Uncertainty quantification and systemic risk

Size: px
Start display at page:

Download "Uncertainty quantification and systemic risk"

Transcription

1 Uncertainty quantification and systemic risk Josselin Garnier (Université Paris Diderot) with George Papanicolaou and Tzu-Wei Yang (Stanford University) February 3, 2016

2 Modeling systemic risk We consider a system with many inter-connected components, each of which can be in a normal state or in a failed state. We want to study the probability of overall failure of the system, that is, its systemic risk. Three effects can contribute to the behavior of systemic risk: The intrinsic stability of each component The external random perturbations to the system The inter-connectedness or cooperation between components

3 Possible applications Engineering systems with a large number of interacting parts. Components can fail but the system fails only when a large number of components fail simultaneously. Banking systems. Banks cooperate and by spreading the risk of credit shocks between them can operate with less restrictive individual risk policies. However, this increases the risk that they may all fail, that is, the systemic risk. We want to propose a simple model to explain that individual risk does not affect the systemic risk in an obvious way. In fact, it is possible to simultaneously reduce individual risk and increase the systemic risk.

4 A bistable mean-field model The system has N components. The (real-valued) risk variable X j (t), j = 1,..., N, satisfies the SDE dx j (t) = hv (X j (t)) dt θ ( X j (t) X (t) ) dt + σdw j (t). V (x) = 1 4 x x 2 is a potential with two stable states ±1. With θ = σ = 0, h > 0, X j (t) converges to one of the states. We define 1 the normal state and +1 the failed state. h 0 is the intrinsic stability parameter. X (t) := 1 N N i=1 X i(t) is the risk variable of the system. θ 0 is the attractive interaction parameter. {W j (t), j = 1,..., N} are independent Brownian motions. σ 0 is the noise strength.

5 Why this model? h, σ and θ control the three effects we want to study: intrinsic stability, random perturbations, and degree of cooperation. Why mean field interaction? Because it is the simplest interaction that models cooperative behavior. It can be generalized to include diversity as well as other more complex interactions such as hierarchical ones. Connection with UQ (Uncertainty Quantification): UQ quantifies the variance of the quantity of interest. The variance quantifies the normal fluctuations. It may not characterize a rare event.

6 Schematic for the model Status

7 The probability-measure-valued process µ N (t) First idea: to analyze X (t) = 1 N N i=1 X i(t). Unfortunately, no closed equation for X (t), so we need to generalize this problem into a larger space. Second idea: to analyze the empirical measure µ N (t, dx) := 1 N N j=1 δ X j (t)(dx). Then X (t) = xµ N (t, dx). (Dawson, 1983) µ N (t) converges weakly in probability as N to a deterministic process u(t). For t > 0, u(t) has a pdf u(t, x) solution of the nonlinear Fokker-Planck equation: t u = h [ V (x)u ] θ {[ ] 12 2 yu(t, y)dy x u }+ σ2 x x x 2 u, recalling that dx j (t) = hv (X j (t))dt + θ( X (t) X j (t))dt + σdw j (t).

8 Existence of two stable equilibria u(t) converges to an equilibrium uξ e with a pdf of the form: { } uξ e (x) = 1 (x ξ)2 exp 2h Z ξ σ 2 V (x), 2 σ2 2θ with the compatibility condition: ξ = m(ξ) := xue ξ (x)dx. Given θ and h, there exists a critical value σ c such that ξ = m(ξ) has two stable solutions ±ξ b if and only if σ < σ c. Simplification: for small h, we have σc 2 = 2θ/3 + O(h) and ξ b = 1 3σ2 2θ + O(h). Let us say that u ξ e b is the normal state of the system, u+ξ e b is the failed state. If µ N (0) N u(0), then µ N (t) N u(t) for all time. If u(0) = u ξ e b, then u(t) = u ξ e b for all time.

9 Simulation of X 1.5 N=120, h=0.1, σ=1, θ=10 dm(0)/dξ=1.0086, 3σ 2 /2θ= Systemic Risk t X n+1 j = X n j ( hv (Xj n ) t + σ W n+1 j θ Xj n 1 N N k=1 X n k ) t.

10 Probability of system failures Assume that σ < σ c so the limit of µ N (t) has two stable equilibria u ξ e b (resp. uξ e b ), the system s normal (resp. failed) state. For large N, let the empirical density µ N (0) u e ξ b. Then we expect that µ N (t) u e ξ b for all t > 0. However, as long as N is finite, the system collapse: µ N (0) u e ξ b, µ N (T ) u e +ξ b happens in the time interval [0, T ] with small but nonzero probability. We use large deviations to compute this small probability.

11 Large deviation principle (Dawson & Gärtner, 1987) Given an event A in the suitable space (smaller than C([0, T ], M 1 (R))) Detail, then µ N (t, dx) = 1 N N i=1 δ X j (t)(dx) satisfies the large deviation principle with the rate function I h : Detail ( ) P (µ N A) N 1 exp N inf I h(φ). φ A The rate function I h has the following variational form: Detail I h (φ) = 1 T 2σ 2 0 L h φ = h [ V (x)φ ] + θ x x φ, f (t) = sup f : φ,f 2 φ t L hφ, f 2 x (t) 0 φ, fx 2 dt, {[ x ] } 12 2 yφ(t, dy) φ + σ2 x 2 φ, φ(t, dx)f (x).

12 Probability of system failures and small h analysis P (µ N A) N 1 exp ( N inf φ A I h (φ)). The rare event A of system failures is the set of all possible paths starting from u ξ e b (the normal state) to u+ξ e b (the failed state): Detail A = { φ : φ(0) = u e ξ b, φ(t ) = u e +ξ b }. The major work is to compute inf φ A I h (φ), which is a nonlinear and infinite-dimensional problem. Here we assume that the intrinsic stability, h, is small so that we can make this problem tractable. Two good reasons to consider a small intrinsic stability h: 1. P(µ N A) is extremely small for large h, which is not the regime we have in mind. 2. The case h = 0 is analytically solvable and the cases h small are perturbations of it.

13 The case h = 0 In this case, inf φ A I 0 (φ) can be solved without approximation. Result: For h = 0, inf φ A I 0 (φ) has the unique minimizer p e (t, x)dx, a path of Gaussian measures: { } p e 1 (t, x) = exp (x ae (t)) 2, 2π σ2 2 σ2 2θ 2θ where a e (t) = 2ξ b t/t ξ b and ξ b = 1 3σ2 2θ. Therefore, inf I 0(φ) = I 0 (p e ) = 2 ) (1 φ A σ 2 3σ2. T 2θ Recall that A = {φ : φ(0) = u e ξb, φ(t ) = u e +ξb }.

14 The case h small When h is small, good candidates for the transition path of empirical densities are Gaussian with small perturbations: { [ 1 (x a (t)) 2 φ = p + hq : p (t, x) = 2πb2 (t) exp 2b 2 (t) ], a (0) = ξ b, a (T ) = ξ b } For h small, the large deviation problem is solvable (the optimal (a(t), b(t)) satisfies an ODE system), and the transition probability is P (µ N A) ( [ exp N ) 2 (1 3σ2 + 6h σ 2 T 2θ σ 2 ( σ 2 θ ) 2 ) ]) (1 σ2 + O(h 2 ). θ Comments: A large system (N large) is more stable than a small system. In the long run (T large), a transition will happen. Increase of the intrinsic stabilization parameter h reduces systemic risk. Mean transition times are simply related to transition probabilities in this approximation (Williams 82)

15 What about the individual risk? The risk variable X j (t) of component j satisfies dx j = h(x 3 j X j )dt + θ( X X j )dt + σdw j. Assume X j (0) = 1 (the normal state) and linearize X j around 1: X j (t) = 1 + δx j (t), X (t) = 1 + δ X (t) and δ X (t) = 1 N N j=1 δx j(t). δx j (t) and δ X (t) satisfy linear SDEs: dδx j = (θ + 2h)δX j dt + θδ X dt + σdw j, dδ X = 2hδ X dt + σ N N dw j. δx j (t) is a Gaussian process with the stationary distribution σ N (0, 2 2(2h+θ) ) as N. Qualitatively speaking, the individual risk is j=1 external risk(σ 2 ) intrinsic stability(h) + risk diversification(θ).

16 Why and when is risk diversification undesirable? For h small: Systemic Risk exp ( 2N σ 2 T )) (1 3σ2, Individual Risk σ2 2θ 2θ. Let us assume that σ 2 increases; one increases θ to compensate and to keep the ratio σ2 2θ at a low level. - The individual risk is kept low. - The systemic risk increases, although this cannot be detected by the observation of the normal fluctuations (until the catastrophic transition happens).

17 Extensions Diversity: the values of the parameters θ, σ, h are component-dependent. Hierarchical model: the system is stabilized by a central component.

18 Modeling of diversity in cooperative behavior The cooperative behavior of components can be different across groups: dx j (t) = hv (X j (t)) dt + σdw j (t) + θ j ( X (t) Xj (t) ) dt. The components are partitioned into K groups. In group k, the components have cooperative parameter Θ k. In the limit N the empirical densities of each group converge to the solution of the joint Fokker-Planck equations: {[ ] } t u1 = h [ V ] 1 2 (x) u 1 + x 2 σ2 x 2 u1 K Θ1 y ρ k u k (t, y)dy x u 1 x. t u K = h [ V ] 1 2 (x) u K + x 2 σ2 x u 2 K Θ K where ρ k N is the size of group k. {[ y x k=1 ] } K ρ k u k (t, y)dy x u K k=1

19 Impact of component diversity on the systemic risk Why is the diversity interesting? The model is more realistic and more widely applicable. Diversity significantly affects the system stability by reducing it. Impact from the diversity: Analytical and numerical studies show that even with the same parameters and with {θ j } whose average equals θ the system still changes significantly.

20 Simulation 2 - Impact of diversity, change of Θ k and ρ k N=100, h=0.1, σ=1, Θ=[10;10;10] ρ=[0.33;0.34;0.33], stdev(θ)/mean(θ)=0 dm(0)/dξ=1.0086, Σ (ρ /Θ )(3σ 2 /2Θ 1)= i i i i N=100, h=0.1, σ=1, Θ=[6;10;14] ρ=[0.33;0.34;0.33], stdev(θ)/mean(θ)= dm(0)/dξ=1.0092, Σ (ρ /Θ )(3σ 2 /2Θ 1)= i i i i N=100, h=0.1, σ=1, Θ=[2;10;18] ρ=[0.33;0.34;0.33], stdev(θ)/mean(θ)= dm(0)/dξ=1.0089, Σ (ρ /Θ )(3σ 2 /2Θ 1)= i i i i Systemic Risk Systemic Risk Systemic Risk t t t N=100, h=0.1, σ=1, Θ=[5;10;15] ρ=[0.1;0.8;0.1], stdev(θ)/mean(θ)= dm(0)/dξ=1.0089, Σ i (ρ i /Θ i )(3σ 2 /2Θ i 1)= N=100, h=0.1, σ=1, Θ=[5;10;15] ρ=[0.3;0.4;0.3], stdev(θ)/mean(θ)= dm(0)/dξ=1.0095, Σ i (ρ i /Θ i )(3σ 2 /2Θ i 1)= N=100, h=0.1, σ=1, Θ=[5;10;15] ρ=[0.45;0.1;0.45], stdev(θ)/mean(θ)= dm(0)/dξ=1.0099, Σ i (ρ i /Θ i )(3σ 2 /2Θ i 1)= Systemic Risk Systemic Risk Systemic Risk t t t

21 Analysis in the diversity case System with diversity have larger transition probabilities: ( P exp When h and σ are constant, and the average of θ j is θ, then the system has a higher transition probability than with (h, σ, θ). For instance, if h = 0, Θ k = θ (1 + δα k ) with δ 1, and K k=1 ρ kα k = 0, then µ div N { ) A N σ 2 T [ 2 ) (1 3σ2 2θ ( K ) ( 2δ 2 ρ k αk 2 3σ 2 2θ + 1 T k=1 T 0 ( 1 e θs) 2 ds ) ]}

22 A hierarchical model of systemic risk Here we consider a hierarchical model with a central component: dx 0 = h 0 V 0(X 0 )dt θ 0 ( X0 1 N N ) X j dt j=1 dx j = hv (X j )dt θ ( X j X 0 ) dt + σdwj, j = 1,..., N X 0 models the central stable component. It is intrinsically stable (h 0 > 0), and not subjected to external fluctuations. It interacts with the other components through a mean field interaction. X j, j = 1,..., N model individual components that are subjected to external fluctuations. They are (h > 0) or are not (h = 0) intrinsically stable. They interact with the central component X 0.

23 A hierarchical model of systemic risk - Analysis Nonlinear Fokker-Planck equations: In the limit N the pair ( X 0 (t), 1 N N j=1 δ X j (t)(dx) ) converges to (x 0 (t), u(t, x)dx) solution of the nonlinear Fokker-Planck equation t u = σ2 [ 2 2 xxu + x hv (x) + θ(x x 0 (t))u ], with dx 0 dt = h 0V 0(x ( 0 ) θ 0 x0 xu(t, x)dx ). Existence of two equilibrium states (x 0 (t), u(t, x)) (x e, u e (x)) when σ is below a critical level: u e (x) = 1 ( exp 2hV (x) + θ(x x e) 2 ) Z e σ 2 with the compatibility equation xu e (x)dx = x e + h 0 θ 0 V 0 (x e). Large deviations principle to compute the probability of transition.

24 A hierarchical model of systemic risk - Results Exact results for h = 0 and expansions for small h (for the optimal paths and for the probability of transition). Resolution of an ODE system for the optimal ( x(t), x 0 (t)) with boundary conditions. For the optimal path the mean of the individual components x(t) is ahead of x 0 (t): the individual components drive the transition. Stability increases with θ and decreases with θ 0.

25 Conclusions and related work It is possible to simultaneously reduce individual risk and increase the systemic risk. J. Garnier, G. Papanicolaou, and T.-W. Yang, SIAM Math. Finance 4, pp (2013). J. Garnier, G. Papanicolaou, and T.-W. Yang, Risk and Decision Analysis, in press. Using the analysis as a guide, it is possible to design importance sampling algorithms for computing efficiently (very) small systemic failure probabilities. Strategy applied to a conservation law with random space-time forcing in order to estimate the probability of anomalous shock profile displacement (scramjet problem). J. Garnier, G. Papanicolaou, and T.-W. Yang, SIAM Multiscale Model. Simul. 11, pp (2013).

26 Topological spaces for the mean field model M 1 (R) is the space of probability measures on R with the Prohorov metric ρ, associated with the weak convergence. C([0, T ], M 1 (R)) is the space of continuous functions from [0, T ] to M 1 (R) with the metric sup 0 t T ρ(µ 1 (t), µ 2 (t)). M (R) = {µ M 1 (R), ϕ(y)µ(dy) < }, where ϕ(y) = y 4 serves as a Lyapunov function. M (R) is endowed with the inductive topology: µ n µ in M (R) if and only if µ n µ in M 1 (R) and sup n ϕ(y)µn (dy) <. C([0, T ], M (R)) is the space of continuous functions from [0, T ] to M (R) endowed with the topology: φ n ( ) φ( ) in C([0, T ], M (R)) if and only if φ n ( ) φ( ) in C([0, T ], M 1 (R)) and sup 0 t T sup n ϕ(y)φn (t, dy) <. Go Back

27 Large Deviations Principle Exact statement: inf I h (φ) lim inf φ A N lim sup N 1 N log P (µ N A) 1 N log P (µ N A) inf I h (φ) φ A Go Back

28 The rare event A = { φ : φ(0) = u e ξ b, φ(t ) = u e +ξ b }. Definition of an enlarged rare event (with non-empty interior): A δ = { φ : φ(0) = u e ξ b, ρ(φ(t ), u e +ξ b ) δ }, where ρ is the Prohorov metric. We have lim inf I h (φ) = inf I h(φ) δ 0 φ A δ φ A Go Back

29 The classical Freidlin-Wentzell formula Let dx N = b(x N )dt + 1 N σdw t (X N (t)) t [0,T ] satisfies a large deviation principle in C([0, T ], R) with the rate function { 1 T ( I ((x(t)) t [0,T ] ) = 2σ 2 0 t x(t) b(x(t)) ) 2 dt, (x(t))t [0,T ] H 1 +, otherwise. Go Back

Uncertainty quantification and systemic risk

Uncertainty quantification and systemic risk Uncertainty quantification and systemic risk Josselin Garnier (Université Paris 7) with George Papanicolaou and Tzu-Wei Yang (Stanford University) April 9, 2013 Modeling Systemic Risk We consider evolving

More information

Systemic risk and uncertainty quantification

Systemic risk and uncertainty quantification Systemic risk and uncertainty quantification Josselin Garnier (Université Paris 7) with George Papanicolaou and Tzu-Wei Yang (Stanford University) October 6, 22 Modeling Systemic Risk We consider evolving

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

Weakly interacting particle systems on graphs: from dense to sparse

Weakly interacting particle systems on graphs: from dense to sparse Weakly interacting particle systems on graphs: from dense to sparse Ruoyu Wu University of Michigan (Based on joint works with Daniel Lacker and Kavita Ramanan) USC Math Finance Colloquium October 29,

More information

Stochastic contraction BACS Workshop Chamonix, January 14, 2008

Stochastic contraction BACS Workshop Chamonix, January 14, 2008 Stochastic contraction BACS Workshop Chamonix, January 14, 2008 Q.-C. Pham N. Tabareau J.-J. Slotine Q.-C. Pham, N. Tabareau, J.-J. Slotine () Stochastic contraction 1 / 19 Why stochastic contraction?

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation

Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation Jingyi Zhu Department of Mathematics University of Utah zhu@math.utah.edu Collaborator: Marco Avellaneda (Courant

More information

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations.

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint work with Michael Salins 2, Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

Stochastic differential equations in neuroscience

Stochastic differential equations in neuroscience Stochastic differential equations in neuroscience Nils Berglund MAPMO, Orléans (CNRS, UMR 6628) http://www.univ-orleans.fr/mapmo/membres/berglund/ Barbara Gentz, Universität Bielefeld Damien Landon, MAPMO-Orléans

More information

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 275 284 UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Iuliana Carmen Bărbăcioru Abstract.

More information

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations.

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint works with Michael Salins 2 and Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

Step Bunching in Epitaxial Growth with Elasticity Effects

Step Bunching in Epitaxial Growth with Elasticity Effects Step Bunching in Epitaxial Growth with Elasticity Effects Tao Luo Department of Mathematics The Hong Kong University of Science and Technology joint work with Yang Xiang, Aaron Yip 05 Jan 2017 Tao Luo

More information

Variational approach to mean field games with density constraints

Variational approach to mean field games with density constraints 1 / 18 Variational approach to mean field games with density constraints Alpár Richárd Mészáros LMO, Université Paris-Sud (based on ongoing joint works with F. Santambrogio, P. Cardaliaguet and F. J. Silva)

More information

Kramers formula for chemical reactions in the context of Wasserstein gradient flows. Michael Herrmann. Mathematical Institute, University of Oxford

Kramers formula for chemical reactions in the context of Wasserstein gradient flows. Michael Herrmann. Mathematical Institute, University of Oxford eport no. OxPDE-/8 Kramers formula for chemical reactions in the context of Wasserstein gradient flows by Michael Herrmann Mathematical Institute, University of Oxford & Barbara Niethammer Mathematical

More information

Mean Field Games on networks

Mean Field Games on networks Mean Field Games on networks Claudio Marchi Università di Padova joint works with: S. Cacace (Rome) and F. Camilli (Rome) C. Marchi (Univ. of Padova) Mean Field Games on networks Roma, June 14 th, 2017

More information

Introduction to asymptotic techniques for stochastic systems with multiple time-scales

Introduction to asymptotic techniques for stochastic systems with multiple time-scales Introduction to asymptotic techniques for stochastic systems with multiple time-scales Eric Vanden-Eijnden Courant Institute Motivating examples Consider the ODE {Ẋ = Y 3 + sin(πt) + cos( 2πt) X() = x

More information

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0 Introduction to multiscale modeling and simulation Lecture 5 Numerical methods for ODEs, SDEs and PDEs The need for multiscale methods Two generic frameworks for multiscale computation Explicit methods

More information

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde Gillespie s Algorithm and its Approximations Des Higham Department of Mathematics and Statistics University of Strathclyde djh@maths.strath.ac.uk The Three Lectures 1 Gillespie s algorithm and its relation

More information

2012 NCTS Workshop on Dynamical Systems

2012 NCTS Workshop on Dynamical Systems Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz 2012 NCTS Workshop on Dynamical Systems National Center for Theoretical Sciences, National Tsing-Hua University Hsinchu,

More information

Implicit sampling for particle filters. Alexandre Chorin, Mathias Morzfeld, Xuemin Tu, Ethan Atkins

Implicit sampling for particle filters. Alexandre Chorin, Mathias Morzfeld, Xuemin Tu, Ethan Atkins 0/20 Implicit sampling for particle filters Alexandre Chorin, Mathias Morzfeld, Xuemin Tu, Ethan Atkins University of California at Berkeley 2/20 Example: Try to find people in a boat in the middle of

More information

Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-F. Formula for Mean-Field SDE s with Irregular Drift

Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-F. Formula for Mean-Field SDE s with Irregular Drift Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-Field SDE s with Irregular Drift Thilo Meyer-Brandis University of Munich joint with M. Bauer, University of Munich Conference for the 1th Anniversary

More information

Asymptotic distribution of the sample average value-at-risk

Asymptotic distribution of the sample average value-at-risk Asymptotic distribution of the sample average value-at-risk Stoyan V. Stoyanov Svetlozar T. Rachev September 3, 7 Abstract In this paper, we prove a result for the asymptotic distribution of the sample

More information

Regularization by noise in infinite dimensions

Regularization by noise in infinite dimensions Regularization by noise in infinite dimensions Franco Flandoli, University of Pisa King s College 2017 Franco Flandoli, University of Pisa () Regularization by noise King s College 2017 1 / 33 Plan of

More information

Ghost Imaging. Josselin Garnier (Université Paris Diderot)

Ghost Imaging. Josselin Garnier (Université Paris Diderot) Grenoble December, 014 Ghost Imaging Josselin Garnier Université Paris Diderot http:/www.josselin-garnier.org General topic: correlation-based imaging with noise sources. Particular application: Ghost

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University Lecture 4: Ito s Stochastic Calculus and SDE Seung Yeal Ha Dept of Mathematical Sciences Seoul National University 1 Preliminaries What is Calculus? Integral, Differentiation. Differentiation 2 Integral

More information

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Gonçalo dos Reis University of Edinburgh (UK) & CMA/FCT/UNL (PT) jointly with: W. Salkeld, U. of

More information

Path integrals for classical Markov processes

Path integrals for classical Markov processes Path integrals for classical Markov processes Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa Chris Engelbrecht Summer School on Non-Linear Phenomena in Field

More information

Chapter 2 Event-Triggered Sampling

Chapter 2 Event-Triggered Sampling Chapter Event-Triggered Sampling In this chapter, some general ideas and basic results on event-triggered sampling are introduced. The process considered is described by a first-order stochastic differential

More information

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA AND ALEKSANDAR MIJATOVIĆ Abstract. We develop a general approach to the Policy Improvement Algorithm (PIA) for stochastic control problems

More information

Numerical Solutions of ODEs by Gaussian (Kalman) Filtering

Numerical Solutions of ODEs by Gaussian (Kalman) Filtering Numerical Solutions of ODEs by Gaussian (Kalman) Filtering Hans Kersting joint work with Michael Schober, Philipp Hennig, Tim Sullivan and Han C. Lie SIAM CSE, Atlanta March 1, 2017 Emmy Noether Group

More information

Densities for the Navier Stokes equations with noise

Densities for the Navier Stokes equations with noise Densities for the Navier Stokes equations with noise Marco Romito Università di Pisa Universitat de Barcelona March 25, 2015 Summary 1 Introduction & motivations 2 Malliavin calculus 3 Besov bounds 4 Other

More information

A Class of Fractional Stochastic Differential Equations

A Class of Fractional Stochastic Differential Equations Vietnam Journal of Mathematics 36:38) 71 79 Vietnam Journal of MATHEMATICS VAST 8 A Class of Fractional Stochastic Differential Equations Nguyen Tien Dung Department of Mathematics, Vietnam National University,

More information

Imaging with Ambient Noise II

Imaging with Ambient Noise II Imaging with Ambient Noise II George Papanicolaou Stanford University Michigan State University, Department of Mathematics Richard E. Phillips Lecture Series April 21, 2009 With J. Garnier, University

More information

Applications of controlled paths

Applications of controlled paths Applications of controlled paths Massimiliano Gubinelli CEREMADE Université Paris Dauphine OxPDE conference. Oxford. September 1th 212 ( 1 / 16 ) Outline I will exhibith various applications of the idea

More information

Metastability for interacting particles in double-well potentials and Allen Cahn SPDEs

Metastability for interacting particles in double-well potentials and Allen Cahn SPDEs Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ SPA 2017 Contributed Session: Interacting particle systems Metastability for interacting particles in double-well

More information

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT A MODEL FOR HE LONG-ERM OPIMAL CAPACIY LEVEL OF AN INVESMEN PROJEC ARNE LØKKA AND MIHAIL ZERVOS Abstract. We consider an investment project that produces a single commodity. he project s operation yields

More information

On some relations between Optimal Transport and Stochastic Geometric Mechanics

On some relations between Optimal Transport and Stochastic Geometric Mechanics Title On some relations between Optimal Transport and Stochastic Geometric Mechanics Banff, December 218 Ana Bela Cruzeiro Dep. Mathematics IST and Grupo de Física-Matemática Univ. Lisboa 1 / 2 Title Based

More information

16. Working with the Langevin and Fokker-Planck equations

16. Working with the Langevin and Fokker-Planck equations 16. Working with the Langevin and Fokker-Planck equations In the preceding Lecture, we have shown that given a Langevin equation (LE), it is possible to write down an equivalent Fokker-Planck equation

More information

Numerical methods for solving stochastic differential equations

Numerical methods for solving stochastic differential equations Mathematical Communications 4(1999), 251-256 251 Numerical methods for solving stochastic differential equations Rózsa Horváth Bokor Abstract. This paper provides an introduction to stochastic calculus

More information

Homogenization with stochastic differential equations

Homogenization with stochastic differential equations Homogenization with stochastic differential equations Scott Hottovy shottovy@math.arizona.edu University of Arizona Program in Applied Mathematics October 12, 2011 Modeling with SDE Use SDE to model system

More information

SDE Coefficients. March 4, 2008

SDE Coefficients. March 4, 2008 SDE Coefficients March 4, 2008 The following is a summary of GARD sections 3.3 and 6., mainly as an overview of the two main approaches to creating a SDE model. Stochastic Differential Equations (SDE)

More information

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems Chapter #4 Robust and Adaptive Control Systems Nonlinear Dynamics.... Linear Combination.... Equilibrium points... 3 3. Linearisation... 5 4. Limit cycles... 3 5. Bifurcations... 4 6. Stability... 6 7.

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Weak convergence and large deviation theory

Weak convergence and large deviation theory First Prev Next Go To Go Back Full Screen Close Quit 1 Weak convergence and large deviation theory Large deviation principle Convergence in distribution The Bryc-Varadhan theorem Tightness and Prohorov

More information

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Stochastic Integration and Stochastic Differential Equations: a gentle introduction Stochastic Integration and Stochastic Differential Equations: a gentle introduction Oleg Makhnin New Mexico Tech Dept. of Mathematics October 26, 27 Intro: why Stochastic? Brownian Motion/ Wiener process

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

A numerical method for solving uncertain differential equations

A numerical method for solving uncertain differential equations Journal of Intelligent & Fuzzy Systems 25 (213 825 832 DOI:1.3233/IFS-12688 IOS Press 825 A numerical method for solving uncertain differential equations Kai Yao a and Xiaowei Chen b, a Department of Mathematical

More information

Continuous dependence estimates for the ergodic problem with an application to homogenization

Continuous dependence estimates for the ergodic problem with an application to homogenization Continuous dependence estimates for the ergodic problem with an application to homogenization Claudio Marchi Bayreuth, September 12 th, 2013 C. Marchi (Università di Padova) Continuous dependence Bayreuth,

More information

String method for the Cahn-Hilliard dynamics

String method for the Cahn-Hilliard dynamics String method for the Cahn-Hilliard dynamics Tiejun Li School of Mathematical Sciences Peking University tieli@pku.edu.cn Joint work with Wei Zhang and Pingwen Zhang Outline Background Problem Set-up Algorithms

More information

Notes on Large Deviations in Economics and Finance. Noah Williams

Notes on Large Deviations in Economics and Finance. Noah Williams Notes on Large Deviations in Economics and Finance Noah Williams Princeton University and NBER http://www.princeton.edu/ noahw Notes on Large Deviations 1 Introduction What is large deviation theory? Loosely:

More information

Anomalous transport of particles in Plasma physics

Anomalous transport of particles in Plasma physics Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann 35170 Bruz rance. b Department of Mathematics, University

More information

Numerical methods for Mean Field Games: additional material

Numerical methods for Mean Field Games: additional material Numerical methods for Mean Field Games: additional material Y. Achdou (LJLL, Université Paris-Diderot) July, 2017 Luminy Convergence results Outline 1 Convergence results 2 Variational MFGs 3 A numerical

More information

Some Properties of NSFDEs

Some Properties of NSFDEs Chenggui Yuan (Swansea University) Some Properties of NSFDEs 1 / 41 Some Properties of NSFDEs Chenggui Yuan Swansea University Chenggui Yuan (Swansea University) Some Properties of NSFDEs 2 / 41 Outline

More information

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Xiaowei Chen International Business School, Nankai University, Tianjin 371, China School of Finance, Nankai

More information

An efficient approach to stochastic optimal control. Bert Kappen SNN Radboud University Nijmegen the Netherlands

An efficient approach to stochastic optimal control. Bert Kappen SNN Radboud University Nijmegen the Netherlands An efficient approach to stochastic optimal control Bert Kappen SNN Radboud University Nijmegen the Netherlands Bert Kappen Examples of control tasks Motor control Bert Kappen Pascal workshop, 27-29 May

More information

An Uncertain Control Model with Application to. Production-Inventory System

An Uncertain Control Model with Application to. Production-Inventory System An Uncertain Control Model with Application to Production-Inventory System Kai Yao 1, Zhongfeng Qin 2 1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 2 School of Economics

More information

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA On Stochastic Adaptive Control & its Applications Bozenna Pasik-Duncan University of Kansas, USA ASEAS Workshop, AFOSR, 23-24 March, 2009 1. Motivation: Work in the 1970's 2. Adaptive Control of Continuous

More information

Estimating transition times for a model of language change in an age-structured population

Estimating transition times for a model of language change in an age-structured population Estimating transition times for a model of language change in an age-structured population W. Garrett Mitchener MitchenerG@cofc.edu http://mitchenerg.people.cofc.edu Abstract: Human languages are stable

More information

ACCURATE SOLUTION ESTIMATE AND ASYMPTOTIC BEHAVIOR OF NONLINEAR DISCRETE SYSTEM

ACCURATE SOLUTION ESTIMATE AND ASYMPTOTIC BEHAVIOR OF NONLINEAR DISCRETE SYSTEM Sutra: International Journal of Mathematical Science Education c Technomathematics Research Foundation Vol. 1, No. 1,9-15, 2008 ACCURATE SOLUTION ESTIMATE AND ASYMPTOTIC BEHAVIOR OF NONLINEAR DISCRETE

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

On the Goodness-of-Fit Tests for Some Continuous Time Processes

On the Goodness-of-Fit Tests for Some Continuous Time Processes On the Goodness-of-Fit Tests for Some Continuous Time Processes Sergueï Dachian and Yury A. Kutoyants Laboratoire de Mathématiques, Université Blaise Pascal Laboratoire de Statistique et Processus, Université

More information

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations Weak Convergence of Numerical Methods for Dynamical Systems and, and a relation with Large Deviations for Stochastic Equations Mattias Sandberg KTH CSC 2010-10-21 Outline The error representation for weak

More information

TRANSPORT IN POROUS MEDIA

TRANSPORT IN POROUS MEDIA 1 TRANSPORT IN POROUS MEDIA G. ALLAIRE CMAP, Ecole Polytechnique 1. Introduction 2. Main result in an unbounded domain 3. Asymptotic expansions with drift 4. Two-scale convergence with drift 5. The case

More information

Risk-Sensitive and Robust Mean Field Games

Risk-Sensitive and Robust Mean Field Games Risk-Sensitive and Robust Mean Field Games Tamer Başar Coordinated Science Laboratory Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, IL - 6181 IPAM

More information

Asymptotics for posterior hazards

Asymptotics for posterior hazards Asymptotics for posterior hazards Pierpaolo De Blasi University of Turin 10th August 2007, BNR Workshop, Isaac Newton Intitute, Cambridge, UK Joint work with Giovanni Peccati (Université Paris VI) and

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Isodiametric problem in Carnot groups

Isodiametric problem in Carnot groups Conference Geometric Measure Theory Université Paris Diderot, 12th-14th September 2012 Isodiametric inequality in R n Isodiametric inequality: where ω n = L n (B(0, 1)). L n (A) 2 n ω n (diam A) n Isodiametric

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions Lower Tail Probabilities and Normal Comparison Inequalities In Memory of Wenbo V. Li s Contributions Qi-Man Shao The Chinese University of Hong Kong Lower Tail Probabilities and Normal Comparison Inequalities

More information

Metastability for the Ginzburg Landau equation with space time white noise

Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz University of Bielefeld, Germany

More information

SOLVABLE VARIATIONAL PROBLEMS IN N STATISTICAL MECHANICS

SOLVABLE VARIATIONAL PROBLEMS IN N STATISTICAL MECHANICS SOLVABLE VARIATIONAL PROBLEMS IN NON EQUILIBRIUM STATISTICAL MECHANICS University of L Aquila October 2013 Tullio Levi Civita Lecture 2013 Coauthors Lorenzo Bertini Alberto De Sole Alessandra Faggionato

More information

Runge-Kutta Method for Solving Uncertain Differential Equations

Runge-Kutta Method for Solving Uncertain Differential Equations Yang and Shen Journal of Uncertainty Analysis and Applications 215) 3:17 DOI 1.1186/s4467-15-38-4 RESEARCH Runge-Kutta Method for Solving Uncertain Differential Equations Xiangfeng Yang * and Yuanyuan

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Traveling waves dans le modèle de Kuramoto quenched

Traveling waves dans le modèle de Kuramoto quenched Traveling waves dans le modèle de Kuramoto quenched Eric Luçon MAP5 - Université Paris Descartes Grenoble - Journées MAS 2016 31 août 2016 Travail en commun avec Christophe Poquet (Lyon 1) [Giacomin, L.,

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

4 Classical Coherence Theory

4 Classical Coherence Theory This chapter is based largely on Wolf, Introduction to the theory of coherence and polarization of light [? ]. Until now, we have not been concerned with the nature of the light field itself. Instead,

More information

Convergence of Feller Processes

Convergence of Feller Processes Chapter 15 Convergence of Feller Processes This chapter looks at the convergence of sequences of Feller processes to a iting process. Section 15.1 lays some ground work concerning weak convergence of processes

More information

v( x) u( y) dy for any r > 0, B r ( x) Ω, or equivalently u( w) ds for any r > 0, B r ( x) Ω, or ( not really) equivalently if v exists, v 0.

v( x) u( y) dy for any r > 0, B r ( x) Ω, or equivalently u( w) ds for any r > 0, B r ( x) Ω, or ( not really) equivalently if v exists, v 0. Sep. 26 The Perron Method In this lecture we show that one can show existence of solutions using maximum principle alone.. The Perron method. Recall in the last lecture we have shown the existence of solutions

More information

Elliptic Operators with Unbounded Coefficients

Elliptic Operators with Unbounded Coefficients Elliptic Operators with Unbounded Coefficients Federica Gregorio Universitá degli Studi di Salerno 8th June 2018 joint work with S.E. Boutiah, A. Rhandi, C. Tacelli Motivation Consider the Stochastic Differential

More information

Global compact attractors and their tripartition under persistence

Global compact attractors and their tripartition under persistence Global compact attractors and their tripartition under persistence Horst R. Thieme (joint work with Hal L. Smith) School of Mathematical and Statistical Science Arizona State University GCOE, September

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises

Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises Hongwei Long* Department of Mathematical Sciences, Florida Atlantic University, Boca Raton Florida 33431-991,

More information

Stochastic Homogenization for Reaction-Diffusion Equations

Stochastic Homogenization for Reaction-Diffusion Equations Stochastic Homogenization for Reaction-Diffusion Equations Jessica Lin McGill University Joint Work with Andrej Zlatoš June 18, 2018 Motivation: Forest Fires ç ç ç ç ç ç ç ç ç ç Motivation: Forest Fires

More information

Weak solutions of mean-field stochastic differential equations

Weak solutions of mean-field stochastic differential equations Weak solutions of mean-field stochastic differential equations Juan Li School of Mathematics and Statistics, Shandong University (Weihai), Weihai 26429, China. Email: juanli@sdu.edu.cn Based on joint works

More information

Dynamic Consistency for Stochastic Optimal Control Problems

Dynamic Consistency for Stochastic Optimal Control Problems Dynamic Consistency for Stochastic Optimal Control Problems Cadarache Summer School CEA/EDF/INRIA 2012 Pierre Carpentier Jean-Philippe Chancelier Michel De Lara SOWG June 2012 Lecture outline Introduction

More information

From the Newton equation to the wave equation in some simple cases

From the Newton equation to the wave equation in some simple cases From the ewton equation to the wave equation in some simple cases Xavier Blanc joint work with C. Le Bris (EPC) and P.-L. Lions (Collège de France) Université Paris Diderot, FRACE http://www.ann.jussieu.fr/

More information

Numerical Integration of SDEs: A Short Tutorial

Numerical Integration of SDEs: A Short Tutorial Numerical Integration of SDEs: A Short Tutorial Thomas Schaffter January 19, 010 1 Introduction 1.1 Itô and Stratonovich SDEs 1-dimensional stochastic differentiable equation (SDE) is given by [6, 7] dx

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Hongjun Gao Institute of Applied Physics and Computational Mathematics 188 Beijing, China To Fu Ma Departamento de Matemática

More information

Stochastic optimal control with rough paths

Stochastic optimal control with rough paths Stochastic optimal control with rough paths Paul Gassiat TU Berlin Stochastic processes and their statistics in Finance, Okinawa, October 28, 2013 Joint work with Joscha Diehl and Peter Friz Introduction

More information

Controllability of linear PDEs (I): The wave equation

Controllability of linear PDEs (I): The wave equation Controllability of linear PDEs (I): The wave equation M. González-Burgos IMUS, Universidad de Sevilla Doc Course, Course 2, Sevilla, 2018 Contents 1 Introduction. Statement of the problem 2 Distributed

More information

Random attractors and the preservation of synchronization in the presence of noise

Random attractors and the preservation of synchronization in the presence of noise Random attractors and the preservation of synchronization in the presence of noise Peter Kloeden Institut für Mathematik Johann Wolfgang Goethe Universität Frankfurt am Main Deterministic case Consider

More information