INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Size: px
Start display at page:

Download "INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)"

Transcription

1 INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN (Print) ISSN (Online) Volume 4, Issue 6, September October 2013, pp IAEME: Journal Impact Factor (2013): (Calculated by GISI) IJARET I A E M E PHOTOCHEMICAL STUDY OF MICELLES IN PHOTOGALVANIC CELL FOR SOLAR ENERGY CONVERSION AND STORAGE A.S. Meena* 1, Rishikesh 2, Shribai 2 and R.C. Meena 2 * 1 Department of Chemistry, MLS University, Udaipur, Rajasthan (INDIA) Department of Chemistry, JNV University, Jodhpur, Rajasthan (INDIA) ABSTRACT Photochemical studies of micelles in photogalvanic cell containing Rhodamine 6G-EDTA- NaLS for solar energy conversion and storage. The observed cell performance in terms of photopotential, photocurrent, conversion efficiency, fill factor and storage capacity in terms of half change time are mv, µa, 1.26 %, and minutes on irradiation for minutes, respectively. The mechanism is proposed for the generation of photocurrent in photogalvanic cell. Keywords: - Photopotential, Photocurrent, Conversion Efficiency, Fill Factor, Storage Capacity. 1. INTRODUCTION The sun energy is the most readily available non-conventional source of energy which is most abundantly and freely available renewable source of energy. The new approach for renewable energy sources has led to an increasing interest in photogalvanic cells because of their reliable solar energy conversion and storage capacity. The photogalvanic cells are based on some chemical reaction, which rise to high- energy products on excitation by photons. This cell works on photogalvanic effect. The photogalvanic effect was first of all recognised by Rideal and Williams [1] and it was systematically studied by Rabinowitch [2-3], Potter and Thaller [4], Eliss and Kaiser [5], Rohatgi- Mukherjee et al. [6], Dixit and Mackay [7], and Kamet [8] studies various systems in photogalvanic cell for solar energy conversion and storage. Studies the performance of dye sensitized solar cells based on nanocrystals TiO 2 films prepared with mixed template method by Gratzel and Regan [9]. Optimum efficiency of photogalvanic cell for solar energy conversion has been studied by Albery and Archer [10]. Madwani et al., Gangotri and Meena, and Genwa and his coworkers [11-14] have been used of some reductant, photosensitizer and surfactant in photogalvanic cells for conversion of solar energy in to electrical energy. Gangotri and his co-workers [15-17] have been studied of photogalvanic cell for solar energy conversion and storage by using some dye with reductant, mixed dye, mixed reductant and dye with reductant and micelles. Recently, some photogalvanic cells were developed 17

2 on the basis of role of photosensitizer with reductant, photosensitizer with reductant and micelles for generation of electrical energy by Chandra [18], Chandra and Meena [19-20], Chandra et al. [21], Joseph et al. [22] and Meena et al. [23]. Present system is the effort to observe the photochemical study of micelles in photogalvanic cell containing Rhodamine 6G-EDTA-NaLS for solar energy conversion and storage. 2. EXPERIMENTAL METHODS Rhodamine 6G (MERCK), NaLS (LOBA), EDTA (MERCK) and NaOH (MERCK) were used in the present work. All the solutions were prepared in doubly distilled water and the stock solutions of all chemicals were prepared by direct weighing and were kept in coloured container to protect them from light. The whole system was set systematically for photogalvanic studies, which consists of thin foil of electrochemically treated platinum as electrode and saturated calomel electrodes as a reference electrode. The distance between the illuminated and dark electrode is 45 mm. An ordinary tungsten lamp of 200 W was used as light source. Water filter was used to cut-off IR radiations. The photopotetial was obtained as the difference between the initial potential of the system in dark and the equilibrium potential attained by the system under constant illumination. The potential was first measured in dark and the change in potential on illumination was measured as a function of time. The solution was bubbled with prepurified nitrogen gas for nearly twenty minutes to remove dissolved oxygen. Solutions of dye, reductant, micelles and sodium hydroxide were taken in an H-type glass tube. A platinum electrode (1.0 x 1.0 cm2) was immersed into one arm of H-tube and a saturated calomel electrode (SCE) was kept in the other. The whole system was first placed in dark till a stable potential was obtained and then, the arm containing the SCE was kept in the dark and the platinum electrode was exposed to a 200 W tungsten lamp. A water-filter was used to cut off infrared radiations. The photochemical bleaching of Rhodamine 6G was studied potentiometrically. A digital ph meter (Systronics Model-335) and a microammeter (Ruttonsha Simpson) were used to measure the potential and current generated by the system, respectively. The current voltage characteristics of photogalvanic cell have been studied by applying an external load with the help of a carbon pot (log 470 K) connected in the circuit through a key to have close circuit and open circuit device. The experimental set-up of photogalvanic cell is given in Figure 1. The effect of variation of different parameters has also been observed. The rate of change in potential after removing the source of illumination was 0.93mV min -1 in Rhodamine 6G-EDTA-NaLS. Figure-1 Experimental set-up of photogalvanic cell 18

3 3. RESULTS AND DISCUSSION 3.1. EFFECT OF VARIATION OF DYE (RHODAMINE 6G) CONCENTRATION ON THE CELL It was observed that the photopotential and photocurrent were increased with the increase in concentration of the dye. A maximum was obtained for a particular value of Rhodamine 6G concentrations, above which a decrease in the electrical output of the cell was obtained. The reason of the change in electrical output is that lower concentration of photosensitizer resulted into a fall in electrical output because fewer photosensitizer (Rhodamine 6G) molecules are available for the excitation and consecutive donation of the electrons to the platinum electrode whereas the higher concentration of photosensitizer (Rhodamine 6G) again resulted into a decrease into electrical output as the intensity of light reaching the dye molecules near the electrode decrease due to absorption of the major portion of the light by dye molecules present in the path. The results are given in Table EFFECT OF VARIATION OF REDUCTANT (EDTA) CONCENTRATION ON THE CELL The photopotential and photocurrent were found to increase with the increase in concentration of the reductant [EDTA], till it reaches a maximum. On further increase in concentration of EDTA, a decrease in the electrical output of the cell was observed. The reason of the change in electrical output is that the lower concentration of reducing agent resulted into a fall in electrical output because fewer reducing agent molecules are available for electron donation to photosensitizer (Rhodamine 6G) molecule whereas the higher concentration of reducing agent again resulted into a decrease in electrical output, because the large number of reducing agent molecules hinders the dye molecules from reaching the electrode in the desired time limit. The results are given in Table EFFECT OF VARIATION OF MICELLES (NALS) CONCENTRATION ON THE CELL The effect of variation of (NaLS) was investigated in Rhodamine 6G EDTA NaLS system. It was observed that electrical output of the cell was found to increase on increasing the concentration of micelles reaching a maximum value. On further increase in their concentrations, a fall in photopotential, photocurrent and power of the photogalvanic cell was observed. The reason of the change in electrical output is that the micelles solubilize the dye molecules up to highest extent at or around their micelles concentration. The results are given in Table EFFECT OF VARIATION OF PH ON THE CELL The effect of variation in ph on photoelectric parameters of cell is studied. It is found that the cell containing Rhodamine 6G-EDTA-NaLS to be quite sensitive to the ph of the solution. It is observed that there is an increase in the photoelectric parameters of this cell with the ph value (In the alkaline range). At ph a maxima is obtained. On further increase in ph, there is a decrease in photoelectric parameters. It is observed that the ph for the optimum condition has a relation with pka of the reductant and the desired ph is higher than in pka value (ph>pka). The reason of the change in electrical output is that the availability of the reductant in its anionic form, which is a better donor form. The above same is reported in Table EFFECT OF DIFFUSION LENGTH AND ELECTRODE AREA ON THE CELL The effect of variation in diffusion length (distance between the two electrodes) on the photoelectric parameters of the cell (i max, i eq and initial rate of generation of photocurrent) is studied using H-shaped cells of different dimensions. The effect of electrode area on the photoelectric parameters of the cell is also reported here. It is observed that both i max and rate of change in initial 19

4 generation of photocurrent (µa min -1 ) increase with respect to the diffusion length whenever the equilibrium photocurrent (i eq ) shows a small decrease with respect to the diffusion length. The reason of the change in electrical output is that the main electroactive species are the leuco or semi-leuco form of dye (photosensitizer) and the dye in illuminated and dark chamber respectively. The reductant and its oxidation product act only as electron carriers in the path. The rate of change in photoelectric parameters with respect to the diffusion length is graphically presented in Table 2. Similarly, Table 3 shows rate of change in photoelectric parameter with respect to electrode area. It is found that the maximum photocurrent show increasing fashion with electrode area whereas the equilibrium photocurrent (i eq ) show decreasing fashion. Table-1: - Effect of concentration (Rhodamine 6G, EDTA and NaLS) and ph on the cell Parameters Photopotential (mv) Photocurrent (µa) Power (µw) (Rhodamine 6G) 10-5 M (EDTA) 10-3 M (NaLS) 10-3 M ph

5 Diffusion Length D L (mm) Table-2: - Effect of diffusion length Maximum photocurrent i max (µa) Equilibrium photocurrent i eq (µa) Rate of initial generation of photocurrent (µa min -1 ) Table-3: - Effect of electrode area Rhodamine 6G-EDTA-NaLS Electrode area (cm 2 ) Maximum photocurrenti max (µa) Equilibrium photocurrenti eq (µa) EFFECT OF TEMPERATURE AND LIGHT INTENSITY ON THE CELL The effect of temperature on the photoelectric parameters of the cell is studied. The effect of light intensity on the photoelectric parameters of the cell also investigated here. It is observed that the photocurrent of the photogalvanic cell is found to be increased with the temperature whereas the photopotential is decreased. Thereafter, the effect of temperature on total possible power output in the Rhodamine 6G-EDTA-NaLS cell is also studied and it is observed that there a linear change between the both. The reason of the change in electrical output is that internal resistant of the cell decreases at higher temperature resulting into a rise in photocurrent and correspondingly, there will be a fall in photopotential. The same is presented in Figure 2. Similarly, Figure 3 shows rate of change in photoelectric parameter with respect to light intensity. The light intensity is measured in terms of mwcm -2 with the help of solarimeter (CEL Model SM 203). It is found that the photocurrent show linear increasing fashion with light intensity whereas the photopotential show an increment in a logarithmic fashion. 21

6 Figure-2 Variation of photopotential and photocurrent with Temperature Figure-3 Variation of photocurrent and log V with light intensity 22

7 3.7. CURRENT-VOLTAGE (I-V) CHARACTERISTICS OF THE CELL: The short circuit current (i sc ) and open circuit voltage (V oc ) of the photogalvanic cells are measured with the help of a multimeter (keeping the circuit closed) and with a digital ph meter (keeping the other circuit open), respectively. The current and potential values in between these two extreme values are recorded with the help of a carbon pot (log 470 K) connected in the circuit of Multimeter, through which an external load is applied. The current-voltage (i-v) characteristics of the photogalvanic cells containing Rhodamine 6G-EDTA-NaLS cell is graphically shown in Figure 4. Figure-4 Current-Voltage (i-v) Curve of the Cell 3.8. STORAGE CAPACITY AND CONVERSION EFFICIENCY OF THE CELL: The storage capacity (performance) of the photogalvanic cell is observed by applying an external load (necessary to have current at power point) after terminating the illumination as soon as the potential reaches a constant value. The storage capacity is determined in terms of t 1/2, i.e., the time required in the fall of the output (power) to its half at power point in dark. It is observed that the cell can be used in dark for minutes on irradiation for minutes. So the observed storage capacity of the cell is %. The results are graphically presented in Figure 5. The conversion of the efficiency of the cell is determined as 1.265% with the help of photocurrent and photopotential values at the power point and the incident power of radiations by using the formula V pp x i pp Fill factor (η) = (1) V oc x i sc V pp x i pp Conversion Efficiency = x100% (2) 10.4 mw 23

8 Figure-5 Performance of the Cell 3.9. PERFORMANCE OF THE CELL The overall performance of the photogalvanic cell is observed and reached to remarkable level in the performance of photogalvanic cells with respect to electrical output, initial generation of photocurrent, conversion efficiency and storage capacity of the photogalvanic cell. Table 4 shows the results are obtained in Azur B-EDTA-CTAB cell. Table-4:- Performance of the cell S. No. Parameter Observed value 1. Dark potential mv 2. Open circuit voltage (V OC ) mv 3. Photopotential (DV) mv 4. Equilibrium photocurrent (i eq ) ma 5. Maximum photocurrent (i max ) ma 6. Initial generation of photocurrent 25.5 ma min Time of illumination min 8. Storage capacity (t 1/2 ) min 9. % of storage capacity of cell % 10. Conversion efficiency % 11. Fill factor (η)

9 4. MECHANISM On the basis of these observations, a mechanism is suggested for the generation of photocurrent in the photogalvanic cell as: 4.1. ILLUMINATED CHAMBER Dye hν Dye* (3) Dye* + R Dye (Semi or leuco) + R (4) AT PLATINUM ELECTRODE: Dye Dye + e (5) 4.2. DARK CHAMBER AT CALOMEL ELECTRODE: Dye + e - Dye (Semi or leuco) (6) Dye + R + Dye + R (7) Where Dye, Dye*, Dye, R and R + are the dye, excited form of dye, semi or leuco form of dye, reductant and oxidized form of the reductant, respectively. 5. CONCLUSION On the basis of the results, it is concluded that micelles (NaLS) with reductant (EDTA) and dye (Rhodamine 6G) can be used successfully in a photogalvanic cell. The conversion efficiency and storage capacity of the cell is 1.26% and minutes respectively, on irradiation for minutes developed photogalvanic cell. It has been observed that the micelles have not only enhanced the electrical parameters (i.e. photopotential, photocurrent and power) but also the conversion efficiency and storage capacity of photogalvanic cell. Photogalvanic cells can be used in dark whereas photovoltaic cells cannot be used in dark. Photogalvanic cells have better storage capacity than photovoltaic cells. So photogalvanic cells showed good prospects of becoming commercially viable. NOMENCLATURE i eq = photocurrent at equilibrium i max = maximum photocurrent i pp = photocurrent at power point i sc = short circuit current ml = milliliter mv = millivolt M = molarity pp = power point t 1/2 = storage capacity of cell DV = observed photopotential V oc = open circuit voltage V pp = photopotential at power point η = fill factor ma = microampere mw = microwatt 25

10 ACKNOWLEDGEMENT The authors are grateful to The Head, Department of Chemistry, MLS University, Udaipur, Rajasthan (INDIA) for providing the necessary laboratory facilities to conduct this research work. One of the authors (A.S.Meena) is thankful to Ministry of New and Renewable Energy (MNRE), Government of India, New Delhi (INDIA) for the financial assistance to this research work. REFERENCES [1] Rideal.E.K and Williams.E.G (1925), J. Chem. Soc. FaradayTrans., 127, [2] Rabinowitch.E (1940), J. Chem. Phys., 8, [3] Rabinowitch.E (1940), J. Chem. Phys., 8, [4] Potter.A.E and Thaller.L.H (1959), Solar Energy, 3, 1-7. [5] Eliss.A.B and Kaiser.S.D (1976), J. Am. Chem. Soc., 98, [6] Rohatgi-Mukherjee.K.K, Roy.M and Bhowmik.B.B (1983), Solar Energy, 31, [7] Dixit.N.S and Mackay.R.A (1982), J. Phys. Chem., 86, [8] Kamat.P.V (1985), J. Chem. Soc., Faraday Trans., 1, [9] Gratzel.M and Regan.B.O (1991), Nature, 353, [10] Albery.W.J and Archer.M.D (1977), Nature, 270, [11] Madhwani.S, Vardia.J, Punjabi.P.B and Sharma.V.K (2007), J. Power and Energy: Part A, 221, [12] Gangotri.K.M and Meena.R.C (2001), J. Photochem. Photobio. A. Chem., 141, [13] Genwa.K.R and Khatri.N.C (2006), Int. J. Chem. Sci., 4, [14] Genwa.K.R, Kumar.A and Sonel.A (2009), Applied Energy, 86(9), [15] Gangotri.K.M and Indora.V (2010), Solar Energy, 84, [16] Gangotri.K.M and Bhimwal.K.M (2011), Energy Sources, Part A, 33, [17] Bhati.K.K and Gangotri.K.M (2011), Int. J. Elect. Power & Energy Systems, 33, [18] Chandra.M (2012), Res. J. Pharm. Biological & Chemical, 3(2), [19] Chandra.M and Meena.R.C (2010), Int. J. Chemical Sciences, 8(3), [20] Chandra.M and Meena.R.C (2011), J. Chem. & Pharm. Research, 3(3), [21] Chandra.M, Singh.A and Meena.R.C (2012), Int. J. Physical Sciences, 7(42), [22] Joseph.A, Nagarajan and Mary.A (2013), Int. J. Electrical Engineering & Technology (IJEET), 4(4), [23] Meena.A.S, Meena.P.L, Chandra.M, Meena.R, Shribai and Meena.R.C (2013), Int. J. Electrical Engineering & Technology (IJEET), 4(4),

Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage: NaLS ascorbic acid system

Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage: NaLS ascorbic acid system J. Chem. Sci., Vol. 116, No. 6, November 2004, pp.339 345. Indian Academy of Sciences. Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage: NaLS ascorbic

More information

R. K. Gunsaria and Ram Narayan Meena* Department of Chemistry Govt. P. G. College, Tonk (Rajasthan) Pin *Author for Correspondence

R. K. Gunsaria and Ram Narayan Meena* Department of Chemistry Govt. P. G. College, Tonk (Rajasthan) Pin *Author for Correspondence STUDIES OF CATIONIC MICELLES EFFECT ON PHOTOGALVANIC CELLS FOR SOLAR ENERGY CONVERSION AND STORAGE IN CONGO RED-D XYLOSE- CETYL PYRIDINIUM CHLORIDE SYSTEM R. K. Gunsaria and Ram Narayan Meena* Department

More information

THE USE OF SURFACTANT IN PHOTO GALVANIC CELLS FOR SOLAR ENERGY CONVERSION AND STORAGE: A TERGITOL 7 -MANNITOL METHYLENE BLUE SYSTEM

THE USE OF SURFACTANT IN PHOTO GALVANIC CELLS FOR SOLAR ENERGY CONVERSION AND STORAGE: A TERGITOL 7 -MANNITOL METHYLENE BLUE SYSTEM THE USE OF SURFACTANT IN PHOTO GALVANIC CELLS FOR SOLAR ENERGY CONVERSION AND STORAGE: A TERGITOL 7 -MANNITOL METHYLENE BLUE SYSTEM Dr. (Mrs.) PramilaTanwar Assistant Professor, DESM National Council of

More information

STUDY OF ELECTRICAL PARAMETERS AND ENERGY EFFICIENCY IN PHOTOGALVANIC CELL CONTAINING LISSAMINE FAST YELLOW DYE AS A PHOTOSENSITIZER

STUDY OF ELECTRICAL PARAMETERS AND ENERGY EFFICIENCY IN PHOTOGALVANIC CELL CONTAINING LISSAMINE FAST YELLOW DYE AS A PHOTOSENSITIZER ORIGINAL ARTICLE STUDY OF ELECTRICAL PARAMETERS AND ENERGY EFFICIENCY IN PHOTOGALVANIC CELL CONTAINING LISSAMINE FAST YELLOW DYE AS A PHOTOSENSITIZER Rajender Singh, Satyavir Singh, Kewal Singh, K.R. Genwa

More information

12 Journal of Natural Sciences, Vol. 1 No. 2, December 2013

12 Journal of Natural Sciences, Vol. 1 No. 2, December 2013 12 Journal of Natural Sciences, Vol. 1 No. 2, December 2013 A Pathway towards Green Chemistry via Solar Energy: Micellization of Celestine Blue-Edta-Sodium Lauryl Sulphate System for the Generation of

More information

Eco-Friendly Solar Energy Conversion end Storage In Electrical Energy

Eco-Friendly Solar Energy Conversion end Storage In Electrical Energy International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 7 Issue 1 January 2018 PP. 52-57 Eco-Friendly Solar Energy Conversion end Storage

More information

Studies of Surfactant in Photogalvanic Cell for Solar Energy Conversion and Storage

Studies of Surfactant in Photogalvanic Cell for Solar Energy Conversion and Storage Advances in Chemical Engineering and Science, 2017, 7, 125-136 http://www.scirp.org/journal/aces ISSN Online: 2160-0406 ISSN Print: 2160-0392 Studies of Surfactant in Photogalvanic Cell for Solar Energy

More information

================================================================

================================================================ ================================================================ MICELLIZATION OF MIX DYE, CELESTINE AND METHYLENE BLUE-EDTA- SODIUM LAURYL SULPHATE SYSTEM FOR THE GENERATION OF ELECTRICITY IN A PHOTOGALVANIC

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(3):264-270 Solar cells consisting of photo sensitizer-reductant

More information

ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S

ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S Int. J. Chem. Sci.: 8(2), 2010, 961-968 ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S VIJAYA SHARMA, NEELAM GANDHI, ANKUR KHANT and R. C. KHANDELWAL * Department of Chemistry,

More information

PHOTOCATALYTIC DEGRADATION OF ERIOCHROME BLACK T USING AMMONIUM PHOSPHOMOLYBDATE SEMICONDUCTOR

PHOTOCATALYTIC DEGRADATION OF ERIOCHROME BLACK T USING AMMONIUM PHOSPHOMOLYBDATE SEMICONDUCTOR Int. J. Chem. Sci.: 8(3), 2010, 1580-1590 PHOTOCATALYTIC DEGRADATION OF ERIOCHROME BLACK T USING AMMONIUM PHOSPHOMOLYBDATE SEMICONDUCTOR SUNAYANA SHARMA, NITIN CHATURVEDI, R. K. CHATURVEDI and M. K. SHARMA

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell

Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell 3.1. Introduction In recent years, dye-sensitized solar cells (DSSCs) based on nanocrystalline mesoporous TiO 2 films have attracted much

More information

Photochemical Treatment of Amido Black - 10B Waste Water by Photo-Fenton Reagent

Photochemical Treatment of Amido Black - 10B Waste Water by Photo-Fenton Reagent Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2011, Vol. 27, No. (3): Pg. 1179-1184 Photochemical

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Efficiency Improvement of Dye-sensitized Solar Cells

More information

Lab 2. Characterization of Solar Cells

Lab 2. Characterization of Solar Cells Lab 2. Characterization of Solar Cells Physics Enhancement Programme Department of Physics, Hong Kong Baptist University 1. OBJECTIVES To familiarize with the principles of commercial solar cells To characterize

More information

Workshop No. 2: Simulation of Photosynthesis and Respiration The Photo-Blue-Bottle Experiment

Workshop No. 2: Simulation of Photosynthesis and Respiration The Photo-Blue-Bottle Experiment Workshop No. 2: Simulation of Photosynthesis and Respiration The Photo-Blue-Bottle Experiment Irradiatiate Shake Fig. 1: Basic Photo-Blue-Bottle Experiment; (see Basic Experiments ) Fig. 2: Investigating

More information

Ionic Liquid as Electrolyte in Photogalvanic Cell for Solar Energy Conversion and Storage

Ionic Liquid as Electrolyte in Photogalvanic Cell for Solar Energy Conversion and Storage International Journal of Energy and Power Engineering 2016; 5(6): 203-208 http://www.sciencepublishinggroup.com/j/ijepe doi: 10.11648/j.ijepe.20160506.15 ISSN: 2326-957X (Print); ISSN: 2326-960X (Online)

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure S1. Change in open circuit potential ( OCP) of 1% W-doped BiVO 4 photoanode upon illumination with different light intensities. Above

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. AFM profiles of the charge transport and perovskite layers. AFM Image showing the thickness (y axis) of the layer with respect to the horizontal position of

More information

Photoelectrochemical characterization of Bi 2 S 3 thin films deposited by modified chemical bath deposition

Photoelectrochemical characterization of Bi 2 S 3 thin films deposited by modified chemical bath deposition Indian Journal of Engineering & Materials Sciences Vol. 13, April; 2006, pp. 140-144 Photoelectrochemical characterization of Bi 2 S 3 thin films deposited by modified chemical bath deposition R R Ahire

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 4: Organic Photovoltaic Devices Lecture 4.2: Characterizing Device Parameters in OPVs Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture Overview and Learning

More information

PHOTODEGRADATION OF ROSE BENGAL (MANGANESE DIOXIDE)

PHOTODEGRADATION OF ROSE BENGAL (MANGANESE DIOXIDE) http://www.rasayanjournal.com Vol.2, No.2 (2009), 516-520 ISSN: 0974-1496 CODEN: RJCABP USING MnO 2 (MANGANESE DIOXIDE) Naveen Mittal *, Arti Shah 1, Pinki B. Punjabi 2 and V.K. Sharma 2* 1 Department

More information

A SILVER/SILVER SULPHIDE SELECTIVE ELECTRODE PREPARED BY MEANS OF CHEMICAL TREATMENT OF SILVER WIRE

A SILVER/SILVER SULPHIDE SELECTIVE ELECTRODE PREPARED BY MEANS OF CHEMICAL TREATMENT OF SILVER WIRE 209 Acta Chim. Slov. 1998, 45(3), pp. 209-216 (Received 15. 5.1998) A SILVER/SILVER SULPHIDE SELECTIVE ELECTRODE PREPARED BY MEANS OF CHEMICAL TREATMENT OF SILVER WIRE Faculty of Chemistry and Chemical

More information

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency R.J. Ellingson and M.J. Heben November 4, 2014 PHYS 4580, 6280, and 7280 Simple solar cell structure The Diode Equation Ideal

More information

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials Compiled by Dr. A.O. Oladebeye Department of Chemistry University of Medical Sciences, Ondo, Nigeria Electrochemical Cell Electrochemical

More information

PERFORMANCE OF NANO STRUCTURED DYE-SENSITIZED SOLAR CELL UTILIZING NATURAL SENSITIZER OPERATED WITH PLATINUM AND CARBON COATED COUNTER ELECTRODES

PERFORMANCE OF NANO STRUCTURED DYE-SENSITIZED SOLAR CELL UTILIZING NATURAL SENSITIZER OPERATED WITH PLATINUM AND CARBON COATED COUNTER ELECTRODES Digest Journal of Nanomaterials and Biostructures Vol. 4, No. 4, December 2009, p. 723-727 PERFORMANCE OF NANO STRUCTURED DYE-SENSITIZED SOLAR CELL UTILIZING NATURAL SENSITIZER OPERATED WITH PLATINUM AND

More information

Homogeneous Photoredox System for Hydrogen Production by Solar Energy

Homogeneous Photoredox System for Hydrogen Production by Solar Energy Homogeneous Photoredox System for Hydrogen Production by Solar Energy M. Gohn and N. Getoff I n s t i t u t f ü r Theoretische Chemie u n d S t r a h l e n c h e m i e d e r U n i v e r s i t ä t W i e

More information

VISIBLE LIGHT INDUCED PHOTOCATALYTIC DEGRADATION OF SOME XANTHENE DYES USING IMMOBILIZED ANTHRACENE

VISIBLE LIGHT INDUCED PHOTOCATALYTIC DEGRADATION OF SOME XANTHENE DYES USING IMMOBILIZED ANTHRACENE , 361-368. ISSN 1011-3924 Printed in Ethiopia 2008 Chemical Society of Ethiopia VISIBLE LIGHT INDUCED PHOTOCATALYTIC DEGRADATION OF SOME XANTHENE DYES USING IMMOBILIZED ANTHRACENE Pinki B. Punjabi *, Rakshit

More information

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Tuesday, September 23, 2014 Lecture 07 1 Introduction to Solar Cells Topics to be covered: Solar cells and sun light Review on semiconductor

More information

Photovoltaic Energy Conversion. Frank Zimmermann

Photovoltaic Energy Conversion. Frank Zimmermann Photovoltaic Energy Conversion Frank Zimmermann Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful & inexhaustible

More information

PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP

PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP In 1900 Planck introduced the hypothesis that light is emitted by matter in the form of quanta of energy hν. In 1905 Einstein extended this idea proposing

More information

photo-mineralization of 2-propanol under visible light irradiation

photo-mineralization of 2-propanol under visible light irradiation Electronic Supplementary Information for WO 3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation Experimental Preparation of STN, and WO

More information

Enhances Photoelectrochemical Water Oxidation

Enhances Photoelectrochemical Water Oxidation -Supporting Information- Exposure of WO 3 Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation Tengfei Li, Jingfu He, Bruno Peña, Curtis P. Berlinguette* Departments of Chemistry

More information

Combination ph, ORP, T Electrode with Transmitter

Combination ph, ORP, T Electrode with Transmitter Combination ph, ORP, T Electrode with Transmitter Technical Information and Manual 2014 Osorno Enterprises Inc. The content of this manual is protected by copyright. All rights reserved. OCS/1406 Combination

More information

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) Communications in Physics, Vol. 26, No. 1 (2016), pp. 43-49 DOI:10.15625/0868-3166/26/1/7961 GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) NGUYEN THAI HA, PHAM DUY LONG,

More information

A stable dual-functional system of visible-light-driven Ni(II) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production

A stable dual-functional system of visible-light-driven Ni(II) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production Electronic Supporting Information A stable dual-functional system of visible-light-driven Ni(II) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production Chuanjun Wang, a Shuang

More information

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the spiro-ometad from a perovskite-filled mesoporous TiO 2

More information

Studies on photoelectroactive (CdHg)Se films in different redox systems

Studies on photoelectroactive (CdHg)Se films in different redox systems Indian Journal of Chemical Technology Vol. 20, November 2013, pp. 411415 Studies on photoelectroactive (CdHg)Se films in different redox systems Md Rashid Tanveer* & Shoeb A Ansari Department of Chemistry,

More information

An experimental investigation to improve the hydrogen production by water photoelectrolysis when cyanin-chloride is used as sensibilizer

An experimental investigation to improve the hydrogen production by water photoelectrolysis when cyanin-chloride is used as sensibilizer Federico Rossi, Andrea Nicolini, Mirko Filipponi An experimental investigation to improve the hydrogen production by water photoelectrolysis when cyanin-chloride is used as sensibilizer pages 2727-2738

More information

CLASS 12th. Modern Physics-I

CLASS 12th. Modern Physics-I CLASS 12th Modern Physics-I Modern Physics-I 01. Dual Nature of Radiation The phenomena such as interference, diffraction and polarization were success-fully explained on the basis of were nature of On

More information

Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably. Increased Visible-light Absorption and Superior Photocatalytic.

Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably. Increased Visible-light Absorption and Superior Photocatalytic. Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-light Absorption and Superior Photocatalytic Performance Yongchao Huang, Haibo Li, Muhammad-Sadeeq Balogun, Wenyue Liu, Yexiang

More information

Electro Analytical Methods

Electro Analytical Methods CH 2252 Instrumental Methods of Analysis Unit II Electro Analytical Methods Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Dual Nature of Radiation and Matter-I

Dual Nature of Radiation and Matter-I Dual Nature of Radiation and Matter-I Physics Without Fear CONTENTS ELECTRON EMISSION PHOTOELECTRIC EFFECT; HERTZ S OBSERVATIONS HALLWACHS AND LENARD S OBSERVATIONS EXPERIMENTAL STUDY OF PHOTOELECTRIC

More information

Chapter 24. Electrogravimetry and Coulometry

Chapter 24. Electrogravimetry and Coulometry Chapter 24 Electrogravimetry and Coulometry Dynamic Electrochemical Methods of analysis Electrolysis Electrogravimetric and Coulometric Methods For a cell to do any useful work or for an electrolysis to

More information

Electrochemistry of Semiconductors

Electrochemistry of Semiconductors Electrochemistry of Semiconductors Adrian W. Bott, Ph.D. Bioanalytical Systems, Inc. 2701 Kent Avenue West Lafayette, IN 47906-1382 This article is an introduction to the electrochemical properties of

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

Solar Fuels From Light & Heat

Solar Fuels From Light & Heat Solar Fuels From Light & Heat Xiaofei Ye, Liming Zhang, Madhur Boloor, Nick Melosh Will Chueh Materials Science & Engineering, Precourt Institute for Energy Stanford University Sunita Williams, NASA 2

More information

Ultrafast Electron and Energy Transfer in Dye- -- SUPPLEMENTARY TABLE and FIGURES

Ultrafast Electron and Energy Transfer in Dye- -- SUPPLEMENTARY TABLE and FIGURES Ultrafast Electron and Energy Transfer in Dye- Sensitized Iron Oxide and Oxyhydroxide Nanoparticles -- SUPPLEMENTARY TABLE and FIGURES 1 Table S1. Summary of experimental determinations of the flatband

More information

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC FUNDAMENTAL PROPERTIES OF SOLAR CELLS February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

PRACTICAL 3 ph AND BUFFERS

PRACTICAL 3 ph AND BUFFERS PRACTICAL 3 ph AND BUFFERS ph and Buffers Structure 3.1 Introduction 3.2 ph and Buffers: Basic Concept 3.2.1 ph 3.2.2 Buffers and Buffer Solutions 3.3 Methods for Determining ph Experiment 1: Measurement

More information

Practical 1P3 Electrode Potentials

Practical 1P3 Electrode Potentials Practical 1P3 Electrode Potentials What you should learn from this practical Science This experiment will familiarise you with the thermodynamics of solutions and show how easily thermodynamic quantities

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Synergistic Effect of Three-dimensional Orchid-like

More information

Mesoporous titanium dioxide electrolyte bulk heterojunction

Mesoporous titanium dioxide electrolyte bulk heterojunction Mesoporous titanium dioxide electrolyte bulk heterojunction The term "bulk heterojunction" is used to describe a heterojunction composed of two different materials acting as electron- and a hole- transporters,

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Investigation on the influences of layer structure and nanoporosity of light scattering TiO 2. layer in DSSC. Journal of Physics: Conference Series

Investigation on the influences of layer structure and nanoporosity of light scattering TiO 2. layer in DSSC. Journal of Physics: Conference Series Journal of Physics: Conference Series PAPER OPEN ACCESS Investigation on the influences of layer structure and nanoporosity of light scattering TiO layer in DSSC To cite this article: T Apriani et al 1

More information

A Novel TiO x Protection Film for Organic Solar Cells

A Novel TiO x Protection Film for Organic Solar Cells A Novel TiO x Protection Film for Organic Solar Cells Mool C. Gupta 1, John T. Yates, Jr 2 (principle investigators) J. Li 1, Y. Shen 1, S. Kim 2, S. Edington 2, Shinuk Cho 3, Kwanghee Lee 3, and Alan

More information

Thermally Stable Silver Nanowires-embedding. Metal Oxide for Schottky Junction Solar Cells

Thermally Stable Silver Nanowires-embedding. Metal Oxide for Schottky Junction Solar Cells Supporting Information Thermally Stable Silver Nanowires-embedding Metal Oxide for Schottky Junction Solar Cells Hong-Sik Kim, 1 Malkeshkumar Patel, 1 Hyeong-Ho Park, Abhijit Ray, Chaehwan Jeong, # and

More information

( P ) Thales Photo-Electrochemical Techniques. Outline. Photo-Electrochemical Set-Up. Standard Solar Cell Measurements

( P ) Thales Photo-Electrochemical Techniques. Outline. Photo-Electrochemical Set-Up. Standard Solar Cell Measurements Outline Thales hoto-electrochemical Techniques Dynamic- and Spectral Methods for Measurements on DSSC, OSC, OLED and Electro-Chromic Devices C.-A. Schiller Standard Solar Cell Measurements Basics and the

More information

Comparison on Degradation of Reactive Black 5 (RB5) in Photocatalytic Fuel Cell (PFC) under UV and Solar Light

Comparison on Degradation of Reactive Black 5 (RB5) in Photocatalytic Fuel Cell (PFC) under UV and Solar Light Comparison on Degradation of Reactive Black 5 (RB5) in Photocatalytic Fuel Cell (PFC) under UV and Solar Light W. F. Khalik *, S. A. Ong *, L. N. Ho **, C. H. Voon **, Y. S. Wong *, N. A. Yusoff *, S.

More information

Cyclic Voltammetry. Fundamentals of cyclic voltammetry

Cyclic Voltammetry. Fundamentals of cyclic voltammetry Cyclic Voltammetry Cyclic voltammetry is often the first experiment performed in an electrochemical study of a compound, biological material, or an electrode surface. The effectiveness of cv results from

More information

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Experimental section Preparation of m-tio 2 /LPP photoanodes. TiO 2 colloid was synthesized according

More information

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Supporting information For Nano Letters Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Xiaobao Xu,,, Zonghao Liu,, Zhixiang Zuo, Meng Zhang, Zhixin Zhao, Yan Shen,

More information

EXPERIMENT 8 POTENTIOMETRY: DIRECT-MEASUREMENT OPTION

EXPERIMENT 8 POTENTIOMETRY: DIRECT-MEASUREMENT OPTION EXPERIMENT 8 POTENTIOMETRY: DIRECT-MEASUREMENT OPTION I. INTRODUCTION This experiment introduces the direct-measurement approach to potentiometry. Principal purposes of the study are a) to understand quantitative

More information

Photovoltaic cell and module physics and technology

Photovoltaic cell and module physics and technology Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 6/21/2012 1 Outlines Photovoltaic Effect Photovoltaic cell

More information

Supporting Information

Supporting Information Supporting Information A High Voltage Organic-Inorganic Hybrid Photovoltaic Cell Sensitized with Metal-ligand Interfacial Complexes Ayumi Ishii and Tsutomu Miyasaka* Graduate School of Engineering, Toin

More information

Yixin Zhao and Kai Zhu*

Yixin Zhao and Kai Zhu* Supporting Information CH 3 NH 3 Cl-Assisted One-Step Solution Growth of CH 3 NH 3 PbI 3 : Structure, Charge- Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells Yixin Zhao and Kai

More information

Introduction. Katarzyna Skorupska. Silicon will be used as the model material however presented knowledge applies to other semiconducting materials

Introduction. Katarzyna Skorupska. Silicon will be used as the model material however presented knowledge applies to other semiconducting materials Introduction Katarzyna Skorupska Silicon will be used as the model material however presented knowledge applies to other semiconducting materials 2 June 26 Intrinsic and Doped Semiconductors 3 July 3 Optical

More information

Electrochemical studies on Dowex-50 membrane using sodium chloride and urea solutions having variable composition

Electrochemical studies on Dowex-50 membrane using sodium chloride and urea solutions having variable composition Indian Journal of Chemistry Vol. 41A, March 2002, pp. 478-482 Electrochemical studies on Dowex-50 membrane using sodium chloride and urea solutions having variable composition Kehar Singh*, A K Tiwari

More information

Performance of nano structured dye-sensitized solar cell utilizing natural sensitizer operated with platinum and carbon coated counter electrodes

Performance of nano structured dye-sensitized solar cell utilizing natural sensitizer operated with platinum and carbon coated counter electrodes International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.2, No.1, pp 615-619, Jan-Mar 2010 Performance of nano structured dye-sensitized solar cell utilizing natural sensitizer

More information

PHOTOCATALYTIC DEGRADATION OF NON-BIODEGRADABLE MALACHITE GREEN DYE BY Ni-DOPED TITANIUM DIOXIDE

PHOTOCATALYTIC DEGRADATION OF NON-BIODEGRADABLE MALACHITE GREEN DYE BY Ni-DOPED TITANIUM DIOXIDE J. Curr. Chem. Pharm. Sc.: 6(4), 2016, 53-62 ISSN 2277-2871 PHOTOCATALYTIC DEGRADATION OF NON-BIODEGRADABLE MALACHITE GREEN DYE BY Ni-DOPED TITANIUM DIOXIDE KHUSHNUMA PARVEEN * and RITU VYAS Department

More information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Planar Organic Photovoltaic Device. Saiful I. Khondaker Planar Organic Photovoltaic Device Saiful I. Khondaker Nanoscience Technology Center and Department of Physics University of Central Florida http://www.physics.ucf.edu/~khondaker W Metal 1 L ch Metal 2

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information A minimal non-radiative recombination loss for efficient

More information

3 Results and discussion

3 Results and discussion Spray deposition of oxides at ambient atmosphere Part 2: Compact TiO 2 layers as a model for the investigation of an alternative solid state concept for dye solar cells F. Lenzmann Energy Research Centre

More information

Stability of Organic Materials. Anders Hagfeldt Dept. of Physical Chemistry Ångström Solar Center Uppsala University

Stability of Organic Materials. Anders Hagfeldt Dept. of Physical Chemistry Ångström Solar Center Uppsala University Stability of Organic Materials Anders Hagfeldt Dept. of Physical Chemistry Ångström Solar Center Uppsala University Anders.Hagfeldt@fki.uu.se Specific features of DSC Charge separation and transport are

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

Photocatalytic bleaching of malachite green and brilliant green dyes using ZnS-CdS as semiconductor: A comparative study

Photocatalytic bleaching of malachite green and brilliant green dyes using ZnS-CdS as semiconductor: A comparative study Available online at www.pelagiaresearchlibrary.com Pelagia Research Library Der Chemica Sinica, 2010, 1 (3): 77-83 ISSN: 0976-8505 CODEN (USA) CSHIA5 Photocatalytic bleaching of malachite green and brilliant

More information

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.6, No.2, pp 985-990, April-June 2014 Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight *Mohammad

More information

Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts

Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts CIMTEC Forum 2010 (0) 5 pages (0) Trans Tech Publications, Switzerland Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts G. Khrypunov 1, A. Meriuts 1, H. Klochko 1, T.

More information

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Hysteresis-free low-temperature-processed planar

More information

Characteristic curves of a solar cell

Characteristic curves of a solar cell Related topics Semi-conductor, p-n junction, energy-band diagram, Fermi characteristic energy level, diffusion potential, internal resistance, efficiency, photo-conductive effect, acceptors, donors, valence

More information

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017

More information

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS Ա.Մ.Կեչիյանց Ara Kechiantz Institute of Radiophysics and Electronics (IRPhE), National Academy of Sciences (Yerevan, Armenia) Marseille

More information

CHAPTER 4. SYNTHESIS, CHARACTERIZATION OF TiO 2 NANOTUBES AND THEIR APPLICATION IN DYE SENSITIZED SOLAR CELL

CHAPTER 4. SYNTHESIS, CHARACTERIZATION OF TiO 2 NANOTUBES AND THEIR APPLICATION IN DYE SENSITIZED SOLAR CELL 93 CHAPTER 4 SYNTHESIS, CHARACTERIZATION OF TiO 2 NANOTUBES AND THEIR APPLICATION IN DYE SENSITIZED SOLAR CELL 4.1 INTRODUCTION TiO 2 -derived nanotubes are expected to be applicable for several applications,

More information

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS S.K. Lazarouk, D.A. Sasinovich BELARUSIAN STATE UNIVERSITY OF INFORMATICS AND RADIOELECTRONICS Outline: -- experimental

More information

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries Faculty of Science and Technology Exam in: FYS 3028/8028 Solar Energy and Energy Storage Date: 11.05.2016 Time: 9-13 Place: Åsgårdvegen 9 Approved aids: Type of sheets (sqares/lines): Number of pages incl.

More information

Chapter 3 Electrochemical methods of Analysis-Potentiometry

Chapter 3 Electrochemical methods of Analysis-Potentiometry Chapter 3 Electrochemical methods of Analysis-Potentiometry Electroanalytical chemistry Contents Introduction Galvanic and electrolytic cells Salt bridge Electrode potential and cell potential Indicator

More information

Supplementary Information

Supplementary Information Supplementary Information Visible Photocatalytic Water Splitting and Photocatalytic Two-Electron Oxygen Formation over Cu and Fe Doped g-c 3 N 4 Zhen Li a,b, Chao Kong a,b, Gongxuan Lu a* a State Key Laboratory

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Total Mercury Former numbering: ECSS/CN 312-1982 & ESPA/CN-E-106-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

Analysis of cations and anions by Ion- Selective Electrodes (ISEs)

Analysis of cations and anions by Ion- Selective Electrodes (ISEs) Analysis of cations and anions by Ion- Selective Electrodes (ISEs) Purpose: The purpose of this assignment is to introduce potentiometric measurements of ionic species by ion selective electrodes (ISEs)

More information

Exact Analytical Analysis of Dye-Sensitized Solar Cell: Improved Method and Comparative Study

Exact Analytical Analysis of Dye-Sensitized Solar Cell: Improved Method and Comparative Study The Open Renewable Energy Journal, 2012, 5, 49-60 49 Open Access Exact Analytical Analysis of Dye-Sensitized Solar Cell: Improved Method and Comparative Study Renu Guliani a, Amit Jain b and Avinashi Kapoor

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics. PIs: Mike McGehee and Hema Karunadasa

Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics. PIs: Mike McGehee and Hema Karunadasa Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics PIs: Mike McGehee and Hema Karunadasa 1 Perovskite Solar Cells are Soaring Jul 2013 Grätzel, EPFL 15% Nov 2014 KRICT 20.1%! Seok,

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sci. Technol., 21(1) (2014), pp. 12-16 International Journal of Pure and Applied Sciences and Technology ISSN 2229-6107 Available online at www.ijopaasat.in Research Paper Influence

More information

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous

More information

Oxygen evolution reaction electrocatalyzed on a Fenton-treated gold surface. P. Esakki Karthik, C. Jeyabharathi and K. L. N.

Oxygen evolution reaction electrocatalyzed on a Fenton-treated gold surface. P. Esakki Karthik, C. Jeyabharathi and K. L. N. Oxygen evolution reaction electrocatalyzed on a Fenton-treated gold surface P. Esakki Karthik, C. Jeyabharathi and K. L. N. Phani* Nanoscale Electrocatalysis & Sensor Research Group Electrodics & Electrocatalysis

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.3 Photoelectric

Higher -o-o-o- Past Paper questions o-o-o- 3.3 Photoelectric Higher -o-o-o- Past Paper questions 1991-2010 -o-o-o- 3.3 Photoelectric 1996 Q36 The work function for sodium metal is 2.9x10-19 J. Light of wavelength 5.4x10-7 m strikes the surface of this metal. What

More information

EXPERIMENT 15 ESTIMATION OF MAGNESIUM AND. HP Y, etc. Structure

EXPERIMENT 15 ESTIMATION OF MAGNESIUM AND. HP Y, etc. Structure EXPERIMENT 15 1 ESTIMATION OF MAGNESIUM AND 1 CALCIUM IONS IN A MIXTURE BY COMPLEXOMETRY Structure 15.1 Introduction Objectives 15.2 'Principle 15.3 Requirements 15.4 Procedure 15.5 Obse~ations 15.6 Calculations

More information

CHAPTER 7 INTRODUCTION TO PHOTOELECTROCHEMICAL (PEC) SOLAR CELLS 7.9. PARAMETERS NECESSARY FOR CHARACTERISATION OF PEC SOLAR CELLS 201

CHAPTER 7 INTRODUCTION TO PHOTOELECTROCHEMICAL (PEC) SOLAR CELLS 7.9. PARAMETERS NECESSARY FOR CHARACTERISATION OF PEC SOLAR CELLS 201 : 186 CHAPTER 7 INTRODUCTION TO PHOTOELECTROCHEMICAL (PEC) SOLAR CELLS Page No. 7.1. INTRODUCTION 187 7.2. DEFINITION OF PEC CELL 188 7.3. SOLAR ENERGY CONVERSION 188 7.4. SEMICONDUCTOR ELECTROLYTE INTERFACE

More information

Direct Evaluation Method of UV Curing Process on the Basis of Conductivity Change of Photopolymerization Materials

Direct Evaluation Method of UV Curing Process on the Basis of Conductivity Change of Photopolymerization Materials IS&T's IS&T s th Annual Conference Direct Evaluation Method of UV Curing Process on the Basis of Conductivity Change of Photopolymerization Materials Yasusuke Takahashi, Sunao Tada, Shoutaro Yamada Department

More information