Introduc)on to Fuel Cells

Size: px
Start display at page:

Download "Introduc)on to Fuel Cells"

Transcription

1

2 Introduc)on to Fuel Cells Anode (oxida)on loss of electrons): 2H 2 à 4H + +4e - Cathode (reduc-on gain of electrons) O 2 +4H + +4e - à 2H 2 O Overall reac)on (redox): 2H 2 + O 2 à 2H 2 O We will par)cularly interested in the oxygen reduc)on reac)on (ORR) in this class O 2 +4H + +4e - à 2H 2 O

3 Explore mechanisms: ORR toy example Poten)al Energy Overall Fuel Cell Reac)on 2H 2 + O 2 à 2H 2 O The steps highlighted in blue tend to be rate limi3ng steps in ORR Reac)on Mechanism

4 Volcano Plot Previous research shows that binding energies of reac)on intermediates are good predictors of cataly)c ac)vity Cataly)c Ac)vity How can volcano plots be explained? B. Corona, M. Howard, L. Zhang, and G. Henkelman, Computa)onal Screening of Core- Shell Nanopar)cles for the Hydrogen Evolu)on and Oxygen Reduc)on Reac)onsComputa)onal, J. Chem. Phys. 145, (2016). DOI

5 Saba)er Principles Interac)on between a substrate and a catalyst needs to be just right. Too strong of binding means you can not remove the substrate from the material. Too weak means it is difficult to bind the substrate to the material strong binding difficult to activate Medford, Andrew J., et al. "From the Saba)er principle to a predic)ve theory of transi)on- metal heterogeneous catalysis." Journal of Catalysis 328 (2015):

6 Binding Energies Binding energy: energy required to separate a system into two parts E binding- oxygen = In our case, the two parts will be the material and the adsorbent. The reference of the adsorbent will always be the stable form of the species 1/2O 2 + M à MO What is the energy change in the chemical reac)on?

7 Binding Energies What does a posi)ve binding energy mean? It is energe)cally unfavorable for the substrate to bind to the material V r r

8 Explore mechanisms: ORR toy example Poten)al Energy Overall Fuel Cell Reac)on 2H 2 + O 2 à 2H 2 O It will be difficult to get oxygen to bind to the catalyst! Reac)on Mechanism

9 Binding Energies What does a posi)ve binding energy mean? It is energe)cally unfavorable for the substrate to bind to the material V r r What does a nega)ve binding energy mean? It is energe)cally favorable for the substrate to bind to the material V r

10 Explore mechanisms: ORR toy example Poten)al Energy Overall Fuel Cell Reac)on 2H 2 + O 2 à 2H 2 O It will be difficult to remove oxygen from the catalyst! Reac)on Mechanism

11 Cohesive Energies Cohesive Energy: Energy difference between the energy of a nanopar)cle or solid with the energy of the individual atoms not interac)ng (free atoms) E cohesive = - Another way to think about cohesive energy is how much energy are you gaining from crea)ng a molecular structure You can also think of it as a measure of stability

12 Cohesive Energies Cohesive Energy: Energy difference between the energy of a nanopar)cle or solid with the energy of the individual atoms not interac)ng (free atoms) E cohesive = - N where N is the number of atoms in the nanopar8cle Another way to think about cohesive energy is how much energy are you gaining from crea)ng a molecular structure You can also think of it as a measure of stability

13 Cohesive Energies Let s say I want to compare the stability of a 38 atom and a 55 atom nanopar)cle using the equa)on given. Can I directly compare cohesive energies? get a per atom cohesive energy E cohesive = - N N where N is the number of atoms in the nanopar8cle

14 Units We will be using the following units in this class: Energyà Electronvolts (ev) The energy in one photon of visible light is ev The energy to break a covalent bond in Silicon is around 1.1eV. Energies on an order of magnitude higher than this are too high! Lengthà Angstrom (Å) The bond lengths are typically around 1-3 Å

15 Overview of VASP command line tools

16 Required calcula)ons When calcula)ng binding and cohesive energies, you will need to localally op3mize or perform a geometry op3miza3on of each structure involved. E binding- oxygen = For an oxygen binding energy on material, M, you will need to perform three geometry op)miza)ons M- O, M and O 2. You will need to check that each op)miza)on successfully converges ( F < 0.005eV/Å). Next I will show you the tools required to check this with VASP.

17 Geometry Op)miza)on with VASP You will use a sosware package called VASP to run these calcula)ons; this sosware uses Density Func8onal Theory (our electronic structure method) to calculate proper)es of materials. These calcula)ons will be much slower than your previous lab; the will take several minutes to run or even longer if all of the computer is being used! Next I will show you the tools required to check this with VASP.

18 Command line for VASP oug FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS Make sure this force value reaches threshold (<0.005 ev/å); This parameter is specified in the INCAR file with the flag EDIFFG.

19 Command line for VASP oug FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS oute energy without entropy= energy(sigma- >0) = energy without entropy= energy(sigma- >0) = energy without entropy= energy(sigma- >0) = energy without entropy= energy(sigma- >0) = energy without entropy= energy(sigma- >0) = energy without entropy= energy(sigma- >0) =

20 Review: Algorithm for local op)miza)on while using an electronic structure method The general procedure for numerical geometry op)miza)on is as follows: 1. Calculate the force on all atoms for some configura)on of an atomic system. 1. To calculate the force on all the atoms (fixed nuclei fixed) we will need to op)mize the wave func)on for all the electrons in your chemical system 2. If the magnitude of the force is less than threshold, you have found a cri)cal point! STOP. 3. If not, move the atoms, or nuclei, such that they go towards a cri)cal points 4. Repeat.

21 Command line for VASP ou Itera)on 1( 41) Itera)on 1( 42) Itera)on 1( 43) Itera)on 1( 44) Itera)on 2( 1) Itera)on 2( 2) Itera)on 2( 3) Itera)on 2( 4) Itera)on 2( 5) Itera)on 2( 6) Itera)on 2( 7) Itera)on 2( 8) Itera)on 2( 9) Itera)on 3( 1) Op8miza8on Step number of nuclei loca8on Op8miza8on step number for the electrons at fixed nuclei

22 More VASP Info What does the script vfin.pl do? Moves all VASP output files to a directory you specify e.g vfin.pl min1 places these files in directory min1 It leaves all star)ng VASP files (POSCAR, INCAR,POTCAR,KPOINTS,frilab.sub) in your current directory The POSCAR file in you current directory, the new star)ng configura)on, becomes the final configura)on from the previous run or the CONTCAR file POSCAR CONTCAR The XDATCAR is a movie of all images in the op)miza)on

23 Common Issues on Lab 2 Calcula)ons are not converged oug FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS FORCES: max atom, RMS Make sure this force value reaches threshold (<0.005 ev) If not converged wrap up calcula8on and run the job again by running vfin.pl minx then qsub frilab2.sub

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity Electronic Structure Calcula/ons: Density Func/onal Theory and Predic/ng Cataly/c Ac/vity Review Examples of experiments that do not agree with classical physics: Photoelectric effect Photons and the quan/za/on

More information

Gradient Descent for High Dimensional Systems

Gradient Descent for High Dimensional Systems Gradient Descent for High Dimensional Systems Lab versus Lab 2 D Geometry Op>miza>on Poten>al Energy Methods: Implemented Equa3ons for op3mizer 3 2 4 Bond length High Dimensional Op>miza>on Applica3ons:

More information

Due: since the calculation takes longer than before, we ll make it due on 02/05/2016, Friday

Due: since the calculation takes longer than before, we ll make it due on 02/05/2016, Friday Homework 3 Due: since the calculation takes longer than before, we ll make it due on 02/05/2016, Friday Email to: jqian@caltech.edu Introduction In this assignment, you will be using a commercial periodic

More information

Ch. 2 Chemical Context of Life BIOL 222

Ch. 2 Chemical Context of Life BIOL 222 Ch. 2 Chemical Context of Life BIOL 222 Ma1er Organisms are composed of ma1er Ma8er anything that takes up space and has mass Ma8er is made up of elements Lowest end of the structural organiza@on of life

More information

Ch. 2 Chemical Context of Life BIOL 222

Ch. 2 Chemical Context of Life BIOL 222 Ch. 2 Chemical Context of Life BIOL 222 Ma1er Organisms are composed of ma1er Ma8er is anything that takes up space and has mass Ma8er is made up of elements Lowest end of the structural organiza@on of

More information

Week 12, Lecture 2 Nuclear Synthesis

Week 12, Lecture 2 Nuclear Synthesis Week 12, Lecture 2 Nuclear Synthesis Nuclear Reac*ons in Space - - Overview - - Observa

More information

Catalysis. Berzelius is credited with origina3ng the chemical terms "catalysis", "polymer", "isomer" and "allotrope"

Catalysis. Berzelius is credited with origina3ng the chemical terms catalysis, polymer, isomer and allotrope Catalysis Photcatalyst in the form of nanoflower Berzelius is credited with origina3ng the chemical terms "catalysis", "polymer", "isomer" and "allotrope" Gold oxidation catalyst Berzelius is credited

More information

Back to molecular interac/ons Quantum theory and molecular structure

Back to molecular interac/ons Quantum theory and molecular structure Back to molecular interac/ons Quantum theory and molecular structure Atoms are arranged in 3D to cons1tute a molecule. Atoms in one molecule are connected by strong covalent bonds that are not easily broken

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

Processing of Electrocataly1c Data V1.1

Processing of Electrocataly1c Data V1.1 Processing of Electrocataly1c Data V1.1 Marcel Risch, Electrochemical Energy Lab March 2015 Feedback and discussion by Kelsey Stoerzinger, Wesley Hong and Alex Han was greatly appreciated Experimental

More information

Covalent Bonds. single bond, or single covalent bond. sharing of one pair of valence electrons. double bond, or double covalent bond

Covalent Bonds. single bond, or single covalent bond. sharing of one pair of valence electrons. double bond, or double covalent bond Covalent Bonds Molecule two or more atoms held together by covalent bonds single bond, or single covalent bond sharing of one pair of valence electrons double bond, or double covalent bond sharing of two

More information

Methodological Foundations of Biomedical Informatics (BMSC-GA 4449) Optimization

Methodological Foundations of Biomedical Informatics (BMSC-GA 4449) Optimization Methodological Foundations of Biomedical Informatics (BMSCGA 4449) Optimization Op#miza#on A set of techniques for finding the values of variables at which the objec#ve func#on amains its cri#cal (minimal

More information

Electronega+vity Review

Electronega+vity Review Electronega+vity Review Remember from the first course that electronega+vity is an es+mate of how atoms pull electrons towards themselves in a molecule. The higher the electron affinity, the more the element

More information

Atomic Structure and Chemical Bonds. Chapter 16

Atomic Structure and Chemical Bonds. Chapter 16 Atomic Structure and Chemical Bonds Chapter 16 Sec7on 1 Why do Atoms Combine? Let s remember the basics: Ma@er is made up of Atoms The center of an atom contains a small nucleus that has a posi7ve charge.

More information

Unit 4: Electrochemistry UNIFYING ELECTROCHEMISTRY, FREE ENERGY, & EQUILIBRIUM

Unit 4: Electrochemistry UNIFYING ELECTROCHEMISTRY, FREE ENERGY, & EQUILIBRIUM Unit 4: Electrochemistry UNIFYING ELECTROCHEMISTRY, FREE ENERGY, & EQUILIBRIUM Goals for Today 1. Describe fully the rela2onship between electrical poten2al (ε) and free energy ( G) ΔG = nfε 2. Describe

More information

Redox Equilibria ( , , ) 1. Defining standard electrode poten;al and simple galvanic cells 2. Difference between

Redox Equilibria ( , , ) 1. Defining standard electrode poten;al and simple galvanic cells 2. Difference between Redox Equilibria (17.11.2014, 18.11.2014, 24.11.2014) 1. Defining standard electrode poten;al and simple galvanic cells 2. Difference between galvanic cell and electroly;c cell and predic;ng feasibility

More information

Ch. 8 Metabolism and Energy BIOL 222

Ch. 8 Metabolism and Energy BIOL 222 Ch. 8 Metabolism and Energy BIOL 222 Metabolism Metabolism The totality of an organism s chemical reac:ons Sum of anabolism and catabolism emergent property of life that arises from interac:ons between

More information

Theore&cal Study of Adsorp&on in SIFSIX- 3- Zn Type Porous Materials

Theore&cal Study of Adsorp&on in SIFSIX- 3- Zn Type Porous Materials Theore&cal Study of Adsorp&on in SIFSIX- 3- Zn Type Porous Materials Ahmad Ziaee* 1,2, Drahomir Chovan 1,2, Michael Zaworotko 2,3 and Syed A.M. Tofail 1,2 1 Department of Physics and Energy 2 Materials

More information

Crystal Structures: Bulk and Slab Calcula3ons

Crystal Structures: Bulk and Slab Calcula3ons Crystal Structures: Bulk and Slab Calcula3ons Periodic Boundary Condi3ons So far in lab 2 and 3, we have done calcula3ons for small clusters/nanopar3cles with

More information

Pedro Alexandrino Fernandes, Dep. Chemistry & Biochemistry, University of Porto, Portugal

Pedro Alexandrino Fernandes, Dep. Chemistry & Biochemistry, University of Porto, Portugal Pedro Alexandrino Fernandes, Dep. Chemistry & Biochemistry, University of Porto, Portugal pedro.fernandes@fc.up.pt 1. Introduc3on Intermolecular Associa3ons 1. Introduc3on What type of forces govern these

More information

Modeling of S N Bond Breaking of an Aroma4c Sulfilimine. By Jacob Brunsvold Advisor: Dr Stacey Stoffregen

Modeling of S N Bond Breaking of an Aroma4c Sulfilimine. By Jacob Brunsvold Advisor: Dr Stacey Stoffregen Modeling of S N Bond Breaking of an Aroma4c Sulfilimine By Jacob Brunsvold Advisor: Dr Stacey Stoffregen Deoxygena)on of Aroma)c Sulfoxides O S hν S + O( 3 P) Φ < 0.01 upon photolysis, dibenzothiophene

More information

Physiology Unit 1 CHEMISTRY REVIEW

Physiology Unit 1 CHEMISTRY REVIEW Physiology Unit 1 CHEMISTRY REVIEW Defini7ons Types of energy Kine7c vs. poten7al Forms of energy Chemical Ex: ATP Ma0er and Energy Electrical Ex: Ac7on poten7al of an neuron Mechanical Ex: Ac7on of muscles

More information

Chapter 11: States of Ma0er & Intermolecular Forces

Chapter 11: States of Ma0er & Intermolecular Forces Chapter 11: States of Ma0er & Intermolecular Forces Essen:al Ques:on: Sec:ons 1&2 How do par)cles interact with each other and how does this affect proper)es? States Solids Fixed, rigid posi)on Held )ghtly

More information

Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles

Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles Louis C. Jones 6/8/12 Abstract Simulations were carried out to investigate phase segregation of insoluble alloy nanoparticles

More information

Ab- ini&o quantum simula+ons of complex photocataly+c reac+ons

Ab- ini&o quantum simula+ons of complex photocataly+c reac+ons Ab- ini&o quantum simula+ons of complex photocataly+c reac+ons With: Dmitry Vinichenko, Grigory Kolesov, Georgios Tritsaris Department of Physics, Department of Chemistry and Chemical Biology, and School

More information

CH 302 Unit 3 Exam Review NUCLEAR, KINETICS, INORGANIC

CH 302 Unit 3 Exam Review NUCLEAR, KINETICS, INORGANIC CH 302 Unit 3 Exam Review NUCLEAR, KINETICS, INORGANIC Learning ObjecDves - Nuclear Explain the macroscopic observables associated with Understand and explain the concept of isotopic stability nuclear

More information

Chapter 18. Redox Reac)on. Oxida)on & Reduc)on 4/8/08. Electrochemistry

Chapter 18. Redox Reac)on. Oxida)on & Reduc)on 4/8/08. Electrochemistry Chapter 18 Electrochemistry Redox Reac)on One or more elements change oxida)on number all single displacement, and combus)on, some synthesis and decomposi)on Always have both oxida)on and reduc)on split

More information

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University ENZYMES 2: KINETICS AND INHIBITION HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 REVIEW OF KINETICS (GEN CHEM II) 2 Chemical KineCcs How fast

More information

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes Lesson Overview Chemical Reac+ons and Enzymes Lesson Overview 2.4 Chemical Reactions and Enzymes THINK ABOUT IT Living things are made up of chemical compounds, but chemistry isn t just what life is made

More information

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and Supplementary Figure 1 Morpholigical properties of TiO 2-x s. The statistical particle size distribution (a) of the defective {1}-TiO 2-x s and their typical TEM images (b, c). Quantity Adsorbed (cm 3

More information

The Curious Case of Au Nanoparticles

The Curious Case of Au Nanoparticles The Curious Case of Au Nanoparticles Industrial reactions performed by metals 1 Low Au reactivity Predictions are typically based on d-band model Hold well for polycrystalline materials Coinage metals

More information

Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon

Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon configura8ons Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of

More information

Thrust III Valida/on & mo/va/on are via experimental synthesis & characteriza/on

Thrust III Valida/on & mo/va/on are via experimental synthesis & characteriza/on Thrust III Valida/on & mo/va/on are via experimental synthesis & characteriza/on Capabili'es Discoveries Publica'ons 1 Thrust III Principal Inves'gators 6 Post- docs, 9 graduate students, 6 undergraduates

More information

Chapter 2 Atoms, Molecules and Ions

Chapter 2 Atoms, Molecules and Ions Sec$on 2.1 The Early History of Chemistry Chapter 2 Atoms, Molecules and Ions Sec$on 2.1 The Early History of Chemistry Early History of Chemistry Greeks were the first to a?empt to explain why chemical

More information

Computational Screening of Core-Shell Nanoparticles for the Hydrogen Evolution and Oxygen Reduction Reactions. Abstract

Computational Screening of Core-Shell Nanoparticles for the Hydrogen Evolution and Oxygen Reduction Reactions. Abstract mputational reening of re-shell Nanoparticles for the Hydrogen Evolution and Oxygen duction actions Benjamin rona, Marco Howard, Liang Zhang, and Graeme Henkelman Department of Chemistry and the Institute

More information

Advanced Photocathode Development. Klaus A(enkofer & cathode development group ANL

Advanced Photocathode Development. Klaus A(enkofer & cathode development group ANL Advanced Photocathode Development Klaus A(enkofer & cathode development group ANL Overview The Basic Principles of Photocathodes The Three Steps of Absorp@on: Requirements on the Material What does Novel

More information

Au-C Au-Au. g(r) r/a. Supplementary Figures

Au-C Au-Au. g(r) r/a. Supplementary Figures g(r) Supplementary Figures 60 50 40 30 20 10 0 Au-C Au-Au 2 4 r/a 6 8 Supplementary Figure 1 Radial bond distributions for Au-C and Au-Au bond. The zero density regime between the first two peaks in g

More information

Light- Ma*er Interac0ons CHEM 314

Light- Ma*er Interac0ons CHEM 314 Light- Ma*er Interac0ons CHEM 314 Objec0ves Review electromagne0c radia0on and EM spectrum Wave- par0cle duality Overview of ways light can interact with ma*er Apply these interac0ons to the study of chemical

More information

Chemistry 2. Your lecturers. Revision H 2 22/04/14. Lecture 1 Quantum Mechanics in Chemistry

Chemistry 2. Your lecturers. Revision H 2 22/04/14. Lecture 1 Quantum Mechanics in Chemistry Chemistry Lecture 1 Quantum Mechanics in Chemistry Your lecturers 8am Asaph Widmer-Cooper Room 316 asaph.widmer-cooper@sydney.edu.au 1pm Adam Bridgeman Room 543A adam.bridgeman@sydney.edu.au Revision H

More information

Excercise : Ammonia Flipping

Excercise : Ammonia Flipping Excercise : Ammonia Flipping Rennes, 1. September 2016 Faculty of Physics, AG-CMP, University of Vienna general remarks (1) this excercise consists of 4 steps which unfold if you untar the file ammonia

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics Dr. Dan Protopopescu Kelvin Building, room 524 Dan.Protopopescu@glasgow.ac.uk 1 Topics covered in this course I. Radia'on II. Atomic nuclei III. Radioac'vity and radioac've

More information

Materials that you may find helpful when working through this exercise

Materials that you may find helpful when working through this exercise Detailed steps illustrating how to use VASP on the Suns in Fitz 177 For use in lab: 11/10/2009 (Original file by Dr. Rachel Getman, 11/18/2007. Editted for use by Dorrell McCalman 11/09/2009.) Note on

More information

Chapter 11 Liquids and Intermolecular Forces

Chapter 11 Liquids and Intermolecular Forces Sec$on 10.1 Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces Sec$on 10.1 Intermolecular Forces Intramolecular Bonding Within the molecule. Molecules are formed by sharing electrons between

More information

The KN KΞ reac*on in a chiral NLO model

The KN KΞ reac*on in a chiral NLO model The KN KΞ reac*on in a chiral NLO model Àngels Ramos A. Feijoo, V.K. Magas, A. Ramos, Phys. Rev. C92 (2015) 1, 015206 Outline Introduc*on State- of- the art of chiral unitary models for the meson- baryon

More information

3.3 Increasing & Decreasing Functions and The First Derivative Test

3.3 Increasing & Decreasing Functions and The First Derivative Test 3.3 Increasing & Decreasing Functions and The First Derivative Test Definitions of Increasing and Decreasing Functions: A funcon f is increasing on an interval if for any two numbers x 1 and x 2 in the

More information

Inves&ga&on of atomic processes in laser produced plasmas for the short wavelength light sources

Inves&ga&on of atomic processes in laser produced plasmas for the short wavelength light sources Inves&ga&on of atomic processes in laser produced plasmas for the short wavelength light sources Akira Sasaki Quantum Beam Science Directorate Japan Atomic Energy Agency Introduc&on EUV source at λ=6.5nm

More information

Radioac'vity and Radioac've Decay. Isotopes too!

Radioac'vity and Radioac've Decay. Isotopes too! Radioac'vity and Radioac've Decay Isotopes too! Warmup If you ve got 1.62 x 10 26 atoms of Carbon, what is that weight in grams? What assump'ons about atomic mass are you making in your calcula'on? Write

More information

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Andrew A. Peterson 1,3, Jens K. Nørskov 1,2 SUNCAT Center for Interface Science and Catalysis,

More information

Physics 1B Electricity & Magne4sm

Physics 1B Electricity & Magne4sm Physics 1B Electricity & Magne4sm Frank Wuerthwein (Prof) Edward Ronan (TA) UCSD Outline of Today Administra4ve details of how this course works. Introductory overview of the quarter s material. Introduc4on

More information

Cellular automata, entropy and box- coun4ng dimension

Cellular automata, entropy and box- coun4ng dimension Cellular automata, entropy and box- coun4ng dimension Cellular Automata Cellular automata (CA) models epitomize the idea that simple rules can generate complex pa=erns. A CA consists of an array of cells

More information

Energy Diagrams 2/20/16. Energy Diagrams are a plot of the reac=on steps, or Reac=on Coordinate (X- axis) versus the Energy (Kcal or KJ) A Review

Energy Diagrams 2/20/16. Energy Diagrams are a plot of the reac=on steps, or Reac=on Coordinate (X- axis) versus the Energy (Kcal or KJ) A Review Energy Diagrams Energy Diagrams are a plot of the reac=on steps, or eac=on Coordinate (X- axis) versus the Energy (Kcal or KJ) A eview In a spontaneous reac=on, the product(s) are more stable than the

More information

Bellman s Curse of Dimensionality

Bellman s Curse of Dimensionality Bellman s Curse of Dimensionality n- dimensional state space Number of states grows exponen

More information

Density Functional Theory and the Calculation of TcMg 2 O 4 Spinel Lattice Parameters

Density Functional Theory and the Calculation of TcMg 2 O 4 Spinel Lattice Parameters Density Functional Theory and the Calculation of TcMg 2 O 4 Spinel Lattice Parameters A Senior Project By Jon Karlo Macias March 2013 Department of Physics California Polytechnic State University, San

More information

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Jin-Xun Liu, Hai-Yan Su, Da-Peng Sun, Bing-Yan Zhang, and Wei-Xue Li* State Key Laboratory of Catalysis, Dalian Institute

More information

Energy. On the ground, the ball has no useful poten:al or kine:c energy. It cannot do anything.

Energy. On the ground, the ball has no useful poten:al or kine:c energy. It cannot do anything. Energy What is energy? It can take many forms but a good general defini:on is that energy is the capacity to perform work or transfer heat. In other words, the more energy something has, the more things

More information

Elementary cellular automata

Elementary cellular automata Cellular Automata Cellular automata (CA) models epitomize the idea that simple rules can generate complex pa8erns. A CA consists of an array of cells each with an integer state. On each?me step a local

More information

Introduc)on to IQmol: Part I.!!! Shirin Faraji, Ilya Kaliman, and Anna Krylov

Introduc)on to IQmol: Part I.!!! Shirin Faraji, Ilya Kaliman, and Anna Krylov Introduc)on to IQmol: Part I!!! Shirin Faraji, Ilya Kaliman, and Anna Krylov! 1 Resources! Written by Dr. Andrew Gilbert Keep yourself up to date with IQmol website: http://iqmol.org! IQmol Youtube channel:

More information

Lab Overview: In this lab, you will be building atoms and illustrating ionic bonds. You will be using M&M s and paper plates to build your atom.

Lab Overview: In this lab, you will be building atoms and illustrating ionic bonds. You will be using M&M s and paper plates to build your atom. Name: Date: Period: Discovering Ionic Bonds Activity Lab Overview: In this lab, you will be building atoms and illustrating ionic bonds. You will be using M&M s and paper plates to build your atom. Materials:

More information

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm.

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm. Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The scale bars are 5 nm. S1 Supplementary Figure 2. TEM image of PtNi/Ni-B composite obtained under N 2 protection.

More information

Electricity & Magnetism Lecture 5: Electric Potential Energy

Electricity & Magnetism Lecture 5: Electric Potential Energy Electricity & Magnetism Lecture 5: Electric Potential Energy Today... Ø Ø Electric Poten1al Energy Unit 21 session Gravita1onal and Electrical PE Electricity & Magne/sm Lecture 5, Slide 1 Stuff you asked

More information

Effects of QCD cri/cal point on electromagne/c probes

Effects of QCD cri/cal point on electromagne/c probes Effects of QCD cri/cal point on electromagne/c probes Akihiko Monnai (IPhT, CNRS/CEA Saclay) with Swagato Mukherjee (BNL), Yi Yin (MIT) + Björn Schenke (BNL) + Jean-Yves Ollitrault (IPhT) Phase diagram

More information

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding Sec$on 8.1 Types of Chemical Bonds Chapter 8 Basic Concepts of Chemical Bonding Chapter 8 Ques$ons to Consider What is meant by the term chemical bond? Why do atoms bond with each other to form compounds?

More information

Chem1B General Chemistry II Exam 1 Summer Read all questions carefully make sure that you answer the question that is being asked.

Chem1B General Chemistry II Exam 1 Summer Read all questions carefully make sure that you answer the question that is being asked. ChemB General Chemistry II Exam Summer 20 Name: KEY GSI: Write your name on all pages of the exam. Read all questions carefully make sure that you answer the question that is being asked. Write neatly

More information

Pedro Alexandrino Fernandes Department of Chemistry and Biochemistry University of Porto Portugal

Pedro Alexandrino Fernandes Department of Chemistry and Biochemistry University of Porto Portugal edro Alexandrino Fernandes Department of Chemistry and Biochemistry University of orto ortugal L is a cofactor that plays a vital role in human physiology and has associated over 3% of all enzymes, comprising

More information

Organometallic Chemistry. A structured introduc5on to a complex but fascina5ng field!

Organometallic Chemistry. A structured introduc5on to a complex but fascina5ng field! Organometallic Chemistry A structured introduc5on to a complex but fascina5ng field! Late discovery 1956 A zillion concepts at once Why study it? Checking the importance of a topic.. 1. List of Nobel Prizes

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Introduction: The objective of the second computer laboratory exercise is to get acquainted with a program for performing quantum chemical

More information

Reduc&on of Organic Compounds

Reduc&on of Organic Compounds Reduc&on of Organic Compounds METAL HYDRIDE REDUCING AGENTS Reduc&on of Aldehydes and Ketones to Alcohols Reduc&on of Acids, Esters to Alcohols Reduc&on of Esters, Amides, etc. to Aldehydes Reduc&on of

More information

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction.

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction. B. Thermodynamics 1. What is "free energy"? 2. Where is this energy stored? We say that ΔG is a thermodynamic property, meaning that it is independent of the way that the conversion of reactants to products

More information

Mechanics. Course Overview

Mechanics. Course Overview Mechanics Course Overview Course Overview Mechanics Kinema3cs 8 lessons Introduc3on to Physics (2 lessons) Administra3ve Procedure Introduc3on to Physics SI Units Metric prefixes Vectors (1 lesson) Vector

More information

Chapter 3. Stabilizing Effects in Hydrocarbon Chemistry. The goal of this chapter: Iden=fy the presence of strained stabilized systems

Chapter 3. Stabilizing Effects in Hydrocarbon Chemistry. The goal of this chapter: Iden=fy the presence of strained stabilized systems Stabilizing Effects in ydrocarbon Chemistry The goal of this chapter: Iden=fy the presence of strained stabilized systems Predict quan=ta=ve values of strain/stabiliza=on based on chemical equa=ons or

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Towards Active and Stable Oxygen Reduction Cathode: A Density Functional Theory Survey on Pt 2 M skin alloys Guang-Feng Wei and Zhi-Pan Liu* Shanghai Key Laboratory of lecular

More information

Why the Sulfinyl Group is special in DMSO? Chao Lv June 4, 2014

Why the Sulfinyl Group is special in DMSO? Chao Lv June 4, 2014 Why the Sulfinyl Group is special in DMSO? Chao Lv June 4, 2014 The Parameterization of Dimethyl Sulfoxide (DMSO) Nucleic Acids are known to be difficult to be parameterized because: 1. The interac

More information

Supernovae and gamma- ray bursts

Supernovae and gamma- ray bursts Supernovae and gamma- ray bursts Supernovae Observa(ons: a star that temporarily becomes extremely bright, some:mes comparable to a whole galaxy Supernovae Supernovae Visible at very great distance (cosmology)

More information

Molecular Dynamics. Molecules in motion

Molecular Dynamics. Molecules in motion Molecular Dynamics Molecules in motion 1 Molecules in mo1on Molecules are not sta1c, but move all the 1me Source: h9p://en.wikipedia.org/wiki/kine1c_theory 2 Gasses, liquids and solids Gasses, liquids

More information

Chapter 1 Chemical Bonding and Chemical Structure

Chapter 1 Chemical Bonding and Chemical Structure Organic Chemistry, 5th ed. Marc Loudon Chapter 1 Chemical Bonding and Chemical Structure Eric J. Kantorowski California Polytechnic State University San Luis Obispo, CA 1.1 Introduc,on Chapter 1 Overview

More information

Molecular Programming Models. Based on notes by Dave Doty

Molecular Programming Models. Based on notes by Dave Doty Molecular Programming Models Based on notes by Dave Doty Outline Stable predicate decidability Stably computable predicates == semilinear predicates (and stably computable func

More information

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G Q1: Display all the MOs for N2 in your report and classify each one of them as bonding, antibonding or non-bonding, and say whether the symmetry of the orbital is σ or π. Sketch a molecular orbital diagram

More information

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003 Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 Enzyme function: the transition state Catalytic Reactions A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms Enzyme function: the transition state Catalytic Reactions Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Alkenes. Structure, Nomenclature, and an introduc1on to Reac1vity Thermodynamics and Kine1cs

Alkenes. Structure, Nomenclature, and an introduc1on to Reac1vity Thermodynamics and Kine1cs Alkenes Structure, Nomenclature, and an introduc1on to Reac1vity Thermodynamics and Kine1cs 1 Alkene - Hydrocarbon With Carbon- Carbon Double Bond Also called an olefin but alkene is be>er Hydrocarbon

More information

( ) Reac%on Rates and Temperature N A. = exp ΔE /k N B. Boltzmann law: At higher temperatures, more molecules have enough energy to react.

( ) Reac%on Rates and Temperature N A. = exp ΔE /k N B. Boltzmann law: At higher temperatures, more molecules have enough energy to react. eac%on ates and Temperature Boltzmann law: B A ( ) = exp ΔE /k B T! B E A At higher temperatures, more molecules have enough energy to react. Thus, reac;on rates increase with temperature: Arrhenius Equa%on

More information

Deriva'on of The Kalman Filter. Fred DePiero CalPoly State University EE 525 Stochas'c Processes

Deriva'on of The Kalman Filter. Fred DePiero CalPoly State University EE 525 Stochas'c Processes Deriva'on of The Kalman Filter Fred DePiero CalPoly State University EE 525 Stochas'c Processes KF Uses State Predic'ons KF es'mates the state of a system Example Measure: posi'on State: [ posi'on velocity

More information

Zn 0 + Cu 2+ SO 4. Cu 0 + Zn 2+ SO Na + Cl. 2 Zn O.S.: 0 +2 Cu O.S.: +2 0

Zn 0 + Cu 2+ SO 4. Cu 0 + Zn 2+ SO Na + Cl. 2 Zn O.S.: 0 +2 Cu O.S.: +2 0 Reduc&on and Oxida&on In addi&on to acid/base chemistry, another founda&on of chemistry is reduc+on/oxida+on (redox) chemistry. To understand redox reac&ons, we first have to understand the concept of

More information

Par$cle Astrophysics

Par$cle Astrophysics Par$cle Astrophysics Produc$on (Early Universe) Signatures (Large Scale Structure & CMB) Accelerator Detector Neutrinos and Dark MaCer were produced in the early universe Star$ng Point: Cosmic Photons

More information

Supporting Information. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution

Supporting Information. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution Supporting Information Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution Yanpeng Li 1,2 *, Yifei Yu 2, Robert A. Nielsen 3, William

More information

Alcohols and Phenols and Their Reac1ons

Alcohols and Phenols and Their Reac1ons Alcohols and Phenols and Their Reac1ons More About the Families in Group II The families in Group II all have an electronega1ve atom or group that is a>ached to an sp 3 carbon. Alcohols and Phenols Alcohols

More information

Magne&sm on the Edges of Graphene Ribbons. Hamed Karimi and Ian Affleck

Magne&sm on the Edges of Graphene Ribbons. Hamed Karimi and Ian Affleck Magne&sm on the Edges of Graphene Ribbons Hamed Karimi and Ian Affleck 1 Outline Introduc&on Edge modes, 1D model Lieb s theorem Rigorous bound in 1D model Excitons More realis&c models Edge- bulk interac&ons

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

Example: H 2 O (the car file)

Example: H 2 O (the car file) Example: H 2 O (the car file) As a practical example of DFT methods we calculate the energy and electronic properties of the water molecule. In order to carry out the DFT calculation you will need a set

More information

Coupling molecular dynamics and firstprinciple electronic structure modeling of disordered heterostructures

Coupling molecular dynamics and firstprinciple electronic structure modeling of disordered heterostructures Coupling molecular dynamics and firstprinciple electronic structure modeling of disordered heterostructures Olle Heinonen Materials Science Division, Argonne Na6onal Laboratory Chicago Center for Hierarchical

More information

Chem 30A. Ch 9. Electrons in Atoms and the Periodic Table

Chem 30A. Ch 9. Electrons in Atoms and the Periodic Table Chem 30A Ch 9. Electrons in Atoms and the Periodic Table Electronic Structure of Atoms Rutherford s Nuclear Model of the Atom e + Ques%on: How are the electrons arranged? Atomic Spectra White light emits

More information

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem.

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem. The BCS Model Sara Changizi This presenta5on closely follows parts of chapter 6 in Ring & Schuc The nuclear many body problem. Outline Introduc5on to pairing Essen5al experimental facts The BCS model Pure

More information

Supporting Information

Supporting Information Supporting Information Atomic Mechanism of Electrocatalytically Active Co-N Complexes in Graphene Basal Plane for Oxygen Reduction Reaction Feng Li, Haibo Shu,,* Chenli Hu, Zhaoyi Shi, Xintong Liu, Pei

More information

Chapter 9 The Chemistry of Alkyl Halides

Chapter 9 The Chemistry of Alkyl Halides Organic Chemistry, 5th ed. Marc Loudon Chapter 9 The Chemistry of Alkyl Halides Eric J. Kantorowski California Polytechnic State University San Luis Obispo, CA Chapter 9 Overview 9.1 An Overview of Nucleophilic

More information

Supporting Information: Selective Electrochemical Generation of. Hydrogen Peroxide from Water Oxidation

Supporting Information: Selective Electrochemical Generation of. Hydrogen Peroxide from Water Oxidation Supporting Information: Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation Venkatasubramanian Viswanathan,,, Heine A. Hansen,, and Jens K. Nørskov,, Department of Mechanical

More information

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy The 4 th SUNBEAM Workshop Structural and Electronic properties of platinum nanoparticles studied by in situ x-ray x diffraction and in situ x-ray x absorption spectroscopy Hideto Imai Fundamental and Environmental

More information

Adsorp'on of Propane, Isopropyl, and Hydrogen on Cluster Models of M1 Phase of Mo- V- Te- Nb- O Mixed Metal Oxide Catalyst

Adsorp'on of Propane, Isopropyl, and Hydrogen on Cluster Models of M1 Phase of Mo- V- Te- Nb- O Mixed Metal Oxide Catalyst Adsorp'on of Propane, Isopropyl, and Hydrogen on Cluster Models of M1 Phase of Mo- V- Te- Nb- O Mixed Metal Oxide Catalyst Vadim V. Guliants Department of Chemical and Materials Engineering University

More information

Paper 2. Section B : Atomic World

Paper 2. Section B : Atomic World Paper 2 Section B : Atomic World Q.2 Multiple-choice questions A B C D 2.1 25.19 15.78 9.18 49.68 2.2 25.79 20.39 41.97 11.72 2.3 18.35 9.76 48.84 22.65 2.4 9.27 18.87 27.90 43.50 2.5 63.47 4.28 10.99

More information