Random and Deterministic perturbations of dynamical systems. Leonid Koralov

Size: px
Start display at page:

Download "Random and Deterministic perturbations of dynamical systems. Leonid Koralov"

Transcription

1 Random and Deterministic perturbations of dynamical systems Leonid Koralov

2 - M. Freidlin, L. Koralov Metastability for Nonlinear Random Perturbations of Dynamical Systems, Stochastic Processes and Applications 120 (2010), no. 7, D. Dolgopyat, L. Koralov Averaging of incompressible flows on 2-d surfaces, submitted to Journal of American Math. Society. - D. Dolgopyat, M. Freidlin, L. Koralov Deterministic and stochastic perturbations of areapreserving flows on a 2-d torus (to appear in Ergodic Theory and Dynamical Systems). 1

3 Part 1. Incompressible flow: ẋ(t) =v(x(t)), x(0) = x 0 R 2 or x 0 M. (a) Hamiltonian flows. 3

4 Perturbation: dx ε t = 1 ε v(xε t )dt + σ(x κ,ε t )dw t (random), dx ε t = 1 ε v(xε t )dt+b(xκ,ε t )dt (deterministic). The dynamics consists of the fast motion (with speed of order 1/ε) along the unperturbed trajectories together with the slow motion (with speed of order 1) in the direction transversal to the unperturbed trajectories. 4

5 Averaging - consider h : R 2 G. Then h(x ε t ) Y t as ε 0. Locally (away from the vertices of the graph): dy b(y t dt = t ), (deterministic), where T (Y t ) T (h) = γ(h) dl H, b(h) = γ(h) b, H dl, H dy t = σ(y t )dw t +b(y t )dt (random perturbations). Behavior at the vertices. Random perturbations - Freidlin and Wentzell. Deterministic perturbations - regularization required. (Brin and Freidlin). 5

6 (b) Locally Hamiltonian flows (there are regions where the unperturbed dynamimcs is ergodic). Example: H = H 0 (x 1,x 2 )+αx 1 + βx 2, α/β - irrational. 6

7 M - manifold with an area form, v - incompressible vector field, X ε t - process with generator Lε = 1 ε L v + L D. 7

8 Unperturbed dynamics: U 1,..., U m - periodic sets E 1,..., E n - ergodic components Flow on E i is isomorphic to a special flow over an interval exchange transformation. Graph: - Each edge corresponds to one of U k - Three types of vertices: (a) Those corresponding to E i, (b) Those corresponding to saddle points, (c) Those corresponding to equilibriums (but not saddles). The flow is Hamiltonian on U k with a Hamiltonian H. Denote: h k -coordinateoni k. 8

9 Theorem 1 The measure on on C([0, ), G) induced by the process Yt ε = h(xt ε) converges weakly to the measure induced by the process with the generator L with the initial distribution h(x0 ε). The limiting process is described via its generator L, which is defined as follows. Let L k f(h k )=a k (h k )f + b k (h k )f be the differential operator on the interior of the edge I k (coefficients are defined below). For f D(L), we define Lf = L k f in the interior of each edge, and as the limit of L k f at the endpoints of I k. 9

10 D(L) consists of f C(G) C 2 (I k ) such that (a) lim hk 0 L k f(h k )=q V exist and are the same for all edges entering the same vertex V. (b) At vertices corresponding to E i : n p V k k=1 lim f (h k ) = lim L h k 0 hk kf(h k ). 0 (the same with 0 instead of q V corresponding to saddles). for vertices 10

11 Coefficients: In local coordinates in U k (ω = dxdy): dx ε t = 1 ε v(xε t )dt + u(x ε t )dt + σ(x ε t )dw t. Then, a k (h k )= 1 2 T 1 (h k ) γ k (h k ) α H, H dl H and b k (h k )= 1 2 T 1 (h k ) γ k (h k ) 2 u, H + α H dl, H where α = σσ. p V k = ±1 2 γ k α H, H H dl. 11

12 Ingredients of the proof. (1) Assume (temporarily) that the area measure λ is invariant for the process for each ε. For the limit Y t of Yt ε have = h(xt ε ), we should T E[f(Y T ) f(y 0 ) Lf(Y s)ds] =0. 0 Need to prove the following lemma. Lemma1 For each function f D(L) and each T>0we have E x [f(h(xt ε T )) f(h(xε 0 )) 0 Lf(h(Xε s))ds] 0 uniformly in x T 2 as ε 0. 12

13 (2) Localization (can deal with a star-shaped graph with one accessible vertex) 13

14 (3) Need: E x [f(h(x ε T )) f(h(xε 0 )) T 0 Lf(h(Xε s ))ds] 0 Split [0,T] into intervals: [0,σ 0 ], [σ 0,τ 1 ], [τ 1,σ 1 ], [σ 1,τ 2 ],... On intervals [τ n,σ n ] (inside periodic component) - averaging (Freidlin-Wentzell) with small modifications. 14

15 On intervals [σ n,τ n+1 ] (getting from the ergodic component into the periodic component): E x [f(h(x ε τ n+1 )) f(h(x ε σ n )) τn+1 σ n Lf(h(X ε s))ds] E ν [f(h(x ε τ )) f(h(xε 0 )) τ f (0)ε α E ν τ Lf(0). 0 Lf(h(Xε s ))ds] - How can we calculate E ν τ? - Why can we assume that we start with the invariant measure ν? 15

16 If λ is invariant: E ν τ λ(e) E μσ λ(u),so E ν τ λ(e) λ(u) E μσ const ε α. If λ is not invariant: consider d X ε t = 1 ε v( X ε t )dt + ũ( X ε t )dt + σ( X ε t )dw t, (replace u by some ũ so that λ is invariant for the new process). By the Girsanov Theorem: ν ν, E ν τ E ν τ. So, E ν τ λ(e) λ(u) E μ σ (the gluing conditions are the same as for the measure-preserving process). 16

17 (4) Why does E x σ k 0asε 0? (time to reach U k ) Let u ε (t, y), y M \U k, be the probability that the process starting at y does not reach U k before time t. u ε ( (t, y) = L D + 1 ) t ε L v u ε u ε (0,y)=1, y M \ U k, u ε (t, y) =0, t > 0. 17

18 (a) Lemma (Zlatos): All H 1 0 (M\U k)-eigenvalues for v are zero on E implies that the L 2 (E)- norm (and so L 1 (E)-norm) of u ε (t, ) tends to zero as ε 0 for each t>0. (b) A uniform bound on fundamental solution doesn t get affected by adding an incompressible drift term. (a) and (b) imply that E x σ 0. With some effort possible to show that E x σ k 0. 18

19 Part 2: Averaging of deterministic perturbations Recall dx κ,ε t = 1 ε v(xκ,ε t )dt + b(x κ,ε )dt+ t κu(xt κ,ε )dt + κσ(xt κ,ε )dw t. Let Yt κ,ε = h(xt κ,ε ) be the corresponding process on the graph G. We demonstrated that the distribution of Yt κ,ε converges, as ε 0, to the distribution of a limiting process, which will be denoted by Zt κ. Zκ t, in turn, converges to the distribution of a limiting Markov process on G when κ 0. 19

20 The limiting process Z t can be described as follows. It is a Markov process with continuous trajectories which moves deterministically along an edge I k of the graph with the speed b k (h k )= 1 2 (T k(h k )) 1 2 b, H dl. γ k (h k ) H If the process reaches V corresponding to an ergodic component, then it either remains at V forever or spends exponential time in V and then continues with deterministic motion away from V along a randomly selected edge (with probabilities which can be specified). The same if V corresponds to a saddle point, but no exponential delay. 20

21 Theorem 2 The measure on on C([0, ), G) induced by the process Zt κ converges weakly to the measure induced by the process Z t with the initial distribution h(x0 ε). The process Z t is defined by the deterministic system. The stochastic perturbations are used just for regularization purposes. 21

22 Part 3. Ẋ x t = b(xx t ), Xx 0 = x Rd ; dx x,ε t = b(xt x,ε )dt + εσ(xt x,ε )dw t, X x,ε 0 = x. in terms of PDEs: u ε t = ε2 2 d i,j=1 a ij (x) 2 u ε x i x j + b(x) x u ε, u ε (0,x)=g(x), x R d. u ε (t, x) =Eg(X x,ε t ).

23 Action functional: S 0,T (ϕ) = 1 2 T 0 d i,j=1 if ϕ - absolutely continuous, a ij (ϕ t )( ϕ i t b i (ϕ t ))( ϕ j t b j(ϕ t ))dt, T S 0,T (ϕ) =+, otherwise. a ij =(a 1 ) ij. Quasi-potential: V mn = V (O m,o n )= inf T {S 0,T (ϕ) :ϕ(0) = O m,ϕ(t )=O n }. 22

24 τ ε mn - the time it takes the process to go from O m to a small neighborhood of O n. τ ε mn exp(v mn /ε 2 ), Consider the process (and solution of PDE) at times t(ε) withln(t(ε)) λ/ε 2. Suppose, for example, that x D 1 and V 12 <V 21. If λ<v 12,thenu ε (t(ε),x) g(o 1 ). If λ>v 12,thenu ε (t(ε),x) g(o 2 ). 23

25 Nonlinear problem: u ε t = ε2 2 d i,j=1 a ij (x, u ε ) 2 u ε x i x j + b(x) x u ε, u ε (0,x)=g. equivalent to the system dx t,x,ε s = b(x t,x,ε s )dt+εσ(xs t,x,ε,u ε (t s, Xs t,x,ε ))dw s, u ε (t, x) =Eg(X t,x,ε t ). Construct Ṽ12 using a(t, g(x 0 )). If λ<ṽ12, then still u ε (t(ε),x) g(o 1 ). If λ>ṽ12, then new effects appear for u ε and the processes. 24

26 Result in the non-linear case (2 equilibriums): Theorem: lim u ε (exp(λ/ε 2 ),x)=c n (λ), x D n. ε 0 Corollary: If x D 1, then the distribution of X exp(λ/ε2 ),x,ε exp(λ/ε 2 ) converges to the measure μ λ 1 = a 1 δ O1 + a 2 δ O2, where the coefficients a 1 and a 2 can be found from the equations c 1 (λ) = a 1 g(o 1 )+a 2 g(o 2 ), a 1 + a 2 =1. 25

27 Multiple equilibriums. - Need to look at V a(x,c) mn = V a(x,c) (O m,o n ), which determine the hierarchy of cycles; - The hierarchy of cycles may evolve in time (i.e., depends on λ). 26

Deterministic and stochastic perturbations of area preserving flows on a two-dimensional torus

Deterministic and stochastic perturbations of area preserving flows on a two-dimensional torus Deterministic and stochastic perturbations of area preserving flows on a two-dimensional torus Dmitry Dolgopyat, Mark Freidlin, Leonid Koralov Abstract We study deterministic and stochastic perturbations

More information

Averaging of incompressible flows on two-dimensional surfaces

Averaging of incompressible flows on two-dimensional surfaces Averaging of incompressible flows on two-dimensional surfaces Dmitry Dolgopyat, Leonid Koralov Abstract We consider a process on a compact two-dimensional surface which consists of the fast motion along

More information

2012 NCTS Workshop on Dynamical Systems

2012 NCTS Workshop on Dynamical Systems Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz 2012 NCTS Workshop on Dynamical Systems National Center for Theoretical Sciences, National Tsing-Hua University Hsinchu,

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Some Properties of NSFDEs

Some Properties of NSFDEs Chenggui Yuan (Swansea University) Some Properties of NSFDEs 1 / 41 Some Properties of NSFDEs Chenggui Yuan Swansea University Chenggui Yuan (Swansea University) Some Properties of NSFDEs 2 / 41 Outline

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

Stochastic differential equations in neuroscience

Stochastic differential equations in neuroscience Stochastic differential equations in neuroscience Nils Berglund MAPMO, Orléans (CNRS, UMR 6628) http://www.univ-orleans.fr/mapmo/membres/berglund/ Barbara Gentz, Universität Bielefeld Damien Landon, MAPMO-Orléans

More information

Continuous dependence estimates for the ergodic problem with an application to homogenization

Continuous dependence estimates for the ergodic problem with an application to homogenization Continuous dependence estimates for the ergodic problem with an application to homogenization Claudio Marchi Bayreuth, September 12 th, 2013 C. Marchi (Università di Padova) Continuous dependence Bayreuth,

More information

Weak convergence and large deviation theory

Weak convergence and large deviation theory First Prev Next Go To Go Back Full Screen Close Quit 1 Weak convergence and large deviation theory Large deviation principle Convergence in distribution The Bryc-Varadhan theorem Tightness and Prohorov

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

Solution of Additional Exercises for Chapter 4

Solution of Additional Exercises for Chapter 4 1 1. (1) Try V (x) = 1 (x 1 + x ). Solution of Additional Exercises for Chapter 4 V (x) = x 1 ( x 1 + x ) x = x 1 x + x 1 x In the neighborhood of the origin, the term (x 1 + x ) dominates. Hence, the

More information

VARIANCE REDUCTION FOR IRREVERSIBLE LANGEVIN SAMPLERS AND DIFFUSION ON GRAPHS LUC REY-BELLET

VARIANCE REDUCTION FOR IRREVERSIBLE LANGEVIN SAMPLERS AND DIFFUSION ON GRAPHS LUC REY-BELLET VARIANCE REDUCTION FOR IRREVERSIBLE LANGEVIN SAMPLERS AND DIFFUSION ON GRAPHS LUC REY-BELLET Department of Mathematics and Statistics University of Massachusetts Amherst, Amherst, MA, 13 KONSTANTINOS SPILIOPOULOS

More information

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points Nonlinear Control Lecture # 3 Stability of Equilibrium Points The Invariance Principle Definitions Let x(t) be a solution of ẋ = f(x) A point p is a positive limit point of x(t) if there is a sequence

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Junyi Tu, Yuncheng You University of South Florida, USA you@mail.usf.edu IMA Workshop in Memory of George R. Sell June 016 Outline

More information

Stabilization and Passivity-Based Control

Stabilization and Passivity-Based Control DISC Systems and Control Theory of Nonlinear Systems, 2010 1 Stabilization and Passivity-Based Control Lecture 8 Nonlinear Dynamical Control Systems, Chapter 10, plus handout from R. Sepulchre, Constructive

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 1, 216 Statistical properties of dynamical systems, ESI Vienna. David

More information

BSDEs and PDEs with discontinuous coecients Applications to homogenization K. Bahlali, A. Elouain, E. Pardoux. Jena, March 2009

BSDEs and PDEs with discontinuous coecients Applications to homogenization K. Bahlali, A. Elouain, E. Pardoux. Jena, March 2009 BSDEs and PDEs with discontinuous coecients Applications to homogenization K. Bahlali, A. Elouain, E. Pardoux. Jena, 16-20 March 2009 1 1) L p viscosity solution to 2nd order semilinear parabolic PDEs

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

Exit times of diffusions with incompressible drifts

Exit times of diffusions with incompressible drifts Exit times of diffusions with incompressible drifts Andrej Zlatoš University of Chicago Joint work with: Gautam Iyer (Carnegie Mellon University) Alexei Novikov (Pennylvania State University) Lenya Ryzhik

More information

Harnack Inequalities and Applications for Stochastic Equations

Harnack Inequalities and Applications for Stochastic Equations p. 1/32 Harnack Inequalities and Applications for Stochastic Equations PhD Thesis Defense Shun-Xiang Ouyang Under the Supervision of Prof. Michael Röckner & Prof. Feng-Yu Wang March 6, 29 p. 2/32 Outline

More information

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term 1 Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term Enrico Priola Torino (Italy) Joint work with G. Da Prato, F. Flandoli and M. Röckner Stochastic Processes

More information

Mean Field Games on networks

Mean Field Games on networks Mean Field Games on networks Claudio Marchi Università di Padova joint works with: S. Cacace (Rome) and F. Camilli (Rome) C. Marchi (Univ. of Padova) Mean Field Games on networks Roma, June 14 th, 2017

More information

Metastability for the Ginzburg Landau equation with space time white noise

Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz Metastability for the Ginzburg Landau equation with space time white noise Barbara Gentz University of Bielefeld, Germany

More information

A random perturbation approach to some stochastic approximation algorithms in optimization.

A random perturbation approach to some stochastic approximation algorithms in optimization. A random perturbation approach to some stochastic approximation algorithms in optimization. Wenqing Hu. 1 (Presentation based on joint works with Chris Junchi Li 2, Weijie Su 3, Haoyi Xiong 4.) 1. Department

More information

Index Theory and Periodic Solution of Delay Differential Systems

Index Theory and Periodic Solution of Delay Differential Systems Index Theory and Periodic Solution of Delay Differential Systems Liu Chungen School of Mathematics, Nankai University workshop on nonlinear PDE and calculus of variation, Chern Mathematical Institute 2013.9.16

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Introduction to asymptotic techniques for stochastic systems with multiple time-scales

Introduction to asymptotic techniques for stochastic systems with multiple time-scales Introduction to asymptotic techniques for stochastic systems with multiple time-scales Eric Vanden-Eijnden Courant Institute Motivating examples Consider the ODE {Ẋ = Y 3 + sin(πt) + cos( 2πt) X() = x

More information

Nonlinear error dynamics for cycled data assimilation methods

Nonlinear error dynamics for cycled data assimilation methods Nonlinear error dynamics for cycled data assimilation methods A J F Moodey 1, A S Lawless 1,2, P J van Leeuwen 2, R W E Potthast 1,3 1 Department of Mathematics and Statistics, University of Reading, UK.

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

Complex system approach to geospace and climate studies. Tatjana Živković

Complex system approach to geospace and climate studies. Tatjana Živković Complex system approach to geospace and climate studies Tatjana Živković 30.11.2011 Outline of a talk Importance of complex system approach Phase space reconstruction Recurrence plot analysis Test for

More information

On continuous time contract theory

On continuous time contract theory Ecole Polytechnique, France Journée de rentrée du CMAP, 3 octobre, 218 Outline 1 2 Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs (Static) Principal-Agent Problem

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

Metastability for interacting particles in double-well potentials and Allen Cahn SPDEs

Metastability for interacting particles in double-well potentials and Allen Cahn SPDEs Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ SPA 2017 Contributed Session: Interacting particle systems Metastability for interacting particles in double-well

More information

Walsh Diffusions. Andrey Sarantsev. March 27, University of California, Santa Barbara. Andrey Sarantsev University of Washington, Seattle 1 / 1

Walsh Diffusions. Andrey Sarantsev. March 27, University of California, Santa Barbara. Andrey Sarantsev University of Washington, Seattle 1 / 1 Walsh Diffusions Andrey Sarantsev University of California, Santa Barbara March 27, 2017 Andrey Sarantsev University of Washington, Seattle 1 / 1 Walsh Brownian Motion on R d Spinning measure µ: probability

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

SAMPLE PATH PROPERIES OF RANDOM TRANSFORMATIONS.

SAMPLE PATH PROPERIES OF RANDOM TRANSFORMATIONS. SAMPLE PATH PROPERIES OF RANDOM TRANSFORMATIONS. DMITRY DOLGOPYAT 1. Models. Let M be a smooth compact manifold of dimension N and X 0, X 1... X d, d 2, be smooth vectorfields on M. (I) Let {w j } + j=

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 11, Number 1, July 004 pp. 189 04 ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS Tian Ma Department of

More information

4.6 Example of non-uniqueness.

4.6 Example of non-uniqueness. 66 CHAPTER 4. STOCHASTIC DIFFERENTIAL EQUATIONS. 4.6 Example of non-uniqueness. If we try to construct a solution to the martingale problem in dimension coresponding to a(x) = x α with

More information

Eigenfunctions for smooth expanding circle maps

Eigenfunctions for smooth expanding circle maps December 3, 25 1 Eigenfunctions for smooth expanding circle maps Gerhard Keller and Hans-Henrik Rugh December 3, 25 Abstract We construct a real-analytic circle map for which the corresponding Perron-

More information

analysis for transport equations and applications

analysis for transport equations and applications Multi-scale analysis for transport equations and applications Mihaï BOSTAN, Aurélie FINOT University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Numerical methods for kinetic equations Strasbourg

More information

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait Prof. Krstic Nonlinear Systems MAE28A Homework set Linearization & phase portrait. For each of the following systems, find all equilibrium points and determine the type of each isolated equilibrium. Use

More information

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs Yuri A. Kuznetsov August, 2010 Contents 1. Solutions and orbits. 2. Equilibria. 3. Periodic orbits and limit cycles. 4. Homoclinic orbits.

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

On the Stability of the Best Reply Map for Noncooperative Differential Games

On the Stability of the Best Reply Map for Noncooperative Differential Games On the Stability of the Best Reply Map for Noncooperative Differential Games Alberto Bressan and Zipeng Wang Department of Mathematics, Penn State University, University Park, PA, 68, USA DPMMS, University

More information

1 Definition of the Riemann integral

1 Definition of the Riemann integral MAT337H1, Introduction to Real Analysis: notes on Riemann integration 1 Definition of the Riemann integral Definition 1.1. Let [a, b] R be a closed interval. A partition P of [a, b] is a finite set of

More information

1 Brownian Local Time

1 Brownian Local Time 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) =

More information

Convergence to equilibrium for rough differential equations

Convergence to equilibrium for rough differential equations Convergence to equilibrium for rough differential equations Samy Tindel Purdue University Barcelona GSE Summer Forum 2017 Joint work with Aurélien Deya (Nancy) and Fabien Panloup (Angers) Samy T. (Purdue)

More information

An adaptive numerical scheme for fractional differential equations with explosions

An adaptive numerical scheme for fractional differential equations with explosions An adaptive numerical scheme for fractional differential equations with explosions Johanna Garzón Departamento de Matemáticas, Universidad Nacional de Colombia Seminario de procesos estocásticos Jointly

More information

Mathematical Hydrodynamics

Mathematical Hydrodynamics Mathematical Hydrodynamics Ya G. Sinai 1. Introduction Mathematical hydrodynamics deals basically with Navier-Stokes and Euler systems. In the d-dimensional case and incompressible fluids these are the

More information

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Navier-Stokes equations with constrained L 2 energy of the solution Zdzislaw Brzeźniak Department of Mathematics University of York joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Stochastic

More information

1. Introduction Systems evolving on widely separated time-scales represent a challenge for numerical simulations. A generic example is

1. Introduction Systems evolving on widely separated time-scales represent a challenge for numerical simulations. A generic example is COMM. MATH. SCI. Vol. 1, No. 2, pp. 385 391 c 23 International Press FAST COMMUNICATIONS NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ERIC VANDEN-EIJNDEN Abstract. Numerical

More information

Weakly interacting particle systems on graphs: from dense to sparse

Weakly interacting particle systems on graphs: from dense to sparse Weakly interacting particle systems on graphs: from dense to sparse Ruoyu Wu University of Michigan (Based on joint works with Daniel Lacker and Kavita Ramanan) USC Math Finance Colloquium October 29,

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

1 Relative degree and local normal forms

1 Relative degree and local normal forms THE ZERO DYNAMICS OF A NONLINEAR SYSTEM 1 Relative degree and local normal orms The purpose o this Section is to show how single-input single-output nonlinear systems can be locally given, by means o a

More information

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0 Introduction to multiscale modeling and simulation Lecture 5 Numerical methods for ODEs, SDEs and PDEs The need for multiscale methods Two generic frameworks for multiscale computation Explicit methods

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Chap. 1. Some Differential Geometric Tools

Chap. 1. Some Differential Geometric Tools Chap. 1. Some Differential Geometric Tools 1. Manifold, Diffeomorphism 1.1. The Implicit Function Theorem ϕ : U R n R n p (0 p < n), of class C k (k 1) x 0 U such that ϕ(x 0 ) = 0 rank Dϕ(x) = n p x U

More information

MATH642. COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M. BRIN AND G. STUCK

MATH642. COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M. BRIN AND G. STUCK MATH642 COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M BRIN AND G STUCK DMITRY DOLGOPYAT 13 Expanding Endomorphisms of the circle Let E 10 : S 1 S 1 be given by E 10 (x) = 10x mod 1 Exercise 1 Show

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

Droplet Formation in Binary and Ternary Stochastic Systems

Droplet Formation in Binary and Ternary Stochastic Systems Droplet Formation in Binary and Ternary Stochastic Systems Thomas Wanner Department of Mathematical Sciences George Mason University Fairfax, Virginia 22030, USA Work supported by DOE and NSF. IMA Workshop

More information

arxiv: v1 [math.pr] 5 Dec 2018

arxiv: v1 [math.pr] 5 Dec 2018 SCALING LIMIT OF SMALL RANDOM PERTURBATION OF DYNAMICAL SYSTEMS FRAYDOUN REZAKHANLOU AND INSUK SEO arxiv:82.02069v math.pr] 5 Dec 208 Abstract. In this article, we prove that a small random perturbation

More information

{σ x >t}p x. (σ x >t)=e at.

{σ x >t}p x. (σ x >t)=e at. 3.11. EXERCISES 121 3.11 Exercises Exercise 3.1 Consider the Ornstein Uhlenbeck process in example 3.1.7(B). Show that the defined process is a Markov process which converges in distribution to an N(0,σ

More information

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points Nonlinear Control Lecture # 2 Stability of Equilibrium Points Basic Concepts ẋ = f(x) f is locally Lipschitz over a domain D R n Suppose x D is an equilibrium point; that is, f( x) = 0 Characterize and

More information

Mean-field SDE driven by a fractional BM. A related stochastic control problem

Mean-field SDE driven by a fractional BM. A related stochastic control problem Mean-field SDE driven by a fractional BM. A related stochastic control problem Rainer Buckdahn, Université de Bretagne Occidentale, Brest Durham Symposium on Stochastic Analysis, July 1th to July 2th,

More information

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Navier-Stokes equations with constrained L 2 energy of the solution Zdzislaw Brzeźniak Department of Mathematics University of York joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) LMS

More information

Long Run Equilibrium in Discounted Stochastic Fictitious Play

Long Run Equilibrium in Discounted Stochastic Fictitious Play Long Run Equilibrium in Discounted Stochastic Fictitious Play Noah Williams * Department of Economics, University of Wisconsin - Madison E-mail: nmwilliams@wisc.edu Revised March 18, 2014 In this paper

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation High-Gain Observers in Nonlinear Feedback Control Lecture # 3 Regulation High-Gain ObserversinNonlinear Feedback ControlLecture # 3Regulation p. 1/5 Internal Model Principle d r Servo- Stabilizing u y

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility), 4.2-4.4 (explicit examples of eigenfunction methods) Gardiner

More information

Reaction-Diffusion Equations In Narrow Tubes and Wave Front P

Reaction-Diffusion Equations In Narrow Tubes and Wave Front P Outlines Reaction-Diffusion Equations In Narrow Tubes and Wave Front Propagation University of Maryland, College Park USA Outline of Part I Outlines Real Life Examples Description of the Problem and Main

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2015 Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility),

More information

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Ecole Polytechnique, France April 4, 218 Outline The Principal-Agent problem Formulation 1 The Principal-Agent problem

More information

Exit times of diffusions with incompressible drift

Exit times of diffusions with incompressible drift Exit times of diffusions with incompressible drift Gautam Iyer, Carnegie Mellon University gautam@math.cmu.edu Collaborators: Alexei Novikov, Penn. State Lenya Ryzhik, Stanford University Andrej Zlatoš,

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Modelling Interactions Between Weather and Climate

Modelling Interactions Between Weather and Climate Modelling Interactions Between Weather and Climate p. 1/33 Modelling Interactions Between Weather and Climate Adam Monahan & Joel Culina monahana@uvic.ca & culinaj@uvic.ca School of Earth and Ocean Sciences,

More information

Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs.

Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs. Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs. D. Bernard in collaboration with M. Bauer and (in part) A. Tilloy. IPAM-UCLA, Jan 2017. 1 Strong Noise Limit of (some) SDEs Stochastic differential

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

MATH 819 FALL We considered solutions of this equation on the domain Ū, where

MATH 819 FALL We considered solutions of this equation on the domain Ū, where MATH 89 FALL. The D linear wave equation weak solutions We have considered the initial value problem for the wave equation in one space dimension: (a) (b) (c) u tt u xx = f(x, t) u(x, ) = g(x), u t (x,

More information

On Ergodic Impulse Control with Constraint

On Ergodic Impulse Control with Constraint On Ergodic Impulse Control with Constraint Maurice Robin Based on joint papers with J.L. Menaldi University Paris-Sanclay 9119 Saint-Aubin, France (e-mail: maurice.robin@polytechnique.edu) IMA, Minneapolis,

More information

WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY

WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY J.M. TUWANKOTTA Abstract. In this paper we present an analysis of a system of coupled oscillators suggested

More information

Uniformly Uniformly-ergodic Markov chains and BSDEs

Uniformly Uniformly-ergodic Markov chains and BSDEs Uniformly Uniformly-ergodic Markov chains and BSDEs Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) Centre Henri Lebesgue,

More information

Qualitative behaviour of numerical methods for SDEs and application to homogenization

Qualitative behaviour of numerical methods for SDEs and application to homogenization Qualitative behaviour of numerical methods for SDEs and application to homogenization K. C. Zygalakis Oxford Centre For Collaborative Applied Mathematics, University of Oxford. Center for Nonlinear Analysis,

More information

Optimal Polynomial Admissible Meshes on the Closure of C 1,1 Bounded Domains

Optimal Polynomial Admissible Meshes on the Closure of C 1,1 Bounded Domains Optimal Polynomial Admissible Meshes on the Closure of C 1,1 Bounded Domains Constructive Theory of Functions Sozopol, June 9-15, 2013 F. Piazzon, joint work with M. Vianello Department of Mathematics.

More information

Two viewpoints on measure valued processes

Two viewpoints on measure valued processes Two viewpoints on measure valued processes Olivier Hénard Université Paris-Est, Cermics Contents 1 The classical framework : from no particle to one particle 2 The lookdown framework : many particles.

More information

Introduction to Random Diffusions

Introduction to Random Diffusions Introduction to Random Diffusions The main reason to study random diffusions is that this class of processes combines two key features of modern probability theory. On the one hand they are semi-martingales

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Part II. Dynamical Systems. Year

Part II. Dynamical Systems. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 34 Paper 1, Section II 30A Consider the dynamical system where β > 1 is a constant. ẋ = x + x 3 + βxy 2, ẏ = y + βx 2

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Theory and applications of random Poincaré maps

Theory and applications of random Poincaré maps Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ Random Dynamical Systems Theory and applications of random Poincaré maps Nils Berglund MAPMO, Université d'orléans,

More information

Bridging the Gap between Center and Tail for Multiscale Processes

Bridging the Gap between Center and Tail for Multiscale Processes Bridging the Gap between Center and Tail for Multiscale Processes Matthew R. Morse Department of Mathematics and Statistics Boston University BU-Keio 2016, August 16 Matthew R. Morse (BU) Moderate Deviations

More information

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below.

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below. 54 Chapter 9 Hints, Answers, and Solutions 9. The Phase Plane 9.. 4. The particular trajectories are highlighted in the phase portraits below... 3. 4. 9..5. Shown below is one possibility with x(t) and

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

On the fast convergence of random perturbations of the gradient flow.

On the fast convergence of random perturbations of the gradient flow. On the fast convergence of random perturbations of the gradient flow. Wenqing Hu. 1 (Joint work with Chris Junchi Li 2.) 1. Department of Mathematics and Statistics, Missouri S&T. 2. Department of Operations

More information

On Sinai-Bowen-Ruelle measures on horocycles of 3-D Anosov flows

On Sinai-Bowen-Ruelle measures on horocycles of 3-D Anosov flows On Sinai-Bowen-Ruelle measures on horocycles of 3-D Anosov flows N.I. Chernov Department of Mathematics University of Alabama at Birmingham Birmingham, AL 35294 September 14, 2006 Abstract Let φ t be a

More information

LYAPUNOV EXPONENTS AND STABILITY FOR THE STOCHASTIC DUFFING-VAN DER POL OSCILLATOR

LYAPUNOV EXPONENTS AND STABILITY FOR THE STOCHASTIC DUFFING-VAN DER POL OSCILLATOR LYAPUNOV EXPONENTS AND STABILITY FOR THE STOCHASTIC DUFFING-VAN DER POL OSCILLATOR Peter H. Baxendale Department of Mathematics University of Southern California Los Angeles, CA 90089-3 USA baxendal@math.usc.edu

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information