On continuous time contract theory

Size: px
Start display at page:

Download "On continuous time contract theory"

Transcription

1 Ecole Polytechnique, France Journée de rentrée du CMAP, 3 octobre, 218

2 Outline 1 2 Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs

3 (Static) Principal-Agent Problem Principal delegates management of output process X, only observes X pays salary defined by contract ξ(x ) Agent devotes effort a = X a, chooses optimal effort by ( V A (ξ) := max E U A ξ(x a ) c(a) ) = â(ξ) a Principal chooses optimal contract by solving ( max E U P X â(ξ) ξ(x â(ξ) ) ) under constraint V A (ξ) ρ ξ Non-zero sum Stackelberg game

4 (Static) Principal-Agent Problem Principal delegates management of output process X, only observes X pays salary defined by contract ξ(x ) Agent devotes effort a = X a, chooses optimal effort by ( V A (ξ) := max E U A ξ(x a ) c(a) ) = â(ξ) a Principal chooses optimal contract by solving ( max E U P X â(ξ) ξ(x â(ξ) ) ) under constraint V A (ξ) ρ ξ = Non-zero sum Stackelberg game

5 (Static) Principal-Agent Problem Principal delegates management of output process X, only observes X pays salary defined by contract ξ(x ) Agent devotes effort a = X a, chooses optimal effort by ( V A (ξ) := max E U A ξ(x a ) c(a) ) = â(ξ) a Principal chooses optimal contract by solving ( max E U P X â(ξ) ξ(x â(ξ) ) ) under constraint V A (ξ) ρ ξ = Non-zero sum Stackelberg game

6 (Static) Principal-Agent Problem Principal delegates management of output process X, only observes X pays salary defined by contract ξ(x ) Agent devotes effort a = X a, chooses optimal effort by ( V A (ξ) := max E U A ξ(x a ) c(a) ) = â(ξ) a Principal chooses optimal contract by solving ( max E U P X â(ξ) ξ(x â(ξ) ) ) under constraint V A (ξ) ρ ξ = Non-zero sum Stackelberg game

7 (Static) Principal-Agent Problem ==> Continuous time Principal delegates management of output process X, only observes X pays salary defined by contract ξ(x ) Agent devotes effort a = X a, chooses optimal effort by ( V A (ξ) := max E U A ξ(x a ) c(a) ) = â(ξ) a Principal chooses optimal contract by solving ( max E U P X â(ξ) ξ(x â(ξ) ) ) under constraint V A (ξ) ρ ξ = Non-zero sum Stackelberg game

8 Semimartingale distributions on the paths space Ω := { ω C (R +, R d ) : ω() = } X : canonical process, i.e. X t (ω) := ω(t) F t := σ(x s, s t), F := {F t, t } P W : collection of all semimartingale measures P such that dx t = b t (X )dt + σ t (X )dw t, P a.s. for some F processes b and σ, and P Brownian motion W

9 Semimartingale distributions on the paths space Ω := { ω C (R +, R d ) : ω() = } X : canonical process, i.e. X t (ω) := ω(t) F t := σ(x s, s t), F := {F t, t } P W : collection of all semimartingale measures P such that dx t = b t (X )dt + σ t (X )dw t, P a.s. for some F processes b and σ, and P Brownian motion W

10 Quadratic variation process X : quadratic variation process (defined on R + Ω) X t := Xt 2 t 2X sdx s = P lim π n 1 Xt t π n X t t π 2 n 1 for all P P W, and set ˆσ 2 t := lim h X t+h X t h Example : (d = 1) Let P 1 :=Wiener measure, i.e. X is a P 1 BM, and define P 2 := P 1 (2X ) 1. Then P 1 and P 2 are singular ˆσ t = 1, P 1 a.s. and ˆσ t = 2, P 2 a.s.

11 Principal-Agent problem formulation Agent problem : V A (ξ) := sup E P[ ξ(x ) P P ] c t (ν t )dt P P : weak solution of Output process for some ν valued in U : dx t = b t (X, ν t )dt + σ t (X, ν t )dw P t P a.s. Given solution P (ξ), Principal solves the optimization problem V P := sup ξ Ξ ρ E P (ξ) [ U ( l(x ) ξ(x ) )] where Ξ ρ := { ξ(x. ) : V A (ξ) ρ } Possible extensions : random (possibly ) horizon, heterogeneous agents with possibly mean field interaction, competing Principals...

12 Principal-Agent problem formulation Agent problem : V A (ξ) := sup E P[ ξ(x ) P P ] c t (ν t )dt P P : weak solution of Output process for some ν valued in U : dx t = b t (X, ν t )dt + σ t (X, ν t )dw P t P a.s. Given solution P (ξ), Principal solves the optimization problem V P := sup ξ Ξ ρ E P (ξ) [ U ( l(x ) ξ(x ) )] where Ξ ρ := { ξ(x. ) : V A (ξ) ρ } Possible extensions : random (possibly ) horizon, heterogeneous agents with possibly mean field interaction, competing Principals...

13 Principal-Agent problem formulation : non-degeneracy Agent problem : V A (ξ) := sup E P[ ξ(x ) P P ] c t (ν t )dt P P : weak solution of Output process for some ν valued in U : dx t = σ t (X, β t ) [ λ t (X, α t )dt + dwt P ] P a.s. Given solution P (ξ), Principal solves the optimization problem V P := sup ξ Ξ ρ E P (ξ) [ U ( l(x ) ξ(x ) )] where Ξ ρ := { ξ(x. ) : V A (ξ) ρ } Possible extensions : random (possibly ) horizon, heterogeneous agents with possibly mean field interaction, competing Principals...

14 GENERAL SOLUTION APPROACH

15 A subset of revealing contracts Path-dependent Hamiltonian for the Agent problem : { H t (ω, z, γ) := sup bt (ω, u) z + 1 u U 2 σ tσt (ω, u):γ c t (ω, u) } For Y R, Z, Γ F X prog meas, define P a.s. for all P P t Yt Z,Γ = Y + Z s dx s Γ s : d X s H s (X, Z s, Γ s )ds ( Proposition V A Y Z,Γ) T = Y. Moreover P is optimal iff ν t = Argmax u U H t(z t, Γ t ) = ˆν(Z t, Γ t )

16 A subset of revealing contracts Path-dependent Hamiltonian for the Agent problem : { H t (ω, z, γ) := sup bt (ω, u) z + 1 u U 2 σ tσt (ω, u):γ c t (ω, u) } For Y R, Z, Γ F X prog meas, define P a.s. for all P P t Yt Z,Γ = Y + Z s dx s Γ s : d X s H s (X, Z s, Γ s )ds ( Proposition V A Y Z,Γ) T = Y. Moreover P is optimal iff ν t = Argmax u U H t(z t, Γ t ) = ˆν(Z t, Γ t )

17 Proof : classical verification argument! For all P P, denote J A (ξ, P) := E P[ ξ cν t dt ]. Then J A ( Y Z,Γ T, P) = E P[ Y + Z t dx t Γ t:d X t H t (Z t, Γ t )dt ] ct ν dt { = Y +E P bt ν Z t + 1 } 2 σσ :Γ t ct ν H t (Z t, Γ t ) dt+z t σt ν dwt P Y by definition of H with equality iff ν = ν maximizes the Hamiltonian

18 Principal problem restricted to revealing contracts Dynamics of the pair (X, Y ) under optimal response ( ( ) dx t = b t X, ˆν(Y Z,Γ t, Z t, Γ t ) )dt + σ t X, ˆν(Y t Z,Γ, Z t, Γ t ) dw t dy Z,Γ t = Z t dx t Γ t : d X t H t (X, Yt Z,Γ, Z t, Γ t )dt is a (1 state augmented) controlled SDE with controls (Z, Γ) = Principal s value function under revealing contracts : [ V P V (X, Y ) := sup E U ( l(x ) Y Z,Γ ) ] T, for all Y ρ (Z,Γ) V { where V := (Z, Γ) : Z H 2 (P) and P ( Y Z,Γ ) } T

19 Theorem (Cvitanić, Possamaï & NT 15) Assume V. Then V P = sup V (X, Y ) Y ρ Given maximizer Y, the corresponding optimal controls (Z, Γ ) induce an optimal contract ξ = Y + Zt dx t Γ t : d X t H t (X, Y Z,Γ t, Zt, Γ t )dt

20 Recall the subclass of contracts Y Z,Γ t = Y + t Z s dx s Γ s :d X s H s (X, Ys Z,Γ, Z s, Γ s )ds P a.s. for all P P To prove the main result, it suffices to prove the representation for all ξ?? (Y, Z, Γ) s.t. ξ = Y Z,Γ, P a.s. for all P P OR, weaker sufficient condition : T for all ξ?? (Y n, Z n, Γ n ) s.t. Y Z n,γ n T ξ

21 Recall the subclass of contracts Y Z,Γ t = Y + t Z s dx s Γ s :d X s H s (X, Ys Z,Γ, Z s, Γ s )ds P a.s. for all P P To prove the main result, it suffices to prove the representation for all ξ?? (Y, Z, Γ) s.t. ξ = Y Z,Γ, P a.s. for all P P OR, weaker sufficient condition : T for all ξ?? (Y n, Z n, Γ n ) s.t. Y Z n,γ n T ξ

22 Recall the subclass of contracts Y Z,Γ t = Y + t Z s dx s Γ s :d X s H s (X, Ys Z,Γ, Z s, Γ s )ds P a.s. for all P P To prove the main result, it suffices to prove the representation for all ξ?? (Y, Z, Γ) s.t. ξ = Y Z,Γ, P a.s. for all P P OR, weaker sufficient condition : T for all ξ?? (Y n, Z n, Γ n ) s.t. Y Z n,γ n T ξ

23 Connexion with nonlinear parabolic PDEs Consider the Markov case ξ = g(x T ), required representation is : Y T = g(x T ), and dy t = Z t dx t Γ t :d X t H t (X t, Y t, Z t, Γ t )dt P a.s. for all P P Intuitively, Y t = v(t, X t ) with decomposition (Itô s formula) dy t = t v(t, X t )dt + Dv(t, X t ) dx t D2 v(t, X t ):d X t By direct identification : Z t = Dv(t, X t ), Γ t = D 2 v(t, X t ), and t v + H(., v, Dv, D 2 v) =, with boundary cond.v t=t = g Representation path-dependent nonlinear parabolic PDE

24 Connexion with nonlinear parabolic PDEs Consider the Markov case ξ = g(x T ), required representation is : Y T = g(x T ), and dy t = Z t dx t Γ t :d X t H t (X t, Y t, Z t, Γ t )dt P a.s. for all P P Intuitively, Y t = v(t, X t ) with decomposition (Itô s formula) dy t = t v(t, X t )dt + Dv(t, X t ) dx t D2 v(t, X t ):d X t By direct identification : Z t = Dv(t, X t ), Γ t = D 2 v(t, X t ), and t v + H(., v, Dv, D 2 v) =, with boundary cond.v t=t = g Representation path-dependent nonlinear parabolic PDE

25 Outline Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs 1 2 Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs

26 Nonlinear expectation operators P : subset of local martingale measures, i.e. Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs dx t = σ t dw t, P a.s. for all P P = Nonlinear expectation E := sup P P E P Similarly, P L : subset of measures Q λ such that dx t = σ t (λ t dt + dw t ), Q a.s. for some λ, F adapted, λ L = Another nonlinear expectation E L := sup P P L E Q E and E L will play the role of Sobolev norms...

27 Random horizon 2 nd order backward SDE Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs For a stop. time τ, and F τ measurable ξ : Y t τ = ξ + τ t τ F s (Y s, Z s, ˆσ s )ds τ t τ Z s dx s + τ t τ K non-decreasing, K =, and minimal in the sense t τ ] inf EP[ dk r =, for all s t P P s τ dk s, P q.s. P q.s. MEANS P a.s. for all P P

28 Nonlinearity Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs Assumptions F : R + ω R R d S d + R satisfies (C1 L ) Lipschitz in (y, σz) : F (., y, z, σ) F (., y, z, σ) L ( y y + σ(z z ) ) (C2 µ ) Monotone in y : (y y ) [F (., y,.) F (., y,.) ] µ y y 2 Denote f t := F t (,, σt ) Remark Deterministic finite horizon τ = T : (C2) µ not needed Soner, NT & Zhang 14 and Possamaï, Tan & Zhou 16

29 Nonlinearity Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs Assumptions F : R + ω R R d S d + R satisfies (C1 L ) Lipschitz in (y, σz) : F (., y, z, σ) F (., y, z, σ) L ( y y + σ(z z ) ) (C2 µ ) Monotone in y : (y y ) [F (., y,.) F (., y,.) ] µ y y 2 Denote f t := F t (,, σt ) Remark Deterministic finite horizon τ = T : (C2) µ not needed Soner, NT & Zhang 14 and Possamaï, Tan & Zhou 16

30 Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs Wellposedness of random horizon 2 nd order backward SDE Y t τ = ξ + τ t τ F s (Y s, Z s, ˆσ s )ds τ t τ Z s dx s + τ t τ dk s, K non-decreasing, and inf P P E P[ t τ s τ dk r ] =, s t P q.s. Theorem (Y. Lin, Z. Ren, NT & J. Yang 17) Assume ρ> µ, q >1 : E L[ e ρτ ξ q ] + E L [( τ e ρt f 2 ds ) q ] 2 < Then, Random horizon 2BSDE has a unique solution (Y, Z) with Y D p η,τ (P L ), Z H p η,τ (P L ) for all η [ µ, ρ), p [1, q) Y p D p η,τ (P L ) := EL[ sup e ηt ] Y t p, Z p τ H p t τ η,τ (P) := EL[( e ηt σ t T ) p Z t 2 dt t 2 ]

31 Back to Principal-Agent problem Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs Recall the subclass of contracts Y Z,Γ t = Y + t Z s dx s Γ s :d X s H s (X, Ys Z,Γ, Z s, Γ s )ds, P q.s. To prove the main result, it suffices to prove the representation for all ξ?? (Y, Z, Γ) s.t. ξ = Y Z,Γ T, P q.s. OR, weaker sufficient condition : for all ξ?? (Y n, Z n, Γ n ) s.t. Y Z n,γ n T ξ

32 Reduction to second order BSDE Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs H t (ω, y, z, γ) non-decreasing and convex in γ, Then { 1 H t (ω, y, z, γ) = sup σ 2 σ2 : γ Ht (ω, y, z, σ)} Denote k t := H t (Y t, Z t, Γ t ) 1 2 ˆσ2 t : Γ t + H t (Y t, Z t, ˆσ t ) Then, required representation ξ = Y Z,Γ, P q.s. is equivalent to ξ = Y + T Z s dx s Γ s :d X s H s (X, Ys Z,Γ, Z s, Γ s )ds compare with 2BSDE ξ = Y F s (Y s, Z s, ˆσ s )ds + Z s dx s dk s, P q.s.

33 Reduction to second order BSDE Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs H t (ω, y, z, γ) non-decreasing and convex in γ, Then { 1 H t (ω, y, z, γ) = sup σ 2 σ2 : γ Ht (ω, y, z, σ)} Denote k t := H t (Y t, Z t, Γ t ) 1 2 ˆσ2 t : Γ t + H t (Y t, Z t, ˆσ t ) Then, required representation ξ = Y Z,Γ, P q.s. is equivalent to ξ = Y + T Z s dx s Γ s :d X s H s (X, Ys Z,Γ, Z s, Γ s )ds compare with 2BSDE ξ = Y F s (Y s, Z s, ˆσ s )ds + Z s dx s dk s, P q.s.

34 Reduction to second order BSDE Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs H t (ω, y, z, γ) non-decreasing and convex in γ, Then { 1 H t (ω, y, z, γ) = sup σ 2 σ2 : γ Ht (ω, y, z, σ)} Denote k t := H t (Y t, Z t, Γ t ) 1 2 ˆσ2 t : Γ t + H t (Y t, Z t, ˆσ t ) Then, required representation ξ = Y Z,Γ, P q.s. is equivalent to ξ = Y + Z t dx t + H t (Y t, Z t, ˆσ t )dt T k t dt, P q.s. compare with 2BSDE ξ = Y F s (Y s, Z s, ˆσ s )ds + Z s dx s dk s, P q.s.

35 Reduction to second order BSDE Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs H t (ω, y, z, γ) non-decreasing and convex in γ, Then { 1 H t (ω, y, z, γ) = sup σ 2 σ2 : γ Ht (ω, y, z, σ)} Denote k t := H t (Y t, Z t, Γ t ) 1 2 ˆσ2 t : Γ t + H t (Y t, Z t, ˆσ t ) Then, required representation ξ = Y Z,Γ, P q.s. is equivalent to ξ = Y + Z t dx t + H t (Y t, Z t, ˆσ t )dt T k t dt, P q.s. compare with 2BSDE ξ = Y F s (Y s, Z s, ˆσ s )ds + Z s dx s dk s, P q.s.

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Nonlinear representation, backward SDEs, and application to the Principal-Agent problem Ecole Polytechnique, France April 4, 218 Outline The Principal-Agent problem Formulation 1 The Principal-Agent problem

More information

The Mathematics of Continuous Time Contract Theory

The Mathematics of Continuous Time Contract Theory The Mathematics of Continuous Time Contract Theory Ecole Polytechnique, France University of Michigan, April 3, 2018 Outline Introduction to moral hazard 1 Introduction to moral hazard 2 3 General formulation

More information

An Introduction to Moral Hazard in Continuous Time

An Introduction to Moral Hazard in Continuous Time An Introduction to Moral Hazard in Continuous Time Columbia University, NY Chairs Days: Insurance, Actuarial Science, Data and Models, June 12th, 2018 Outline 1 2 Intuition and verification 2BSDEs 3 Control

More information

A class of globally solvable systems of BSDE and applications

A class of globally solvable systems of BSDE and applications A class of globally solvable systems of BSDE and applications Gordan Žitković Department of Mathematics The University of Texas at Austin Thera Stochastics - Wednesday, May 31st, 2017 joint work with Hao

More information

On the Multi-Dimensional Controller and Stopper Games

On the Multi-Dimensional Controller and Stopper Games On the Multi-Dimensional Controller and Stopper Games Joint work with Yu-Jui Huang University of Michigan, Ann Arbor June 7, 2012 Outline Introduction 1 Introduction 2 3 4 5 Consider a zero-sum controller-and-stopper

More information

Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience

Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience Ulrich Horst 1 Humboldt-Universität zu Berlin Department of Mathematics and School of Business and Economics Vienna, Nov.

More information

Uniformly Uniformly-ergodic Markov chains and BSDEs

Uniformly Uniformly-ergodic Markov chains and BSDEs Uniformly Uniformly-ergodic Markov chains and BSDEs Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) Centre Henri Lebesgue,

More information

Non-Zero-Sum Stochastic Differential Games of Controls and St

Non-Zero-Sum Stochastic Differential Games of Controls and St Non-Zero-Sum Stochastic Differential Games of Controls and Stoppings October 1, 2009 Based on two preprints: to a Non-Zero-Sum Stochastic Differential Game of Controls and Stoppings I. Karatzas, Q. Li,

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Mean-field SDE driven by a fractional BM. A related stochastic control problem

Mean-field SDE driven by a fractional BM. A related stochastic control problem Mean-field SDE driven by a fractional BM. A related stochastic control problem Rainer Buckdahn, Université de Bretagne Occidentale, Brest Durham Symposium on Stochastic Analysis, July 1th to July 2th,

More information

Dynamic programming approach to Principal-Agent problems

Dynamic programming approach to Principal-Agent problems Dynamic programming approach to Principal-Agent problems Jakša Cvitanić, Dylan Possamaï and Nizar ouzi September 8, 217 Abstract We consider a general formulation of the Principal Agent problem with a

More information

Viscosity Solutions of Path-dependent Integro-Differential Equations

Viscosity Solutions of Path-dependent Integro-Differential Equations Viscosity Solutions of Path-dependent Integro-Differential Equations Christian Keller University of Southern California Conference on Stochastic Asymptotics & Applications Joint with 6th Western Conference

More information

MEAN FIELD GAMES WITH MAJOR AND MINOR PLAYERS

MEAN FIELD GAMES WITH MAJOR AND MINOR PLAYERS MEAN FIELD GAMES WITH MAJOR AND MINOR PLAYERS René Carmona Department of Operations Research & Financial Engineering PACM Princeton University CEMRACS - Luminy, July 17, 217 MFG WITH MAJOR AND MINOR PLAYERS

More information

Stochastic optimal control with rough paths

Stochastic optimal control with rough paths Stochastic optimal control with rough paths Paul Gassiat TU Berlin Stochastic processes and their statistics in Finance, Okinawa, October 28, 2013 Joint work with Joscha Diehl and Peter Friz Introduction

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Weak solutions of mean-field stochastic differential equations

Weak solutions of mean-field stochastic differential equations Weak solutions of mean-field stochastic differential equations Juan Li School of Mathematics and Statistics, Shandong University (Weihai), Weihai 26429, China. Email: juanli@sdu.edu.cn Based on joint works

More information

Quadratic BSDE systems and applications

Quadratic BSDE systems and applications Quadratic BSDE systems and applications Hao Xing London School of Economics joint work with Gordan Žitković Stochastic Analysis and Mathematical Finance-A Fruitful Partnership 25 May, 2016 1 / 23 Backward

More information

Markov Chain BSDEs and risk averse networks

Markov Chain BSDEs and risk averse networks Markov Chain BSDEs and risk averse networks Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) 2nd Young Researchers in BSDEs

More information

Backward Stochastic Differential Equations with Infinite Time Horizon

Backward Stochastic Differential Equations with Infinite Time Horizon Backward Stochastic Differential Equations with Infinite Time Horizon Holger Metzler PhD advisor: Prof. G. Tessitore Università di Milano-Bicocca Spring School Stochastic Control in Finance Roscoff, March

More information

BSDEs and PDEs with discontinuous coecients Applications to homogenization K. Bahlali, A. Elouain, E. Pardoux. Jena, March 2009

BSDEs and PDEs with discontinuous coecients Applications to homogenization K. Bahlali, A. Elouain, E. Pardoux. Jena, March 2009 BSDEs and PDEs with discontinuous coecients Applications to homogenization K. Bahlali, A. Elouain, E. Pardoux. Jena, 16-20 March 2009 1 1) L p viscosity solution to 2nd order semilinear parabolic PDEs

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

On the stochastic nonlinear Schrödinger equation

On the stochastic nonlinear Schrödinger equation On the stochastic nonlinear Schrödinger equation Annie Millet collaboration with Z. Brzezniak SAMM, Paris 1 and PMA Workshop Women in Applied Mathematics, Heraklion - May 3 211 Outline 1 The NL Shrödinger

More information

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem Koichiro TAKAOKA Dept of Applied Physics, Tokyo Institute of Technology Abstract M Yor constructed a family

More information

Mean-Field Games with non-convex Hamiltonian

Mean-Field Games with non-convex Hamiltonian Mean-Field Games with non-convex Hamiltonian Martino Bardi Dipartimento di Matematica "Tullio Levi-Civita" Università di Padova Workshop "Optimal Control and MFGs" Pavia, September 19 21, 2018 Martino

More information

Random G -Expectations

Random G -Expectations Random G -Expectations Marcel Nutz ETH Zurich New advances in Backward SDEs for nancial engineering applications Tamerza, Tunisia, 28.10.2010 Marcel Nutz (ETH) Random G-Expectations 1 / 17 Outline 1 Random

More information

Asymptotic Perron Method for Stochastic Games and Control

Asymptotic Perron Method for Stochastic Games and Control Asymptotic Perron Method for Stochastic Games and Control Mihai Sîrbu, The University of Texas at Austin Methods of Mathematical Finance a conference in honor of Steve Shreve s 65th birthday Carnegie Mellon

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA AND ALEKSANDAR MIJATOVIĆ Abstract. We develop a general approach to the Policy Improvement Algorithm (PIA) for stochastic control problems

More information

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS APPLICATIONES MATHEMATICAE 29,4 (22), pp. 387 398 Mariusz Michta (Zielona Góra) OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS Abstract. A martingale problem approach is used first to analyze

More information

Weak convergence and large deviation theory

Weak convergence and large deviation theory First Prev Next Go To Go Back Full Screen Close Quit 1 Weak convergence and large deviation theory Large deviation principle Convergence in distribution The Bryc-Varadhan theorem Tightness and Prohorov

More information

Prof. Erhan Bayraktar (University of Michigan)

Prof. Erhan Bayraktar (University of Michigan) September 17, 2012 KAP 414 2:15 PM- 3:15 PM Prof. (University of Michigan) Abstract: We consider a zero-sum stochastic differential controller-and-stopper game in which the state process is a controlled

More information

Infinite-dimensional methods for path-dependent equations

Infinite-dimensional methods for path-dependent equations Infinite-dimensional methods for path-dependent equations (Università di Pisa) 7th General AMaMeF and Swissquote Conference EPFL, Lausanne, 8 September 215 Based on Flandoli F., Zanco G. - An infinite-dimensional

More information

On the submartingale / supermartingale property of diffusions in natural scale

On the submartingale / supermartingale property of diffusions in natural scale On the submartingale / supermartingale property of diffusions in natural scale Alexander Gushchin Mikhail Urusov Mihail Zervos November 13, 214 Abstract Kotani 5 has characterised the martingale property

More information

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Gonçalo dos Reis University of Edinburgh (UK) & CMA/FCT/UNL (PT) jointly with: W. Salkeld, U. of

More information

Multi-dimensional Stochastic Singular Control Via Dynkin Game and Dirichlet Form

Multi-dimensional Stochastic Singular Control Via Dynkin Game and Dirichlet Form Multi-dimensional Stochastic Singular Control Via Dynkin Game and Dirichlet Form Yipeng Yang * Under the supervision of Dr. Michael Taksar Department of Mathematics University of Missouri-Columbia Oct

More information

1 Brownian Local Time

1 Brownian Local Time 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) =

More information

LECTURES ON MEAN FIELD GAMES: II. CALCULUS OVER WASSERSTEIN SPACE, CONTROL OF MCKEAN-VLASOV DYNAMICS, AND THE MASTER EQUATION

LECTURES ON MEAN FIELD GAMES: II. CALCULUS OVER WASSERSTEIN SPACE, CONTROL OF MCKEAN-VLASOV DYNAMICS, AND THE MASTER EQUATION LECTURES ON MEAN FIELD GAMES: II. CALCULUS OVER WASSERSTEIN SPACE, CONTROL OF MCKEAN-VLASOV DYNAMICS, AND THE MASTER EQUATION René Carmona Department of Operations Research & Financial Engineering PACM

More information

The Pedestrian s Guide to Local Time

The Pedestrian s Guide to Local Time The Pedestrian s Guide to Local Time Tomas Björk, Department of Finance, Stockholm School of Economics, Box 651, SE-113 83 Stockholm, SWEDEN tomas.bjork@hhs.se November 19, 213 Preliminary version Comments

More information

Multilevel Monte Carlo for Stochastic McKean-Vlasov Equations

Multilevel Monte Carlo for Stochastic McKean-Vlasov Equations Multilevel Monte Carlo for Stochastic McKean-Vlasov Equations Lukasz Szpruch School of Mathemtics University of Edinburgh joint work with Shuren Tan and Alvin Tse (Edinburgh) Lukasz Szpruch (University

More information

Quasi-sure Stochastic Analysis through Aggregation

Quasi-sure Stochastic Analysis through Aggregation Quasi-sure Stochastic Analysis through Aggregation H. Mete Soner Nizar Touzi Jianfeng Zhang March 7, 21 Abstract This paper is on developing stochastic analysis simultaneously under a general family of

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Robert J. Elliott 1 Samuel N. Cohen 2 1 Department of Commerce, University of South Australia 2 Mathematical Insitute, University

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Continuous dependence estimates for the ergodic problem with an application to homogenization

Continuous dependence estimates for the ergodic problem with an application to homogenization Continuous dependence estimates for the ergodic problem with an application to homogenization Claudio Marchi Bayreuth, September 12 th, 2013 C. Marchi (Università di Padova) Continuous dependence Bayreuth,

More information

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1)

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1) Question 1 The correct answers are: a 2 b 1 c 2 d 3 e 2 f 1 g 2 h 1 Question 2 a Any probability measure Q equivalent to P on F 2 can be described by Q[{x 1, x 2 }] := q x1 q x1,x 2, 1 where q x1, q x1,x

More information

Risk-Sensitive and Robust Mean Field Games

Risk-Sensitive and Robust Mean Field Games Risk-Sensitive and Robust Mean Field Games Tamer Başar Coordinated Science Laboratory Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, IL - 6181 IPAM

More information

ELEMENTS OF STOCHASTIC CALCULUS VIA REGULARISATION. A la mémoire de Paul-André Meyer

ELEMENTS OF STOCHASTIC CALCULUS VIA REGULARISATION. A la mémoire de Paul-André Meyer ELEMENTS OF STOCHASTIC CALCULUS VIA REGULARISATION A la mémoire de Paul-André Meyer Francesco Russo (1 and Pierre Vallois (2 (1 Université Paris 13 Institut Galilée, Mathématiques 99 avenue J.B. Clément

More information

Skorokhod Embeddings In Bounded Time

Skorokhod Embeddings In Bounded Time Skorokhod Embeddings In Bounded Time Stefan Ankirchner Institute for Applied Mathematics University of Bonn Endenicher Allee 6 D-535 Bonn ankirchner@hcm.uni-bonn.de Philipp Strack Bonn Graduate School

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

Regularization by noise in infinite dimensions

Regularization by noise in infinite dimensions Regularization by noise in infinite dimensions Franco Flandoli, University of Pisa King s College 2017 Franco Flandoli, University of Pisa () Regularization by noise King s College 2017 1 / 33 Plan of

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

Solving Stochastic Partial Differential Equations as Stochastic Differential Equations in Infinite Dimensions - a Review

Solving Stochastic Partial Differential Equations as Stochastic Differential Equations in Infinite Dimensions - a Review Solving Stochastic Partial Differential Equations as Stochastic Differential Equations in Infinite Dimensions - a Review L. Gawarecki Kettering University NSF/CBMS Conference Analysis of Stochastic Partial

More information

Mean-Field optimization problems and non-anticipative optimal transport. Beatrice Acciaio

Mean-Field optimization problems and non-anticipative optimal transport. Beatrice Acciaio Mean-Field optimization problems and non-anticipative optimal transport Beatrice Acciaio London School of Economics based on ongoing projects with J. Backhoff, R. Carmona and P. Wang Robust Methods in

More information

On the dual problem of utility maximization

On the dual problem of utility maximization On the dual problem of utility maximization Yiqing LIN Joint work with L. GU and J. YANG University of Vienna Sept. 2nd 2015 Workshop Advanced methods in financial mathematics Angers 1 Introduction Basic

More information

Control and Observation for Stochastic Partial Differential Equations

Control and Observation for Stochastic Partial Differential Equations Control and Observation for Stochastic Partial Differential Equations Qi Lü LJLL, UPMC October 5, 2013 Advertisement Do the controllability problems for stochastic ordinary differential equations(sdes

More information

Variational approach to mean field games with density constraints

Variational approach to mean field games with density constraints 1 / 18 Variational approach to mean field games with density constraints Alpár Richárd Mészáros LMO, Université Paris-Sud (based on ongoing joint works with F. Santambrogio, P. Cardaliaguet and F. J. Silva)

More information

PDE Methods for Mean Field Games with Non-Separable Hamiltonian: Data in Sobolev Spaces (Continued) David Ambrose June 29, 2018

PDE Methods for Mean Field Games with Non-Separable Hamiltonian: Data in Sobolev Spaces (Continued) David Ambrose June 29, 2018 PDE Methods for Mean Field Games with Non-Separable Hamiltonian: Data in Sobolev Spaces Continued David Ambrose June 29, 218 Steps of the energy method Introduce an approximate problem. Prove existence

More information

Harnack Inequalities and Applications for Stochastic Equations

Harnack Inequalities and Applications for Stochastic Equations p. 1/32 Harnack Inequalities and Applications for Stochastic Equations PhD Thesis Defense Shun-Xiang Ouyang Under the Supervision of Prof. Michael Röckner & Prof. Feng-Yu Wang March 6, 29 p. 2/32 Outline

More information

Robust Markowitz portfolio selection. ambiguous covariance matrix

Robust Markowitz portfolio selection. ambiguous covariance matrix under ambiguous covariance matrix University Paris Diderot, LPMA Sorbonne Paris Cité Based on joint work with A. Ismail, Natixis MFO March 2, 2017 Outline Introduction 1 Introduction 2 3 and Sharpe ratio

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

The Skorokhod problem in a time-dependent interval

The Skorokhod problem in a time-dependent interval The Skorokhod problem in a time-dependent interval Krzysztof Burdzy, Weining Kang and Kavita Ramanan University of Washington and Carnegie Mellon University Abstract: We consider the Skorokhod problem

More information

Backward martingale representation and endogenous completeness in finance

Backward martingale representation and endogenous completeness in finance Backward martingale representation and endogenous completeness in finance Dmitry Kramkov (with Silviu Predoiu) Carnegie Mellon University 1 / 19 Bibliography Robert M. Anderson and Roberto C. Raimondo.

More information

Generalized Gaussian Bridges of Prediction-Invertible Processes

Generalized Gaussian Bridges of Prediction-Invertible Processes Generalized Gaussian Bridges of Prediction-Invertible Processes Tommi Sottinen 1 and Adil Yazigi University of Vaasa, Finland Modern Stochastics: Theory and Applications III September 1, 212, Kyiv, Ukraine

More information

ROOT S BARRIER, VISCOSITY SOLUTIONS OF OBSTACLE PROBLEMS AND REFLECTED FBSDES

ROOT S BARRIER, VISCOSITY SOLUTIONS OF OBSTACLE PROBLEMS AND REFLECTED FBSDES OOT S BAIE, VISCOSITY SOLUTIONS OF OBSTACLE POBLEMS AND EFLECTED FBSDES HAALD OBEHAUSE AND GONÇALO DOS EIS Abstract. Following work of Dupire 005, Carr Lee 010 and Cox Wang 011 on connections between oot

More information

Singular Perturbations of Stochastic Control Problems with Unbounded Fast Variables

Singular Perturbations of Stochastic Control Problems with Unbounded Fast Variables Singular Perturbations of Stochastic Control Problems with Unbounded Fast Variables Joao Meireles joint work with Martino Bardi and Guy Barles University of Padua, Italy Workshop "New Perspectives in Optimal

More information

Homogenization with stochastic differential equations

Homogenization with stochastic differential equations Homogenization with stochastic differential equations Scott Hottovy shottovy@math.arizona.edu University of Arizona Program in Applied Mathematics October 12, 2011 Modeling with SDE Use SDE to model system

More information

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Chapter 3 A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Abstract We establish a change of variable

More information

On semilinear elliptic equations with measure data

On semilinear elliptic equations with measure data On semilinear elliptic equations with measure data Andrzej Rozkosz (joint work with T. Klimsiak) Nicolaus Copernicus University (Toruń, Poland) Controlled Deterministic and Stochastic Systems Iasi, July

More information

Stochastic Differential Equations

Stochastic Differential Equations CHAPTER 1 Stochastic Differential Equations Consider a stochastic process X t satisfying dx t = bt, X t,w t dt + σt, X t,w t dw t. 1.1 Question. 1 Can we obtain the existence and uniqueness theorem for

More information

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009 A new approach for investment performance measurement 3rd WCMF, Santa Barbara November 2009 Thaleia Zariphopoulou University of Oxford, Oxford-Man Institute and The University of Texas at Austin 1 Performance

More information

Tools of stochastic calculus

Tools of stochastic calculus slides for the course Interest rate theory, University of Ljubljana, 212-13/I, part III József Gáll University of Debrecen Nov. 212 Jan. 213, Ljubljana Itô integral, summary of main facts Notations, basic

More information

Régularité des équations de Hamilton-Jacobi du premier ordre et applications aux jeux à champ moyen

Régularité des équations de Hamilton-Jacobi du premier ordre et applications aux jeux à champ moyen Régularité des équations de Hamilton-Jacobi du premier ordre et applications aux jeux à champ moyen Daniela Tonon en collaboration avec P. Cardaliaguet et A. Porretta CEREMADE, Université Paris-Dauphine,

More information

Approximation of BSDEs using least-squares regression and Malliavin weights

Approximation of BSDEs using least-squares regression and Malliavin weights Approximation of BSDEs using least-squares regression and Malliavin weights Plamen Turkedjiev (turkedji@math.hu-berlin.de) 3rd July, 2012 Joint work with Prof. Emmanuel Gobet (E cole Polytechnique) Plamen

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Pathwise Construction of Stochastic Integrals

Pathwise Construction of Stochastic Integrals Pathwise Construction of Stochastic Integrals Marcel Nutz First version: August 14, 211. This version: June 12, 212. Abstract We propose a method to construct the stochastic integral simultaneously under

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

Neighboring feasible trajectories in infinite dimension

Neighboring feasible trajectories in infinite dimension Neighboring feasible trajectories in infinite dimension Marco Mazzola Université Pierre et Marie Curie (Paris 6) H. Frankowska and E. M. Marchini Control of State Constrained Dynamical Systems Padova,

More information

Lecture 12: Diffusion Processes and Stochastic Differential Equations

Lecture 12: Diffusion Processes and Stochastic Differential Equations Lecture 12: Diffusion Processes and Stochastic Differential Equations 1. Diffusion Processes 1.1 Definition of a diffusion process 1.2 Examples 2. Stochastic Differential Equations SDE) 2.1 Stochastic

More information

Mean Field Game Theory for Systems with Major and Minor Agents: Nonlinear Theory and Mean Field Estimation

Mean Field Game Theory for Systems with Major and Minor Agents: Nonlinear Theory and Mean Field Estimation Mean Field Game Theory for Systems with Major and Minor Agents: Nonlinear Theory and Mean Field Estimation Peter E. Caines McGill University, Montreal, Canada 2 nd Workshop on Mean-Field Games and Related

More information

1. Stochastic Process

1. Stochastic Process HETERGENEITY IN QUANTITATIVE MACROECONOMICS @ TSE OCTOBER 17, 216 STOCHASTIC CALCULUS BASICS SANG YOON (TIM) LEE Very simple notes (need to add references). It is NOT meant to be a substitute for a real

More information

Information and Credit Risk

Information and Credit Risk Information and Credit Risk M. L. Bedini Université de Bretagne Occidentale, Brest - Friedrich Schiller Universität, Jena Jena, March 2011 M. L. Bedini (Université de Bretagne Occidentale, Brest Information

More information

BV functions in a Gelfand triple and the stochastic reflection problem on a convex set

BV functions in a Gelfand triple and the stochastic reflection problem on a convex set BV functions in a Gelfand triple and the stochastic reflection problem on a convex set Xiangchan Zhu Joint work with Prof. Michael Röckner and Rongchan Zhu Xiangchan Zhu ( Joint work with Prof. Michael

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

Optimal Stopping under Adverse Nonlinear Expectation and Related Games

Optimal Stopping under Adverse Nonlinear Expectation and Related Games Optimal Stopping under Adverse Nonlinear Expectation and Related Games Marcel Nutz Jianfeng Zhang First version: December 7, 2012. This version: July 21, 2014 Abstract We study the existence of optimal

More information

A Class of Fractional Stochastic Differential Equations

A Class of Fractional Stochastic Differential Equations Vietnam Journal of Mathematics 36:38) 71 79 Vietnam Journal of MATHEMATICS VAST 8 A Class of Fractional Stochastic Differential Equations Nguyen Tien Dung Department of Mathematics, Vietnam National University,

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 1, 216 Statistical properties of dynamical systems, ESI Vienna. David

More information

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Group 4: Bertan Yilmaz, Richard Oti-Aboagye and Di Liu May, 15 Chapter 1 Proving Dynkin s formula

More information

Minimal Supersolutions of Backward Stochastic Differential Equations and Robust Hedging

Minimal Supersolutions of Backward Stochastic Differential Equations and Robust Hedging Minimal Supersolutions of Backward Stochastic Differential Equations and Robust Hedging SAMUEL DRAPEAU Humboldt-Universität zu Berlin BSDEs, Numerics and Finance Oxford July 2, 2012 joint work with GREGOR

More information

A stochastic particle system for the Burgers equation.

A stochastic particle system for the Burgers equation. A stochastic particle system for the Burgers equation. Alexei Novikov Department of Mathematics Penn State University with Gautam Iyer (Carnegie Mellon) supported by NSF Burgers equation t u t + u x u

More information

Numerical scheme for quadratic BSDEs and Dynamic Risk Measures

Numerical scheme for quadratic BSDEs and Dynamic Risk Measures Numerical scheme for quadratic BSDEs, Numerics and Finance, Oxford Man Institute Julien Azzaz I.S.F.A., Lyon, FRANCE 4 July 2012 Joint Work In Progress with Anis Matoussi, Le Mans, FRANCE Outline Framework

More information

Squared Bessel Process with Delay

Squared Bessel Process with Delay Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 216 Squared Bessel Process with Delay Harry Randolph Hughes Southern Illinois University Carbondale, hrhughes@siu.edu

More information

Stochastic Processes III/ Wahrscheinlichkeitstheorie IV. Lecture Notes

Stochastic Processes III/ Wahrscheinlichkeitstheorie IV. Lecture Notes BMS Advanced Course Stochastic Processes III/ Wahrscheinlichkeitstheorie IV Michael Scheutzow Lecture Notes Technische Universität Berlin Wintersemester 218/19 preliminary version November 28th 218 Contents

More information

Mean-Field optimization problems and non-anticipative optimal transport. Beatrice Acciaio

Mean-Field optimization problems and non-anticipative optimal transport. Beatrice Acciaio Mean-Field optimization problems and non-anticipative optimal transport Beatrice Acciaio London School of Economics based on ongoing projects with J. Backhoff, R. Carmona and P. Wang Thera Stochastics

More information