Studies on photoelectroactive (CdHg)Se films in different redox systems

Size: px
Start display at page:

Download "Studies on photoelectroactive (CdHg)Se films in different redox systems"

Transcription

1 Indian Journal of Chemical Technology Vol. 20, November 2013, pp Studies on photoelectroactive (CdHg)Se films in different redox systems Md Rashid Tanveer* & Shoeb A Ansari Department of Chemistry, St. Andrew's P.G. College, Gorakhpur , India Received 7 April 2011 ; accepted 19 August 2013 Electrosynthesis of (CdHg)Se films has been carried out on titanium substrate by electrochemical codeposition method. Photoelectrochemical characteristics of these films studied in different redox solutions reveal that I 3 /I 2 redox system is the most suitable solution for their characterization. Impedance measurements are used for the estimation of corrosion behaviour of the deposited films. The rate of corrosion is found to be comparatively lower when the electrodeposited films are tested in I 3 /I 2 redox solution. Photoaction spectral studies are used to study light intensity dependence on photoactivity and also in the determination of band gap. The band gap values of the electrodeposited films are found to be independent to the nature of redox solution. Keywords: Band gap, Cadmium mercury selenide, Corrosion, Impedance, Photoactivity, Redox solution Solar power, which has the brightest future, is the least popular for the main conventional sources like bio energy and wind because of the high capital costs and relatively low current releases. The solar cells are currently being used by satellites to get energy and photovoltaic modules are being used for street lightning and many other places. Their cost is much higher than that of power generated by conventional means. The conventional sources are cheaper but they are limited on earth and highly polluting. Thus, unless there is tremendous technical advances, solar power will remain peripheral to the larger energy scene. In order to have a hope of replacing fossil fuels, there is need to develop materials that can be easily mass produced and convert enough sunlight to electricity in comparably low cost. In this connection cadmium mercury selenide and cadmium mercury tellurides are attracting attention 14. They have various practical applications 58 ranging from infrared detection to solar energy conversion. These materials are tunable in composition over a wide range. A few methods have been reported for preparing (CdHg)Se. Single crystal of (CdHg)Se is grown by the Bridgman method 9. Recently, thin film (CdHg)Se has been grown epitaxially on CdSe substrates 10. The electrochemical codeposition method may also be employed with advantage for the preparation of these films 11. This method is currently *Corresponding author. rashidtanveer1@gmail.com being used by many workers 12,13 for other related systems also. This technique is relatively easy, less expensive and has negligible waste of materials. The present paper reports an electrochemical codeposition technique for the formation of (CdHg)Se films and study of their photoelectrochemical characteristics with an objective to identify the suitable redox solution for their characterization. Impedance behaviour of the (CdHg)Se films has been examined in different redox solutions. These data have been used for the determination of corrosion rates of the electrodeposited films. The band gap values of the deposited thin films are measured from photoaction spectra. The nature of semiconductivity is assessed by the current voltage behaviour in dark as well as under illumination. Experimental Procedure Electrochemical codeposition of (CdHg)Se was carried out using flag shaped titanium cathode with crosssection area of 1 cm 1 cm. The potential of the cathode was manually kept at a desired value using a power supply. The current flowing between the cathode and the platinum counter electrode was measured by means of multimeter. Solutions of CdSO 4, HgCl 2 (CDH, India) and SeO 2 (Fluka Chemika, Switzerland) were prepared in double distilled water. Illumination was done with the help of a 1000 W tungsten lamp. Band gap values were calculated from photoaction spectrum for which Model f /3.4 monochromator (Applied Photophysics,

2 412 INDIAN J. CHEM. TECHNOL., NOVEMBER 2013 London) was used. Electrochemical impedance measurements were performed with EG & G Princeton Applied Research, USA (Model 378) consisting of a two phase lockinamplifier (Model 5208) and a potentiostat/galvanostat (Model 273) using compatible personal computer. Results and Discussion The currentvoltage behaviour of the electrochemical system containing 0.05 M CdSO 4, M SeO 2 and variable composition of HgCl 2 has been investigated with the objective of identification of the deposition potential range within which formation of (CdHg)Se films may be expected. The results presented in Fig. 1 show that the relevant electrochemical activity is confined to the voltage range from 0.40 to 0.75 V versus SCE. The films of (CdHg)Se are electrodeposited at different deposition potentials within this range and tested for their photoelectroactivity in I 3 / I 2 redox system. These studies lead us to infer that a potential of 0.65 V vs SCE is needed for obtaining (CdHg)Se films which exhibit maximum photoresponse. Electrosynthesis of (CdHg)Se may be represented as: H 2 SeO 3 + Cd 2+ + Hg H + + 8e (CdHg)Se + 3H 2 O This reaction is analogous to CdSe formation by electrochemical codeposition 12. The above reaction actually occurs in following two steps: H 2 SeO 3 + 4H + + 4e Cd 2+ + Hg 2+ +Se + 4e Se + 3H 2 O (CdHg)Se A semiconductor upon optical excitation generates two oppositely charged carriers, namely the electrons and the holes. Effective separation of these charge carriers results in the production of photoeffect 14. From the point of view of photoelectric conversion, it is desirable that the majority carriers move towards the bulk of semiconductor while the minority carriers particulate in oxidative or reductive reactions with redox species available in the solution 15. Thus, nature of redox system have profound infuence on separation of charge carriers and production of photoeffect of the electrodeposited films. In order to investigate this aspect, (CdHg)Se films obtained by using electroplating solution containing M SeO 2, 0.05 M CdSO 4 and M HgSO 4 are tested in I 3 /I 2, Fe 2+ /Fe 3+, [Fe(CN) 6 ] 4 /[Fe(CN) 6 ] 3, Ce 3+ /Ce 4+ and polysulphide redox solutions. Results (Table 1) clearly show that (CdHg)Se films exhibit maximum photoresponse in Ce 3+ /Ce 4+ redox solutions. In this system enhanced band bending of semiconductor perhaps occur, leading to increased photoactivity. However, in this redox solution, relatively slow build up rate of photopotential is observed on illumination. On the other hand, the electrodeposited films exhibit reasonable photoactivity with fairly high build up rates in I 3 /I 2 redox solution. In order to ascertain the ability of these materials to withstand impairment in optical activity, these films Table 1 Effect of redox systems on photoactivity of (CdHg)Se films Redox systems Conc. M E D E L E p (CH 3 COO) 2 Cd KI 5 mm I 2 K 4 [Fe(CN) 6 ] K 3 [Fe(CN) 6 ] Ce 2 (SO 4 ) Ce(SO 4 ) 2 NaOH Na S 2 S Fig. 1 Current voltage behaviour in 0.05M CdSO 4 and M SeO 2 solutions containing different concentrations of HgCl 2 FeSO FeCl 3 E D Dark potential. E L Potential obtained on illumination of (CdHg)Se Films. E P Photopotential.

3 TANVEER & ANSARI : PHOTOELECTROACTIVE (CdHg)Se FILMS 413 are subjected to uninterrupted illumination. It is found that electrodeposited films exhibit relatively higher stability in I 3 /I 2 redox solution. The band gap depends on composition of the electroplating solution and should be independent to the nature of redox solution. In order to investigate this aspect, photoaction spectral studies of (CdHg)Se films are carried out in different redox solutions. The photoaction spectra were taken in the form of variation in the photopotential E P with the wave length λ of light irradiated on the film. These data are then used to construct E P 2 verses λ plots. The results are presented in Fig. 2. These plots are used to calculate the threshold frequency (λ T ). Now band gap (E g ) values are calculated using the following relationship: E g (ev) = hc / λ T e (1) where h is the Plank s constant; c, the velocity of light; and e, the electronic charge. The band gap values obtained from these studies are found to be comparable. The slight deviation in the band gap values may be due to different extent of adsorption of redox species on the electrodeposited films. Light intensity dependence of photopotential has been examined at λ = 436 nm, the wavelength which generates maximum photoeffect. A linear relation exists between photopotential and lni L. This behaviour indicates semiconducting nature of the electrodeposits 16. The data are also consistent with the following equation: E P = (AkT/e) ln I L + B (2) where E P is the photopotential in ; A, the ideality factor; I L, the light intensity;k, the Boltzman constant; T, the Absolute temperature; e, the electronic charge; and B, the another constant. The value of A is unity in ideal case. In reality the ideality factors are often larger due to recombination centers and traps responsible for deviation from electroneutrality. For the electrodeposited films examined in I 3 /I 2 redox solution and presented in Fig. 3, the ideality factor is found to be The value of A is also calculated for other redox solutions. The ideality factor is found to be comparable in different redox solutions. In all cases, A is found to be greater than unity which shows that the deposited films are indeed not ideal. Fig. 3 Light intensity dependence of photopotential for (CdHg)Se films at λ = 436 nm Fig. 2 E P 2 versus λ plot for (CdHg) Se films in different redox solutions Fig. 4 Photocurrent photopotential characteristics of (CdHg)Se films

4 414 INDIAN J. CHEM. TECHNOL., NOVEMBER 2013 The photocurrentphotovoltage characteristics of a typical (CdHg)Se film, observed in redox I 3 / I 2 solution, are shown in Fig. 4. Power characteristics of same film are presented in Fig. 5. Fill factor (F.F.) is estimated using the following relationship 17 : (E I ) F.F. P = P max (3) (E I ) P max P max where (E P ) max and (I P ) max are the maximum photopotential and maximum photocurrent respectively. (E P I P ) max is the maximum output. Efficiency (η) is commonly expressed as 18 : ( IP ) max (EP ) max η= 100 P (4) Fill factor and efficiency obtained for the electrodeposited film under consideration are found to be and 0.023% respectively. The efficiency is obviously not attractive from the point of view of photoelectric conversion and needs to be improved by orders of magnitude before these deposited films could be considered of some interest for practical photoelectrochemical conversion. The temperature of redox solution is also found to have effect on the activity of semiconductor. Some electrodeposited films are tested for their photoactivity at different temperatures of I 3 /I 2 redox solution. Enhanced photoresponse is observed at elevated temperature. This perhaps is because of decrease in resistance of semiconductor at higher temperature. But at higher temperature, evaporation of redox solution is an unavoidable problem. The corrosion of material is an essential reaction in the electrochemistry of semiconductor and many workers has already dealt with its negative aspect to PEC solar energy conversion. We have estimated corrosion current i corr and corrosion rate R corr of these materials in different redox solutions from impedance studies. If R P is the polarization resistance of (CdHg)Se semiconducting film, then corrosion current i corr may be expressed as: i corr = RT/ FR P (5) where R is the gas constant; T, the absolute temperature; and F, the faraday constant. The corrosion rate (R corr ) is generally expressed in milli inch per year (mpy) as: R corr (mpy) = 3 i corr (EW) / da (6) where EW is the equivalent weight of the electroactive material; d, the density; and A, the area of crosssection. The corrosion rate may also be expressed as: R corr (gs 1 ) = i corr. (EW) / F (7) Results (Table 2) show that relatively low corrosion rates are obtained when (CdHg)Se electrodeposited films are tested in I 3 /I 2 redox solution. Rs value included in this table is the resistance of solution. Table 2 Impedance parameters of (CdHg)Se films in different redox solutions Redox solution (CH 3 COO) 2 KI I 2 Conc. M 5 mm R s R p i corr R corr Ω kω µa gs K 4 [Fe(CN) 6 ] K 3 [Fe(CN) 6 FeSO 4 FeCl 3 Ce(SO 4 ) 3 Ce(SO 4 ) Fig. 5 Performance of phtoelectrochemical cell based on (CdHg)Se films NaOH Na 2 S S R S Resistance of solution. R P Polarization resistance of semiconductor films. I corr Corrosion current.

5 TANVEER & ANSARI : PHOTOELECTROACTIVE (CdHg)Se FILMS 415 Conclusion The above investigations clearly show that although (CdHg)Se semiconducting films exhibit better photoresponse in the Ce 3+ /Ce 4+ redox solution, the overall results show that I 3 /I 2 system the most suitable redox couple for characterization of (CdHg)Se films. In this redox solution, the (CdHg)Se film exhibits reasonable stability. Acknowledgement One of the authors (MRT) thankfully acknowledges University Grants Commission, New Delhi for providing financial assistance in the form of minor project [F. No. 8 3 (38)/2011 (MRP/NRCB) dated 23 rd December 2011]. References 1 Bhuse V M, Mater Chem Phys, 106 (2007) Jacobs R N, Benson J D, Stoltz A J Almeida L A, Farrel S, Brill G, Salmon M & Newell A, J Crystal Growth, 366 (2013) Duan H, Dong Y Z, Luo J, Huang Y, Chen X S & Lu W, J Phys Chem Solids, 74 (2013) Duan H, Dong Y Z, Lin Z P, Huang Y & Chen X S, Solid State Commun, 152 (2012) Xue L, Zhou P, Zhang C X, Sun L Z & Zhong J X, J Phys Chem Solids, 74 (2013) Jozwikow K, Jozwikowska A, Kopytko M, Rogalski A & Jaroszewies L R, Infrared Phys Technol, 55 (2012) Rhiger D R, Semiconductors Semimetals, 84 (2011) Yang Z S & Chang H T, Solar Energy Materials Solar Cells, 94 (2010) Broerman J G, Proceedings, Eleventh International Conference on the Physics of Semiconductors (Polish Scientific, Warsaw), Vol. 2, 1972, Kong H Z, Shi W D, Wang D C & Wang Chin B K, Phys (Engl Ed), 8 (1988) Aruchamy A & Wrighton M S, J Phys Chem, 84 (1980) Cheng K W & Liang C J, Solar Energy Materials Solar Cells, 94 (2010) Delekar S D, Patil M K, Jadhav B V, Sanadi K R & Hankare P P, Solar Energy, 84 (3) (2010) Chandra S, Photoelectrochemical Cells (Gordon and Breach Inc 1980), chap Russak, J Electrochem Soc, 129 (1982) Tributch H, Structure and Bonding 49, edited by C K Jorgensen (SpringerVerlog Berlin Heidberg), 1982, Archer M D, J Appl Electrochem, 5 (1975) Gerischer H, Pure Appl Chem, 82 (1980) 2049.

Photoelectrochemical characterization of Bi 2 S 3 thin films deposited by modified chemical bath deposition

Photoelectrochemical characterization of Bi 2 S 3 thin films deposited by modified chemical bath deposition Indian Journal of Engineering & Materials Sciences Vol. 13, April; 2006, pp. 140-144 Photoelectrochemical characterization of Bi 2 S 3 thin films deposited by modified chemical bath deposition R R Ahire

More information

Introduction. Katarzyna Skorupska. Silicon will be used as the model material however presented knowledge applies to other semiconducting materials

Introduction. Katarzyna Skorupska. Silicon will be used as the model material however presented knowledge applies to other semiconducting materials Introduction Katarzyna Skorupska Silicon will be used as the model material however presented knowledge applies to other semiconducting materials 2 June 26 Intrinsic and Doped Semiconductors 3 July 3 Optical

More information

Electrochemistry of Semiconductors

Electrochemistry of Semiconductors Electrochemistry of Semiconductors Adrian W. Bott, Ph.D. Bioanalytical Systems, Inc. 2701 Kent Avenue West Lafayette, IN 47906-1382 This article is an introduction to the electrochemical properties of

More information

Q. Shen 1,2) and T. Toyoda 1,2)

Q. Shen 1,2) and T. Toyoda 1,2) Photosensitization of nanostructured TiO 2 electrodes with CdSe quntum dots: effects of microstructure in substrates Q. Shen 1,2) and T. Toyoda 1,2) Department of Applied Physics and Chemistry 1), and

More information

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Fengang Zheng, a,b, * Peng Zhang, a Xiaofeng Wang, a Wen Huang,

More information

K D R N Kalubowila, R P Wijesundera and W Siripala Department of Physics, University of Kelaniya, Kelaniya, Sri Lanka ABSTRACT

K D R N Kalubowila, R P Wijesundera and W Siripala Department of Physics, University of Kelaniya, Kelaniya, Sri Lanka ABSTRACT Proceedings of the Technical Sessions, 31 (2015) 69-75 69 K D R N Kalubowila, R P Wijesundera and W Siripala Department of Physics, University of Kelaniya, Kelaniya, Sri Lanka ABSTRACT Anodic electrodeposition

More information

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author.   ciac - Shanghai P. R. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Supplementary Information For Journal of Materials Chemistry A Perovskite- @BiVO

More information

CHAPTER 7 INTRODUCTION TO PHOTOELECTROCHEMICAL (PEC) SOLAR CELLS 7.9. PARAMETERS NECESSARY FOR CHARACTERISATION OF PEC SOLAR CELLS 201

CHAPTER 7 INTRODUCTION TO PHOTOELECTROCHEMICAL (PEC) SOLAR CELLS 7.9. PARAMETERS NECESSARY FOR CHARACTERISATION OF PEC SOLAR CELLS 201 : 186 CHAPTER 7 INTRODUCTION TO PHOTOELECTROCHEMICAL (PEC) SOLAR CELLS Page No. 7.1. INTRODUCTION 187 7.2. DEFINITION OF PEC CELL 188 7.3. SOLAR ENERGY CONVERSION 188 7.4. SEMICONDUCTOR ELECTROLYTE INTERFACE

More information

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Supporting Information Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Jian Zhao, a,b,c,d Phong D. Tran,* a,c Yang Chen, a,c Joachim

More information

Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method

Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method STUDENT JOURNAL OF PHYSICS Indian Association of Physics Teachers Presentations Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method

More information

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Supporting information For Nano Letters Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Xiaobao Xu,,, Zonghao Liu,, Zhixiang Zuo, Meng Zhang, Zhixin Zhao, Yan Shen,

More information

Solar Fuels From Light & Heat

Solar Fuels From Light & Heat Solar Fuels From Light & Heat Xiaofei Ye, Liming Zhang, Madhur Boloor, Nick Melosh Will Chueh Materials Science & Engineering, Precourt Institute for Energy Stanford University Sunita Williams, NASA 2

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN 0976-6480 (Print) ISSN

More information

CHAPTER-3 FABRICATION OF SOLID- LIQUID JUNCTION SOLAR CELL USING TMDCS CRYSTALS

CHAPTER-3 FABRICATION OF SOLID- LIQUID JUNCTION SOLAR CELL USING TMDCS CRYSTALS CHAPTER-3 FABRICATION OF SOLID- LIQUID JUNCTION SOLAR CELL USING TMDCS CRYSTALS 72 3.1 INTRODUCTION: As the solid- liquid junction solar cells require only electron donating material and electron accepting

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

Computer modelling of Hg 1 x Cd x Te photodiode performance

Computer modelling of Hg 1 x Cd x Te photodiode performance Computer modelling of Hg 1 x Cd x Te photodiode performance Robert Ciupa * Abstract A numerical technique has been used to solve the carrier transport equations for Hg 1-x Cd x Te photodiodes. The model

More information

Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage: NaLS ascorbic acid system

Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage: NaLS ascorbic acid system J. Chem. Sci., Vol. 116, No. 6, November 2004, pp.339 345. Indian Academy of Sciences. Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage: NaLS ascorbic

More information

Photovoltaic Energy Conversion. Frank Zimmermann

Photovoltaic Energy Conversion. Frank Zimmermann Photovoltaic Energy Conversion Frank Zimmermann Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful & inexhaustible

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100%

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% (black) and 80% (red) external quantum efficiency (EQE)

More information

for highly efficient and stable corrosive-water evaporation

for highly efficient and stable corrosive-water evaporation Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Synthesis of mesoporous Fe 3 Si aerogel

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

Monolithic Cells for Solar Fuels

Monolithic Cells for Solar Fuels Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is The Royal Society of Chemistry 2014 Monolithic Cells for Solar Fuels Jan Rongé, Tom Bosserez, David Martel, Carlo Nervi,

More information

Supporting Information:

Supporting Information: Supporting Information: High Efficiency Photoelectrocatalytic Hydrogen Generation Enabled by Palladium Quantum Dots Sensitized TiO 2 Nanotube Arrays Meidan Ye, Jiaojiao Gong, Yuekun Lai, Changjian Lin,*,

More information

The trap states in the Sr 2 MgSi 2 O 7 and (Sr,Ca)MgSi 2 O 7 long afterglow phosphor activated by Eu 2+ and Dy 3+

The trap states in the Sr 2 MgSi 2 O 7 and (Sr,Ca)MgSi 2 O 7 long afterglow phosphor activated by Eu 2+ and Dy 3+ Journal of Alloys and Compounds 387 (2005) 65 69 The trap states in the Sr 2 MgSi 2 O 7 and (Sr,Ca)MgSi 2 O 7 long afterglow phosphor activated by Eu 2+ and Dy 3+ Bo Liu a,, Chaoshu Shi a,b, Min Yin a,

More information

Figure S1 TEM image of nanoparticles, showing the hexagonal shape of the particles.

Figure S1 TEM image of nanoparticles, showing the hexagonal shape of the particles. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Au@Poly(acrylic acid) Plasmons and

More information

Defect mitigation of Solution-Processed 2D WSe 2 Nano-flakes for Solar-to- Hydrogen Conversion

Defect mitigation of Solution-Processed 2D WSe 2 Nano-flakes for Solar-to- Hydrogen Conversion Supporting information for: Defect mitigation of Solution-Processed 2D WSe 2 Nano-flakes for Solar-to- Hydrogen Conversion Xiaoyun Yu, Néstor Guijarro, Melissa Johnson, and Kevin Sivula* Laboratory for

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) Communications in Physics, Vol. 26, No. 1 (2016), pp. 43-49 DOI:10.15625/0868-3166/26/1/7961 GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) NGUYEN THAI HA, PHAM DUY LONG,

More information

η (mv) J (ma cm -2 ) ma cm

η (mv) J (ma cm -2 ) ma cm J (ma cm -2 ) 250 200 150 100 50 0 253 mv@10 ma cm -2-50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 η (mv) Supplementary Figure 1 Polarization curve of NiSe. S1 FeO x Fe-Se Intensity (a. u.) 720 717 714 711

More information

The role of boron in the carrier transport improvement of CdSe-sensitized B,N,F-TiO 2 nanotubes solar cells: a synergistic strategy

The role of boron in the carrier transport improvement of CdSe-sensitized B,N,F-TiO 2 nanotubes solar cells: a synergistic strategy Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 New Journal of Chemistry Electronic

More information

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Electronic Supplemental Information for Pyridine-functionalized Fullerene

More information

Photocathode for Water Electrolysis Applications

Photocathode for Water Electrolysis Applications Supporting Information Efficient and Stable Pt/TiO 2 /CdS/Cu 2 BaSn(S,Se) 4 Photocathode for Water Electrolysis Applications Yihao Zhou 1#, Donghyeop Shin 1,2,4#, Edgard Ngaboyamahina 3#, Qiwei Han 1,2,

More information

Gas Sensors and Solar Water Splitting. Yang Xu

Gas Sensors and Solar Water Splitting. Yang Xu Gas Sensors and Solar Water Splitting Yang Xu 11/16/14 Seite 1 Gas Sensor 11/16/14 Seite 2 What are sensors? American National Standards Institute (ANSI) Definition: a device which provides a usable output

More information

Interaction of Stern layer and domain structure on photochemistry of lead-zirconate-titanate.

Interaction of Stern layer and domain structure on photochemistry of lead-zirconate-titanate. Journal of Physics D: Applied Physics, Volume 42, Number 6, 21 March 2009, 065408 Interaction of Stern layer and domain structure on photochemistry of lead-zirconate-titanate. P M Jones and S Dunn Bld.

More information

MEWODS AND MATERIALS. W. SIRIPALA Department of Physics, hiniversity of Keianiya, KeZaniya. 'Eeceived: 63 July 1994; accepted: I S January 1995)

MEWODS AND MATERIALS. W. SIRIPALA Department of Physics, hiniversity of Keianiya, KeZaniya. 'Eeceived: 63 July 1994; accepted: I S January 1995) W. SIRIPALA Department of Physics, hiniversity of Keianiya, KeZaniya. 'Eeceived: 63 July 1994; accepted: I S January 1995) Abstmct: Photoresponse of the electrodeposited cuprom oxide thin film electrodes

More information

ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S

ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S Int. J. Chem. Sci.: 8(2), 2010, 961-968 ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S VIJAYA SHARMA, NEELAM GANDHI, ANKUR KHANT and R. C. KHANDELWAL * Department of Chemistry,

More information

Synthesis and Characterizations of TiO 2 /In 2 S 3 Semiconductor Sensitized Solar Cell

Synthesis and Characterizations of TiO 2 /In 2 S 3 Semiconductor Sensitized Solar Cell Synthesis and Characterizations of TiO 2 /In 2 S 3 Semiconductor Sensitized Solar Cell Wagh VG *, Bansode SB Department of Physics, K.V.N. Naik College, Nashik, India Abstract: The compact layer of Titania

More information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Planar Organic Photovoltaic Device. Saiful I. Khondaker Planar Organic Photovoltaic Device Saiful I. Khondaker Nanoscience Technology Center and Department of Physics University of Central Florida http://www.physics.ucf.edu/~khondaker W Metal 1 L ch Metal 2

More information

Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell

Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell 3.1. Introduction In recent years, dye-sensitized solar cells (DSSCs) based on nanocrystalline mesoporous TiO 2 films have attracted much

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Organo-metal halide perovskite-based solar cells with CuSCN as inorganic

More information

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that Chemical Identity and Applications of Graphene-Titanium Dioxide Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that enhances the performance of photocatalysts. 1 The

More information

( P ) Thales Photo-Electrochemical Techniques. Outline. Photo-Electrochemical Set-Up. Standard Solar Cell Measurements

( P ) Thales Photo-Electrochemical Techniques. Outline. Photo-Electrochemical Set-Up. Standard Solar Cell Measurements Outline Thales hoto-electrochemical Techniques Dynamic- and Spectral Methods for Measurements on DSSC, OSC, OLED and Electro-Chromic Devices C.-A. Schiller Standard Solar Cell Measurements Basics and the

More information

Available online at Energy Procedia 00 (2009) Energy Procedia 2 (2010) E-MRS Spring meeting 2009, Symposium B

Available online at   Energy Procedia 00 (2009) Energy Procedia 2 (2010) E-MRS Spring meeting 2009, Symposium B Available online at www.sciencedirect.com Energy Procedia 00 (2009) 000 000 Energy Procedia 2 (2010) 169 176 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia E-MRS Spring

More information

Maximizing Solar-to-Fuel Conversion Efficiency in Oxide Photoelectrochemical Cells Using Heat and Concentrated Sunlight

Maximizing Solar-to-Fuel Conversion Efficiency in Oxide Photoelectrochemical Cells Using Heat and Concentrated Sunlight Maximizing Solar-to-Fuel Conversion Efficiency in Oxide Photoelectrochemical Cells Using Heat and Concentrated Sunlight Investigators William C. Chueh, Assistant Professor of Materials Science & Engineering

More information

Materials properties of electrodeposited SnS 0.5 Se 0.5 films and characterization of photoelectrochemical solar cells

Materials properties of electrodeposited SnS 0.5 Se 0.5 films and characterization of photoelectrochemical solar cells Materials Research Bulletin 38 (2003) 899 908 Materials properties of electrodeposited SnS 0.5 Se 0.5 films and characterization of photoelectrochemical solar cells B. Subramanian a,*, C. Sanjeeviraja

More information

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC FUNDAMENTAL PROPERTIES OF SOLAR CELLS February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Self-assembled pancake-like hexagonal

More information

Supporting Information. Supercapacitors

Supporting Information. Supercapacitors Supporting Information Ni(OH) 2 Nanoflower/Graphene Hydrogels: A New Assembly for Supercapacitors Ronghua Wang ab, Anjali Jayakumar a, Chaohe Xu* c and Jong-Min Lee* a [a] School of Chemical and Biomedical

More information

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS Ա.Մ.Կեչիյանց Ara Kechiantz Institute of Radiophysics and Electronics (IRPhE), National Academy of Sciences (Yerevan, Armenia) Marseille

More information

Supporting Information. Selective detection of trace amount of Cu 2+ using semiconductor nanoparticles in photoelectrochemical analysis

Supporting Information. Selective detection of trace amount of Cu 2+ using semiconductor nanoparticles in photoelectrochemical analysis Supplementary Material (ESI) for Nanoscale This journal is The Royal Society of Chemistry Supporting Information Selective detection of trace amount of Cu + using semiconductor nanoparticles in photoelectrochemical

More information

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes Supporting Information The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes Jason K. Cooper, a,b Soren B. Scott, a Yichuan Ling, c Jinhui Yang, a,b Sijie Hao, d Yat Li, c Francesca

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure S1. Change in open circuit potential ( OCP) of 1% W-doped BiVO 4 photoanode upon illumination with different light intensities. Above

More information

Visible Light Assisted Photocatalytic Hydrogen Generation and Organic Dye Degradation by CdS Metal Oxide hybrids in presence of Graphene Oxide

Visible Light Assisted Photocatalytic Hydrogen Generation and Organic Dye Degradation by CdS Metal Oxide hybrids in presence of Graphene Oxide Visible Light Assisted Photocatalytic Hydrogen Generation and Organic Dye Degradation by CdS Metal Oxide hybrids in presence of Graphene Oxide Ziyauddin Khan, Tridip Ranjan Chetia, Anil Kumar Vardhaman,

More information

Characterization of Group (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy *

Characterization of Group (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy * OpenStax-CNX module: m34601 1 Characterization of Group 12-16 (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy * Sravani Gullapalli Andrew R. Barron This work is produced by OpenStax-CNX

More information

Origin and Whereabouts of Recombination in. Perovskite Solar Cells Supporting Information

Origin and Whereabouts of Recombination in. Perovskite Solar Cells Supporting Information Origin and Whereabouts of Recombination in Perovskite Solar Cells Supporting Information Lidia Contreras-Bernal a, Manuel Salado a,b, Anna Todinova a, Laura Calio b, Shahzada Ahmad b, Jesús Idígoras a,

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Engineering Cu 2 O/NiO/Cu 2 MoS 4 Hybrid Photocathode for H 2 Generation in Water Chen Yang, a,b

More information

POTENTIOSTATIC DEPOSITION OF COPPER INDIUM DISULFIDE THIN FILMS: EFFECT OF CATHODIC POTENTIALS ON THE OPTICAL AND PHOTOELECTROCHEMICAL PROPERTIES

POTENTIOSTATIC DEPOSITION OF COPPER INDIUM DISULFIDE THIN FILMS: EFFECT OF CATHODIC POTENTIALS ON THE OPTICAL AND PHOTOELECTROCHEMICAL PROPERTIES The Malaysian Journal of Analytical Sciences, Vol 1, No 3 (8): 6-68 POTENTIOSTATIC DEPOSITION OF COPPER INDIUM DISULFIDE THIN FILMS: EFFECT OF CATHODIC POTENTIALS ON THE OPTICAL AND Teo Sook Liang, Zulkarnain

More information

DEVICE CHARACTERIZATION OF (AgCu)(InGa)Se 2 SOLAR CELLS

DEVICE CHARACTERIZATION OF (AgCu)(InGa)Se 2 SOLAR CELLS DEVICE CHARACTERIZATION OF (AgCu)(InGa)Se 2 SOLAR CELLS William Shafarman 1, Christopher Thompson 1, Jonathan Boyle 1, Gregory Hanket 1, Peter Erslev 2, J. David Cohen 2 1 Institute of Energy Conversion,

More information

Spectroscopic Study of FTO/CdSe (MPA)/ZnO Artificial Atoms Emitting White Color

Spectroscopic Study of FTO/CdSe (MPA)/ZnO Artificial Atoms Emitting White Color Spectroscopic Study of FTO/CdSe (MPA)/ZnO Artificial Atoms Emitting White Color Batal MA *, and Alyamani K Department of Physics, College of Science, Aleppo, Syria * Corresponding author: Batal MA, Department

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

STUDIES ON MECHANICAL AND ELECTRICAL PROPERTIES OF NLO ACTIVE L-GLYCINE SINGLE CRYSTAL

STUDIES ON MECHANICAL AND ELECTRICAL PROPERTIES OF NLO ACTIVE L-GLYCINE SINGLE CRYSTAL Materials Physics and Mechanics 16 (013) 101-106 Received: January 31, 013 STUDIES ON MECHANICAL AND ELECTRICAL PROPERTIES OF NLO ACTIVE L-GLYCINE SINGLE CRYSTAL Sagadevan Suresh Crystal Growth Centre,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 1. Synthesis of perovskite materials CH 3 NH 3 I

More information

Functional Materials, Holstenhofweg 85, Hamburg, Germany b Helmholtz Centre Geesthacht, Institute for Materials Research, Max-Planck-Straße 1,

Functional Materials, Holstenhofweg 85, Hamburg, Germany b Helmholtz Centre Geesthacht, Institute for Materials Research, Max-Planck-Straße 1, 10.1149/05830.0021ecst The Electrochemical Society Cold Gas Sprayed TiO 2 -based Electrodes for the Photo-induced Water Oxidation I. Herrmann-Geppert a,b, P. Bogdanoff c, H. Gutzmann a, T. Dittrich d,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. AFM profiles of the charge transport and perovskite layers. AFM Image showing the thickness (y axis) of the layer with respect to the horizontal position of

More information

Thermally Stable Silver Nanowires-embedding. Metal Oxide for Schottky Junction Solar Cells

Thermally Stable Silver Nanowires-embedding. Metal Oxide for Schottky Junction Solar Cells Supporting Information Thermally Stable Silver Nanowires-embedding Metal Oxide for Schottky Junction Solar Cells Hong-Sik Kim, 1 Malkeshkumar Patel, 1 Hyeong-Ho Park, Abhijit Ray, Chaehwan Jeong, # and

More information

Supporting Information

Supporting Information Supporting Information Spatially-resolved imaging on photocarrier generations and band alignments at perovskite/pbi2 hetero-interfaces of perovskite solar cells by light-modulated scanning tunneling microscopy

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information A minimal non-radiative recombination loss for efficient

More information

A new concept of charging supercapacitors based on a photovoltaic effect

A new concept of charging supercapacitors based on a photovoltaic effect Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic supporting information (ESI) A new concept of charging supercapacitors based on a photovoltaic

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Trifunctional NiO Ag NiO Electrodes

More information

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion Craig A. Grimes Department of Electrical Engineering Center for Solar Nanomaterials

More information

THE USE OF SURFACTANT IN PHOTO GALVANIC CELLS FOR SOLAR ENERGY CONVERSION AND STORAGE: A TERGITOL 7 -MANNITOL METHYLENE BLUE SYSTEM

THE USE OF SURFACTANT IN PHOTO GALVANIC CELLS FOR SOLAR ENERGY CONVERSION AND STORAGE: A TERGITOL 7 -MANNITOL METHYLENE BLUE SYSTEM THE USE OF SURFACTANT IN PHOTO GALVANIC CELLS FOR SOLAR ENERGY CONVERSION AND STORAGE: A TERGITOL 7 -MANNITOL METHYLENE BLUE SYSTEM Dr. (Mrs.) PramilaTanwar Assistant Professor, DESM National Council of

More information

Chapter-II CHEMISTRY OF PHOTOELECTRODE- ELECTROLYTE INTERFACE

Chapter-II CHEMISTRY OF PHOTOELECTRODE- ELECTROLYTE INTERFACE z Chapter-II CHEMISTRY OF PHOTOELECTRODE- ELECTROLYTE INTERFACE 2.1 Introduction In recent years, semiconductor-electrolyte cells have been attracting a great deal of interest in the field of solar energy

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Lecture Note #13. Bard, ch. 18. Photoelectrochemistry (ch. 18) 1. Electrogenerated Chemiluminescence 2. Photoelectrochemistry at Semiconductors

Lecture Note #13. Bard, ch. 18. Photoelectrochemistry (ch. 18) 1. Electrogenerated Chemiluminescence 2. Photoelectrochemistry at Semiconductors Lecture Note #13 Photoelectrochemistry (ch. 18) 1. Electrogenerated Chemiluminescence 2. Photoelectrochemistry at Semiconductors Bard, ch. 18 Photoelectrochemistry Radiation energy electrical or chemical

More information

Interdisciplinary Graduate School, Nanyang Technological University, Singapore , Singapore.

Interdisciplinary Graduate School, Nanyang Technological University, Singapore , Singapore. Electronic Supplementary Material (ESI) for Nanoscale. This journalelectronic is TheSupplementary Royal Society Information of Chemistry (ESI) for 2014 Nanoscale. Triple-layer nanostructured WO 3 photoanodes

More information

Title: Colloidal Quantum Dots Intraband Photodetectors

Title: Colloidal Quantum Dots Intraband Photodetectors Title: Colloidal Quantum Dots Intraband Photodetectors Authors: Zhiyou Deng, Kwang Seob Jeong, and Philippe Guyot-Sionnest* Supporting Information: I. Considerations on the optimal detectivity of interband

More information

Supplementary documents

Supplementary documents Supplementary documents Low Threshold Amplified Spontaneous mission from Tin Oxide Quantum Dots: A Instantiation of Dipole Transition Silence Semiconductors Shu Sheng Pan,, Siu Fung Yu, Wen Fei Zhang,

More information

CONDUCTION BAND I BANDGAP VALENCE BAND. Figure 2.1: Representation of semiconductor band theory. Black dots represents electrons

CONDUCTION BAND I BANDGAP VALENCE BAND. Figure 2.1: Representation of semiconductor band theory. Black dots represents electrons 2.ELECTROCHEMISTRY CHAPTER-2 ELECTROCHEMISTRY 2.1: Semiconductor and Metal Theory 134-136 A photoelectrochemical cell is composed primarily of a material called a semiconductor which is heart of the PEe

More information

Schottky Junction Prepared by Vacuum Evaporation Technique

Schottky Junction Prepared by Vacuum Evaporation Technique Invertis Studies Journal of Junction of Science Parameters and Technology, of Sn/(pBi Vol. 2 Schottky 7, No. 2, Junction 214. ; Prepared pp. 85-9by Vacuum Evaporation Technique Studies of Junction Parameters

More information

Solar Cells Based on. Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J.

Solar Cells Based on. Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J. Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J. Nozik Student ID: 2004171039 Name: Yo-Han Choi Abstract Semiconductor quantum

More information

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14% Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of ~14% Kunpeng Li, Junyan Xiao, Xinxin Yu, Tongle Bu, Tianhui Li, Xi Deng, Sanwan Liu,

More information

Low temperature anodically grown silicon dioxide films for solar cell. Nicholas E. Grant

Low temperature anodically grown silicon dioxide films for solar cell. Nicholas E. Grant Low temperature anodically grown silicon dioxide films for solar cell applications Nicholas E. Grant Outline 1. Electrochemical cell design and properties. 2. Direct-current current anodic oxidations-part

More information

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting Process Hyun-Jin Song, Won-Ki Lee, Chel-Jong Choi* School of Semiconductor

More information

Photovoltaic cell and module physics and technology

Photovoltaic cell and module physics and technology Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 6/21/2012 1 Outlines Photovoltaic Effect Photovoltaic cell

More information

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences,

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Electronic Supplementary Material (ESI) for Chemical Science. This journal is The oyal Society of Chemistry 16 Electronic Supplementary Information Insight into the Charge Transfer in Particulate Ta 3

More information

Electronic Supplementary Information for

Electronic Supplementary Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 018 Electronic Supplementary Information for Broadband Photoresponse Based on

More information

Multiband GaN/AlGaN UV Photodetector

Multiband GaN/AlGaN UV Photodetector Vol. 110 (2006) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXV International School of Semiconducting Compounds, Jaszowiec 2006 Multiband GaN/AlGaN UV Photodetector K.P. Korona, A. Drabińska, K.

More information

Ultrafast Electron and Energy Transfer in Dye- -- SUPPLEMENTARY TABLE and FIGURES

Ultrafast Electron and Energy Transfer in Dye- -- SUPPLEMENTARY TABLE and FIGURES Ultrafast Electron and Energy Transfer in Dye- Sensitized Iron Oxide and Oxyhydroxide Nanoparticles -- SUPPLEMENTARY TABLE and FIGURES 1 Table S1. Summary of experimental determinations of the flatband

More information

EFFECT OF THICKNESS FOR (BixSb2-xTe3) THIN FILMS ON THE ELECTRICAL PROPERTIES

EFFECT OF THICKNESS FOR (BixSb2-xTe3) THIN FILMS ON THE ELECTRICAL PROPERTIES EFFECT OF THICKNESS FOR (BixSb-xTe3) THIN FILMS ON THE ELECTRICAL PROPERTIES Hussain. M. Selman and Salma. M. Shaban University of Baghdad, College of Science, Dept. of Physics ABSTRACT In this study (

More information

Electric Fields. Basic Concepts of Electricity. Ohm s Law. n An electric field applies a force to a charge. n Charges move if they are mobile

Electric Fields. Basic Concepts of Electricity. Ohm s Law. n An electric field applies a force to a charge. n Charges move if they are mobile Basic Concepts of Electricity oltage E Current I Ohm s Law Resistance R E = I R Electric Fields An electric field applies a force to a charge Force on positive charge is in direction of electric field,

More information

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Experimental section Preparation of m-tio 2 /LPP photoanodes. TiO 2 colloid was synthesized according

More information

Extrinsic Origin of Persistent Photoconductivity in

Extrinsic Origin of Persistent Photoconductivity in Supporting Information Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors Yueh-Chun Wu 1, Cheng-Hua Liu 1,2, Shao-Yu Chen 1, Fu-Yu Shih 1,2, Po-Hsun Ho 3, Chun-Wei

More information

Effect of TiO 2 graphene nanocomposite photoanode on dye-sensitized solar cell performance

Effect of TiO 2 graphene nanocomposite photoanode on dye-sensitized solar cell performance Bull. Mater. Sci., Vol. 38, No. 5, September 2015, pp. 1177 1182. Indian Academy of Sciences. Effect of TiO 2 graphene nanocomposite photoanode on dye-sensitized solar cell performance AKBAR ESHAGHI* and

More information

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets Supporting Information Available ot Electron of Au Nanorods Activates the Electrocatalysis of ydrogen Evolution on MoS Nanosheets Yi Shi, Jiong Wang, Chen Wang, Ting-Ting Zhai, Wen-Jing Bao, Jing-Juan

More information

Characterization of deep defects in CdSyCdTe thin film solar cells using deep level transient spectroscopy

Characterization of deep defects in CdSyCdTe thin film solar cells using deep level transient spectroscopy Thin Solid Films 451 452 (2004) 434 438 Characterization of deep defects in CdSyCdTe thin film solar cells using deep level transient spectroscopy a, a b b b J. Versluys *, P. Clauws, P. Nollet, S. Degrave,

More information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Supporting Information Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Zhijie Bi, a,b Xiaomin Li,* a Yongbo Chen, a,b

More information

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots Bingjun Yang,

More information