspective Franco-Japonaise, Ambassade de France au Japon Plan of talk 1 Itô s SPDE 2 TDGL equation

More information

DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS. Wei Feng

DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS. Wei Feng DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 7 pp. 36 37 DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS Wei Feng Mathematics and Statistics Department

More information

Vibrating-string problem

Vibrating-string problem EE-2020, Spring 2009 p. 1/30 Vibrating-string problem Newton s equation of motion, m u tt = applied forces to the segment (x, x, + x), Net force due to the tension of the string, T Sinθ 2 T Sinθ 1 T[u

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Lower Tail Probabilities and Related Problems

Lower Tail Probabilities and Related Problems Lower Tail Probabilities and Related Problems Qi-Man Shao National University of Singapore and University of Oregon qmshao@darkwing.uoregon.edu . Lower Tail Probabilities Let {X t, t T } be a real valued

More information

Rare Event Simulations

Rare Event Simulations Rare Event Simulations Homogeneous nucleation is a rare event (e.g. Liquid Solid) Crystallization requires supercooling (µ solid < µ liquid ) Crystal nucleus 2r Free - energy gain r 3 4! 3! GBulk = ñr!

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 139, pp. 1 9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SEMILINEAR ELLIPTIC

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Implicit Schemes for the Model Problem The Crank-Nicolson scheme and θ-scheme

More information