Arbuscular mycorrhiza in mini-mycorrhizotrons: first

Size: px
Start display at page:

Download "Arbuscular mycorrhiza in mini-mycorrhizotrons: first"

Transcription

1 Arbuscular mycorrhiza in mini-mycorrhizotrons: first Blackwell Science Ltd contact of Medicago truncatula roots with Glomus intraradices induces chalcone synthase Athos Bonanomi 1, Jürg H. Oetiker 1, Richard Guggenheim 2, Thomas Boller 1, Andres Wiemken 1 and Regina Vögeli-Lange 1 Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland; 2 Universität Basel, REM-Labor, Klingelbergstrasse 50, CH-4056 Basel, Switzerland; 3 Syngenta AG, 4002 Basel, Switzerland Summary Author for correspondence: Andres Wiemken Tel: +41 (0) Fax: +41 (0) andres.wiemken@unibas.ch Received: 6 September 2000 Accepted: 8 January 2001 The association of plants with arbuscular mycorrhizal (AM) fungi is widespread in nature, but little is known about molecular aspects of this symbiosis. Particularly during the early stages of the AM symbiosis, it is difficult to monitor growth of the two partners, to dissect gene expression patterns and to correlate them with plant, fungal or symbiosis development. A new system, the mini-mycorrhizotron, was established to cultivate seedlings of Medicago truncatula in mycorrhizal symbiosis with Glomus intraradices under gnotobiotic conditions. This system allows natural growth of the symbiotic partners and permits the continuous noninvasive observation of the development of plant and fungus under a microscope. The mini-mycorrhizotron was used to determine the stage of induction of a mycorrhiza-related gene detected by differential display-reverse transcription-pcr, namely a novel chalcone synthase (Mt-chs1). The gene is induced in roots at the stage of the first fungal contact. The mini-mycorrhizotron allowed identification and cloning of a symbiosis-related gene, and the correlation between its expression and the developmental stage of the symbiosis was established. This provides a useful tool for molecular and developmental studies of the early stages of AM symbioses. Key words: appressorium, early developmental stages of AM, environmental scanning electron microscopy (ESEM), in vitro, defence response, pathogens. Mt-chs1 nucleotide sequence can be found at the Genbank data base (accession no. AJ277211). The following sequences were also used: Glycine max chs (X52097), chs1 (X54644); chs2 (X65635), chs3 (X53958), chs5 (L07647), chs6 (L03352), chs7 (M98871); Pisum sativum chs (X80007), chs1 (D10661), chs2 (X63334), chs3 (D88261), chs4 (D88260), chs5 (D88262), chs7 (D88263); Medicago sativa chs1 (L02901), chsi (X68106), chs2 (L02902), chs4 1 (U01018), chs8 (L02904), chs9 (L02905), 12 1 (U01021); Medicago truncatula chs1, this work (AJ277211); Trifolium subterraneum chs1 (M91193), chs2 (M91194), chs3 (L24515), chs4 (L24516), chs5 (L24517), chs6 (M91195); Phaseolus vulgaris chs ( X06411) and Vigna unguiculata chs ( X74821). New Phytologist (2001) 150: Introduction Symbiotic interactions between plant roots and arbuscular mycorrhizal (AM) fungi are widespread in nature, but little is known about the molecular mechanisms leading to recognition, establishment and functioning of this symbiosis. A characteristic feature of the fungi forming arbuscular mycorrhizas is that they exhibit a strong biotrophic dependence New Phytologist (2001) 150:

2 574 on their host plants (Gianinazzi-Pearson, 1983). In the absence of the host, their growth is limited to a relatively short time, after which hyphal growth ceases (Bonfante & Perotto, 1995). In vitro cultures of host plants in mycorrhizal association with AM fungi are valuable research tools because the physiology of infected and uninfected plants can be compared without interference from other rhizosphere organisms. It is possible to cultivate AM fungi in Petri dishes hosted by transformed roots, a method suitable for producing high-quality fungal spores (Bécard & Piché, 1992). However, the plant partner is mutilated in this system and it is difficult to extrapolate results obtained from it to symbioses occurring in natural environments. Particularly during early stages of the AM symbiosis, it is difficult to monitor the growth of both partners, to dissect gene expression patterns and to correlate them with plant, fungal or symbiosis development. In several attempts to address these questions, different techniques were evaluated. For instance, sterile spores and plantlets were incubated on agar-coated microscope slides, on paper-coated slides or in Fahraeus slides (Hepper, 1981). The slides were then placed in closed test tubes with liquid medium. The first visible sign of the symbiotic interaction was strong hyphal growth and appressoria formation. These methods allowed the cultivation of mycorrhized plants for up to 120 d, when new, small spores were observed on the external mycelium. The development of the fungus on agar slopes or in Fahraeus slides (Nutman, 1959) could be followed in situ under a microscope. However, each slide could be observed only once, because this compromised the aseptic conditions of the system, destroying it. All these methods are rather labour-intensive and cannot be performed on a large-scale basis. For these reasons, methods are needed to help cultivation of mycorrhizal plants while avoiding contaminations with other organisms, and to facilitate molecular analysis of the early stages of the AM symbiosis. The aim of the present work was the development of a novel culture system which has been designated the minimycorrhizotron. This system allows the continuous, nondestructive monitoring of the growth of the fungus and the host plant. In particular, it is possible to observe the development of the symbiosis at any time over a period of d, and to count fungal structures along the root without staining it. Furthermore, any contamination with other rhizosphere organisms is excluded. Continuous observation of each chamber allows the selection of samples at one specific developmental stage and the harvesting of them for further molecular analysis. The mini-mycorrhizotron is therefore a highly suitable tool to investigate the early stage of the interaction, where recognition occurs between the two partners. This paper demonstrates the use of the mini-mycorrhizotron to identify plant genes induced in the AM symbiosis. Using the mini-mycorrhizotron in conjunction with the mrna differential display technique, a new symbiosis-related chalcone synthase (CHS) cdna has been isolated from Medicago truncatula induced at the stage of the first fungal contact. Materials and Methods Construction of the mini-mycorrhizotrons The mini-mycorrhizotron was built with two incubation chambers of 500-µl void volume (Sigma, Buchs, Switzerland). Each incubation chamber consists of a thin, transparent plastic slide with a 0.5-mm silicon rubber glued on the perimeter. Two incubation chambers can be perfectly sealed by pressing their silicon profiles together, creating a minimycorrhizotron with a void volume of 1 ml. A small hole cut into the silicon rubber sealing allows the hypocotyl to grow through. The mini-mycorrhizotrons were kept upright in an inverted Magenta box (Sigma, Buchs, Switzerland) in a specially designed rack (Fig. 1). Glomus intraradices Schenck and Smith was cultivated on carrot root cultures in two-compartment Petri dishes as previously described (Bécard & Piché, 1992). Nonmycorrhizal roots were grown in the same way to produce the control inoculum. To prepare the inoculum solution, wk after inoculation the agar of the compartment of the Petri dish where only the fungus grew was mashed and suspended in liquid medium M (Bécard & Fortin, 1988) without sucrose. Similarly, a control solution was prepared from the fungal compartment of a dish with nonmycorrhizal roots. Medicago truncatula cv. Jemalong (line A17) seeds were surface-sterilized with concentrated sulphuric acid and pregerminated on 0.7% agar for 5 d. Each seedling was then enclosed between two slides, with the hypocotyl protruding through the opening in the rubber sealing of the minimycorrhizotron. The number of spores was adjusted to 400 ml 1 by diluting the inoculum solution with liquid medium M without sucrose, and 1 ml of the solution containing AM spores was injected with a sterile syringe in the chamber with the seedling. Ten mycorrhizal and 10 control chambers were prepared per time-point. The minimycorrhizotrons were wrapped with aluminium foil, incubated vertically in a Magenta box (Sigma) and transferred to a growth cabinet at 22 C for 16 h in the light (100 µmol m 2 s 1 ) and 18 C for 8 h in the dark. In separate experiments, two Teku-Multiflor plates with 150 slots (Wyss Samen und Pflanzen AG, Basel, Switzerland) were filled with an autoclaved mixture of 3.5 parts of coarsegrained sand (Birs Sand, Industrielle Werke, Basel, Switzerland), one part quartz sand (Quartz d Alsace, Kaltenhouse, France), 0.5 parts of loam (Botanical Garden, Basel, Switzerland) and five parts of Terragreen (Maagtechnik, Zürich, Switzerland). The plates were planted with one 5-d-old Medicago seedling per slot and each seedling was inoculated with 1 ml of inoculum solution and cultivated in a growth cabinet (same conditions as before). At harvest (0, 5, 10, 15 and 20 d post-inoculation), the plants were removed from the substrate and washed in water, and the majority of the roots frozen in liquid nitrogen. The rest of the roots was stained with trypan New Phytologist (2001) 150:

3 575 Fig. 1 Construction and use of the mini-mycorrhizotron. (a) Two incubation chambers (25 mm wide 45 mm high 3 mm thick) consisting of thin and transparent plastic slides with a 0.5-mm silicon rubber glued on the perimeter with an opening on the top. (b) The chambers are closed together and the mini-mycorrhizotrons are kept upright. The figure shows a 10-d-old Medicago truncatula seedling in a mini-mycorrhizotron sealed with office clamps. (c) Several mini-mycorrhizotrons in a rack. blue, fungal structures were counted and root lengths were measured (Giovannetti & Mosse, 1980). In some experiments, seedlings enclosed in minimycorrhizotrons were inoculated with Sinorhizobium meliloti (strain 1021) or a spore suspension of Fusarium solani f. sp. phaseoli, Fusarium solani f. sp. pisi or Rhizoctonia solani. Bacteria were grown overnight in succinate minimal medium (Schmidt et al., 1992), and pelleted by centrifugation (10 min, 2500 g). The bacterial pellet was resuspended in 50-ml medium M without sucrose and used as inoculum. Fungi were grown on V-8 agar plates (200 ml V-8 juice from Campbell Soup Company, Camden, NJ, USA; 2 g CaCO 3 ; 15 g agar from United States Biological, Swampscott, MA, USA; and 800 ml of water). Spores were harvested from 2- to 4-wk-old cultures as follows: sterile water was added on to the agar surface and the spores were scraped off with a spatula. The density of the spore suspension was determined and diluted to 300 spores ml 1 with medium M without sucrose. Microscopical observations The development of the symbiosis could be monitored efficiently on a regular basis and without disturbing the interaction. Minimycorrhizotrons with plants and fungi were observed daily under a microscope (Zeiss Axioplan, Zeiss AG, Oberkochen, Germany) at 200 magnification; the growth of fungi and roots could be easily monitored. Every 5 d, germinated spores and hyphal branching points lying in the optical field around the root, as well as root hyphal contact sites and appressoria, were counted. The lengths of the main and the lateral roots were measured by laying the chamber on millimetre paper. After opening of the minimycorrhizotrons, three root pieces of length approx. 3 mm were excised near the apex, the middle and the upper region, stained in trypan blue and microscopically checked for internal fungal structures under the microscope. The rest of the root was frozen in liquid nitrogen for RNA analysis. Ten control samples were harvested after 15 culture days and completely stained in trypan blue to monitor internal fungal development. Some 3-mm root fragments and control roots were analysed by environmental scanning electron microscopy (ESEM, Philips Electron Optics, Eindhoven, the Netherlands). This method allows the sample environment to be varied through adjustment of a range of pressures, temperatures and gas compositions. Root samples could thus be examined in their natural states (i.e. in a wet atmosphere and with water partial pressures between 613 and 667 Pa) without further modification or preparation (Danilatos, 1988; Philips Electron Optics, 1996). mrna differential display mrna was extracted from the frozen samples using the Plant RNeasy Mini Kit (Qiagen Inc., Chatworth, NJ, USA). Samples were further treated with DNase New Phytologist (2001) 150:

4 576 Fig. 2 Development of mycorrhizal symbiosis in mini-mycorrhizotrons. (a) The minimycorrhizotrons were scored at various times after the start of the experiments. The numbers of germinated spores and hyphal branching points lying in the optical field around the root, hyphal contact sites with roots and appressoria were determined. The data from three time-course experiments were pooled (bars: standard error of the mean, n = 30). Key: light grey, germinated spores; mid-grey, branching points; dark grey, contact sites; black, appressoria. (b) Pictures that represent typical developmental stages, taken without any stain through closed minimycorrhizotrons. From left to right: a spore sitting near the root; a germinating spore, which is juvenile as indicated by its whitish colour; a hyphal branching point; a spore with germ tube after contact with the root; and an appressorium; the small round structure is an air bubble trapped between the root and the fungus (200 magnification). I using the MessageClean kit according to the manufacturer s recommendations (GenHunter, Brookline, MA, USA) and processed by differential display-reverse transcription-pcr (Liang et al., 1993). Reverse transcription (RT) reactions were performed using A-anchored oligo-dt(11) primers and 0.2 µg DNase I-treated mrna. The resulting cdna preparations were used as templates in PCR amplification with the same oligo-dt as used for the RT and in combination with an arbitrary primer (sequence 5 AAGCTTAGTTATC3 ) in the presence of (α- 33 P)dATP. The thermo-cycler conditions (Genius, Techne, Princeton, NJ, USA) were 94 C for 30 s, 40 C for 2 min, 72 for 1 min for 30 cycles and finally 72 C for 5 min. PCR products were separated on a 7-M urea : 6% acrylamide sequencing gel. The gel was dried and exposed to an X-ray film (Biomax, Kodak, Switzerland) for 24 h. The differentially appearing partial cdna fragments were thymidine-adenosine (TA)-cloned in vector pgemt (Promega, Madison, WI, USA), screened for false positives (Vögeli-Lange et al., 1996) and sequenced (ABI Prism 310 Genetic Analyser, Perkin Elmer Corp., Norwalk, CT, USA). Fragment-specific primers with sequence forward 5 CGAAAAGATGAATGCAAC3 and reverse 5 CCAAAACCAAATAACACAC3 were designed and used for RT-PCR. RT of 2 µg RNA was performed with the Reverse Transcription System (Promega) in a total volume of 25 µl. Oligo- (dt) 15 primers were added to the mrna and incubated at 70 C for 5 min, then the tubes were chilled on ice for 5 min and the avian myeloblaitosis vints reverse transcriptase, the reaction buffer and nucleotides were added. The reaction was incubated for 60 min at 45 C. Usually, 1 µl of the reaction mixture was used for PCR. All PCRs were performed as previously described in New Phytologist (2001) 150:

5 µl volumes. To show constitutive expression, RT-PCR with ubiquitin primers (forward 5 ATGCAGATYTTGTGAAGAC3 and reverse 5 ACCACCACGRAGAC-GGAG3 ) and 5.8-s mrna primers (forward 5 GAATGACTCTCGGCAACGGATAT- CTAGGCTC3 and reverse 5 GTGACACCCAGGCAGA- CGTGCCCTCAACC3 ) were used. Cloning and characterization Genomic plant DNA was prepared with the DNeasy Plant Mini Kit (Qiagen). A full-length clone of the CHS coding region was obtained by touch-down PCR using genomic DNA as template. The thermo-cycler conditions were 94 C for 30 s, five cycles at 52 C for 1 min, five cycles at 49 C, five cycles at 46 C, then 10 cycles at 44 C and 10 cycles at 42 C, and finally 72 C for 1 min. The forward primer (5 CTGCAGCCATGGTIAGYGT- DKMHGARATYMG3 ) was designed based on nucleic acid degeneracy as determined from an alignment of CHS sequences of Glycine max and Medicago sativa. As a reverse primer the fragment-specific oligonucleotide was used. The amplified band was eluted from the agarose gel (Geneclean Spin Kit, BIO 101, Vista, CA, USA), cloned and sequenced. Sequence analysis was carried out using the GCG software (Genetics Computer Group, Madison, WI, USA) and the BLAST network services of the National Centre for Biotechnology Information (National Library of Medicine, Bethesda, MD, USA). The phylogenetic tree was elaborated with the Lasergene program of DNASTAR (Madison, WI, USA). Results Early stages of AM development Most AM fungal spores germinated within 10 d postinoculation in the mini-mycorrhizotrons, and, at each timepoint chosen, a characteristic developmental stage was observed which was distinct and different from the subsequent stages. The AM fungus grew as on the Petri dish root-organ cultures and a typical developmental pattern could be recognized: hyphae grew straightforwardly until they came close to a root, then they suddenly branched before producing appressoria, as described by others (Giovannetti et al., 1993). The roots also developed normally, and no significant difference in total root length, or number and length of lateral roots was noticed between inoculated and noninoculated plants. In addition, no differences in the plant growth pattern and the size were observed between plants grown in the minimycorrhizotron or in the Multiflor plates (data not shown). Fig. 2 shows the development of G. intraradices in a timecourse experiment. At the beginning, single and aggregated spores from the inoculum were present. Within 5 d postinoculation (dpi), spore germination occurred and hyphae were formed. Between 5 and 10 dpi, intense hyphal branching occurred and the first contact sites were detected. Between 10 and 15 dpi the number of branching and contact sites increased drastically and the first appressoria appeared. After 20 dpi, fungal mycelium spread in the chamber and numerous contact sites and appressoria were present. In addition, the first arbuscules were visible after staining with trypan blue. Some mini-mycorrhizotrons were incubated for a longer time and at day 50 arbuscules, vesicles and newly formed spores were clearly visible. Internal root colonization reached in this case 80% of the root length (data not shown). The fungal structures formed in the mini-mycorrhizotrons were morphologically indistinguishable from the ones observed in pot cultures of M. truncatula and G. intraradices. Mini-mycorrhizotrons allowed study of the distribution of contact sites along a root without fixation or staining procedures using ESEM in a wet environment (Fig. 3). Roots appeared nondamaged and root hairs, spores and hyphae were fully turgescent. The germ tubes seemed either to penetrate between epidermal cells or to grow on the root surface parallel to the root axis and to penetrate at a more remote location. Mini-mycorrhizotrons were also successfully used to establish the symbiosis between Sinorhizobium meliloti and M. truncatula. After 15 dpi up to three nodule-primordia per seedling were visible (data not shown). Furthermore, M. truncatula seedlings were inoculated with different pathogenic fungi in the mini-mycorrhizotrons. After 5 dpi the pathogenic mycelium was dense and many appressoria were visible. Fusarium solani f. sp. phaseoli caused more intense browning of the roots than Fusarium solani f. sp. pisi or R. solani, which did not cause visible symptoms. Induction of a chalcone synthase gene at the stage of initial fungal root contact By differential display of mrna, we detected a prominent upregulated band at the time-point of the initial branching of the fungus when the first contact sites with the root were present. The expression level in noninoculated control plants was low during the whole time of the experiment (Fig. 4). The corresponding gene was cloned and sequenced. The gene contained a coding region of 1170 bp, corresponding to 389 amino acids and an intron of 159 bp inserted at bp 180. Comparison with the Genbank data base showed that the gene encodes a CHS with 94% identity to M. sativa CHS chs2 ( Junghans et al., 1993) and therefore it was designated Mt-chs1. Like in other CHSs the region corresponding to the active site from amino acid in Mt-chs1 is well conserved and contains the cysteine residue that probably binds the 4-coumaryl-CoA group (Lanz et al., 1991). A phylogenetic comparison (Fig. 5) revealed that there are at least five subgroups of CHS in different legumes. Pisum sativum chs4 and Trifolium subterraneum chs3 form the most distant group that diverged earlier in the phylogeny. The second branch contains CHS of T. subterraneum and P. sativum, New Phytologist (2001) 150:

6 578 Fig. 4 Differential display analysis of mrnas expressed early during the arbuscular mycorrhizal (AM) symbiosis. Each line represents a time-point (days post-inoculation, dpi) from a time-course experiment with (right part) or without (left part) AM fungus. Arbitrary primers were tested in combination with an oligo-(dt)11-a and an oligo-(dt)11-g primer. In all lines the overall banding pattern between the mycorrhizal and the nonmycorrhizal sample combinations was reproducible. An arrow points to the differentially appearing band later characterized as Mt-chs1. and of the more distant G. max. All other G. max CHSs are part of a separate branch. Also, the remaining CHSs of P. sativum and T. subterraneum are clustered. The CHSs of Medicago are separated into two main groups with the first containing chs1, 9 and 4 1, and the second chs8, I, 12 1, 2 and Mt-chs1. Fig. 3 Environmental scanning electron microscopy (ESEM). The surface of root pieces directly taken from a mini-mycorrhizotron was observed by ESEM using wet mode. (a) Control root with turgescent root hairs. (b) Germinated spores attached to a root. At a water partial pressure of Pa the spore on the right is still fully turgescent, whereas the one on the left is already starting to collapse. (c) Detail of (b): a spore with a germ tube penetrating between two epidermal cells. A swelling of the fungal germ tube can be observed, which can be considered to be an appressorium. sp: spores; rh: rhizodermis; gt: germ tube. Temporal expression pattern of Mt-chs1 before appressoria formation Using a pair of specific primers designed to amplify the 3 -end of the cdna, the expression pattern of Mt-chs1 was studied in more detail. RT-PCR analysis of nine independently repeated experiments revealed an induction of Mt-chs1 after the first root contact of the fungus consistent with the one detected by the differential display (Fig. 6). Since different results on the temporal induction of CHS by AM fungi are reported in the literature (Volpin et al., 1994, 1995; Blee & Anderson, 1996; Mohr et al., 1998), the experiment was repeated nine times. In all experiments the fungus induced Mt-chs1 (Fig. 6a, rows 1 9). However, some variation was detected in the noninoculated plants. In experiment 1, Mtchs1 is expressed constitutively at a low level. A different pattern was observed in experiments 2, 3, 5 and 7: in particular, in experiment 5 Mt-chs1 is slightly present at 5 dpi, then induced between 10 and 15 dpi to disappear again towards 20 dpi. An opposite pattern was observed in experiment 9: the transcript was present at 5 and 20 dpi, but not at 10 and 15 dpi. Furthermore, in experiments 4, 6 and 8 no expression of Mt-chs1 was observed at all (Fig. 6a, rows 1 9). However, the transcripts used as constitutive controls always appeared in the same intensity as in Fig. 6(a) rows 10 and 11. The induction of Mt-chs1 by AM fungi was also New Phytologist (2001) 150:

7 579 number of appressoria are detected, and no functional AM symbiosis is formed. Concomitantly with the halt of the colonization, RT-PCR analysis revealed a strong induction of Mt-chs1 in the mutant, suggesting that induction may be related to a defence response. To study whether the induction of Mt-chs1 is mycorrhizaspecific its expression was compared with M. truncatula seedlings inoculated with fungal pathogens (Fig. 6b, row 4). At both times, the intensity of the bands in plants inoculated with F. solani f. sp. pisi and R. solani was not different from the intensity of the bands in the corresponding noninoculated control, showing that these fungal pathogens do not induce Mt-chs1. Neither pathogen induced disease symptoms. In contrast, the pathogens F. solani f. sp. phaseoli caused disease symptoms and the mrna of Mt-chs1 was clearly induced at 5 dpi. Discussion Fig. 5 Phylogenetic tree of selected legume chalcone synthases. The tree was constructed using the Clustal method (Higgins & Sharp, 1988, 1989). The accession numbers for the sequences used were: Glycine max chs (X52097), chs1 (X54644); chs2 (X65635), chs3 (X53958), chs5 (L07647), chs6 (L03352), chs7 (M98871); Pisum sativum chs (X80007), chs1 (D10661), chs2 (X63334), chs3 (D88261), chs4 (D88260), chs5 (D88262), chs7 (D88263); Medicago sativa chs1 (L02901), chsi (X68106), chs2 (L02902), chs4 1 (U01018), chs8 (L02904), chs9 (L02905), 12 1 (U01021); Medicago truncatula chs1, this work (AJ277211); Trifolium subterraneum chs1 (M91193), chs2 (M91194), chs3 (L24515), chs4 (L24516), chs5 (L24517), chs6 (M91195); Phaseolus vulgaris chs (X06411) and Vigna unguiculata chs (X74821). observed in plants cultivated in Multiflor plates (Fig. 6b, row 1). To test whether the induction of Mt-chs1 is related to plant defence, its expression was analysed in the dmi1 Myc 1 mutant of M. truncatula (Catoira et al., 2000) (Fig. 6b, row 2). Dmi1 is the first out of four alleles identified at the locus named dmi1. Dmi1 cannot be penetrated by the fungus in the early stages of the interaction, although a higher Early developmental stages of AM In this work a new system to cultivate mycorrhizal seedlings under gnotobiotic conditions was established. Minimycorrhizotrons allow natural growth of the symbiotic partners during the early stages, because, in contrast to root cultures, in mini-mycorrhizotrons the plants are photosynthetically active and it is not necessary to add additional sources of carbohydrates. Also, the chambers permit the continuous and noninvasive observation of the development of plant and fungus under a microscope, without disturbing the system. In particular, it was possible to observe the development of the symbiosis at any time over a period of at least 20 d, and to count fungal structures along the root without staining it, confirming that the establishment of the AM symbiosis in the chambers was highly reproducible. Furthermore, roots grown in mini-mycorrhizotrons can be directly observed by ESEM, avoiding washing and fixation procedures that can detach fungal structures and create artefacts. Observation of each chamber allows the selection of samples at one specific developmental stage and harvesting of them for further molecular analysis, allowing the establishment of correlations between plant gene expression and mycorrhiza development. Any interaction with unwanted organisms can be excluded because of the aseptic growth conditions. Moreover, in addition to the interaction with mycorrhizal fungi, plants also interact normally with rhizobia or pathogenic fungi when grown in the mini-mycorrhizotrons, allowing comparison of the reactions of the plant to the different organisms. Some previous attempts to establish a similar system were made by different authors (reviewed in Hepper, 1981); however, all of these approaches were extremely labour-intensive and visual observation of the symbiosis often led to the loss of the aseptic conditions. New Phytologist (2001) 150:

8 580 Fig. 6 Expression pattern of Medicago truncatula chs1. (a) The expression patterns of the gene in plants grown with or without the arbuscular mycorrhizal (AM) fungus were compared. Rows 1 9: replicate experiments with the induction of Mt-chs1 by the mycorrhizal fungus. At each time-point five roots were pooled, and mrna was extracted, reverse transcribed (RT) and analysed by PCR. The amplified fragment was 170 bp long. Row 10: RT-PCR using primers for ubiquitin (150 bp product), and row 11: using primers corresponding to 5.8-s rrna (120 bp product) as controls for constitutive expression. These controls refer to the first replicate. The controls of the following replicates (data not shown) were identical to those shown. (b) Row 1: expression of Mt-chs1 in a time course with wild-type plants grown in Multiflor plates; row 2: control using ubiquitin primers. Row 3: expression of Mt-chs1 in a time course with dmi1 mutant plants (Nod, Myc 1 ) in mini-mycorrhizotrons; row 4: expression of ubiquitin in the same experiment. Row 5: plants inoculated with Fusarium solani f. sp. phaseoli (F. ph), Fusarium solani f. sp. pisi (F. pi) or Rhizoctonia solani (R. s.), or noninoculated (n. i.) and grown for 0 or 5 d in mini-mycorrhizotrons. Row 6: expression of ubiquitin as constitutive control. Row 7: PCR with Mt-chs1 primers on genomic DNA of Medicago truncatula (M. t.) or Glomus intraradices (G. i.) to asses plant origin of the template. Primers for other unknown differentially expressed cdnas produced a signal only with G. intraradices DNA (data not shown). Induction of a defence response before appressoria formation Chalcone synthase (EC ) is the enzyme catalysing the first step committed to the flavonoid biosynthesis. Flavonoids act as antimicrobial compounds as medicarpin in M. sativa (Harrison & Dixon, 1994), but also play a role as signalling molecules which can stimulate AM fungi spore germination in vitro (Tsai & Philipps, 1991). The activation of the flavonoid pathway by CHS is well studied in other plants, such as P. sativum, Phaseolus vulgaris, Nicotiana tabacum, Petunia hybrida, Petroselinum crispum and many others (Block et al., 1990; van der Meer et al., 1992; An et al., 1993; Bate et al., 1994; Blee & Anderson, 1996). Legumes contain a family of between three and 12 CHS genes, as reported for M. sativa, G. max and P. sativum ( Junghans et al., 1993). However, it is not known how many genes code for CHS in M. truncatula. The CHSs share 82 90% sequence identity among the genera and are highly conserved (McKhann & Hirsch, 1994). In this study, CHS expression was used to monitor the response of M. truncatula to G. intraradices in minimycorrhizotrons during the ealry stages of the interaction. One gene encoding CHS in M. truncatula, Mt-chs1, was identified by differential display comparing mrna of seedlings grown with and without the AM fungus. RT-PCR analysis was used to confirm that Mt-chs1 is induced in plants grown in mini-mycorrhizotrons after 5 10 dpi, when the New Phytologist (2001) 150:

9 581 fungus for the first time contacts the root surface. An enhanced expression of CHS in M. truncatula mycorrhized with Glomus versiforme was described earlier (Harrison & Dixon, 1993). As a hybridization probe the M. sativa chs2 gene, which is 94% similar to Mt-chs1, was used and therefore the same gene as described here may have been detected. Moreover, CHS expression was detected by in situ hybridization in the same system at later stages in arbuscule-containing cells (Harrison & Dixon, 1994). The less similar (89%) heterologus probe Ms-chs1 used in this case may have also detected Mt-chs1, indicating that this gene, or a homologue, is continuously up to the arbuscular stage of the symbiosis. Our experiments showed that Mt-chs1 is expressed at a low level also in noninoculated plants. This could have led some authors to conclude that the transcription of CHS, if at all, is only slightly enhanced (Blee & Anderson, 1996; Mohr et al., 1998). In particular, the presence of the highest levels of CHS transcripts in young elongating roots (McKhann & Hirsch, 1994), localized mainly in the cortical cells (Harrison & Dixon, 1994), could explain the presence of background expression in the noninoculated plants cultivated in the minimycorrhizotrons. Alternatively, the low and fluctuating level of CHS in the noninoculated plants may be due to an as yet unidentified environmental factor. Since the expression pattern of Mt-chs1 was similar in plants grown in Multiflor plates and in mini-mycorrhizotrons, it can be excluded that the gene expression pattern is an artefact. The enhanced expression level of CHS mrna after treatment of M. truncatula with F. solani f. sp. phaesoli, which also produces symptoms, and the inability to induce the transcript by F. solani f. sp. pisi, which does not produce symptoms, provides evidence that induction of Mt-chs1 is also part of the defence pathway. In fact, F. solani f. sp. phaesoli also induced the expression of the pathogen-related M. truncatula chitinases classes I, II, III-1 and IV, whereas the F. solani f. sp. pisi induced only the class IV chitinase (Salzer et al., 2000). Similarly, F. solani f. sp. pisi could not induce a defence response in the closely related P. sativum (Mohr et al., 1998). Both this and the lack of induction of Mt-chs1 by R. solani indicate that Mt-chs2 is only induced in compatible interactions. Along this line, Mt-chs1 was strongly induced in the mutant dmi1. This mutant exhibits a massive defence response when brought into contact with AM fungi, an event that might prevent a successful fungal penetration, as shown in pea mutants (Gianinazzi-Pearson et al., 1996). Our study describes the development and validation of a novel culture system for mycorrhizal symbiosis. Minimycorrhizotrons represent an attractive tool for molecular and developmental studies of the early stages of symbioses in a gnotobiotic environment. The mini-mycorrhizotrons allowed identification and cloning of a symbiosis-related gene, and the correlation between its expression and the developmental stage of the symbiosis could be established. This tool might be useful to identify further early symbiosis genes. Acknowledgements We thank Dr G. Bécard (Université Paul Sabatier, Toulouse, France) for the dual in vitro culture system, Dr T. Huguet (INRA-CNRS, Castanet-Tolosan, France) for M. truncatula A17 seeds, Dr D. R. Cook (Texas A & M University, College Station, TX, USA) for providing us with the dmi1 mutant, and Daniel Mathys (REM-Labour, University of Basel, Basel, Switzerland) for the ESEM pictures. This work was supported by the Swiss National Science Foundation. References An C, Ichinose Y, Yamada T, Tanaka Y, Shiraishi T, Oku H Organization of the genes encoding chalcone synthase in Pisum sativum. Plant Molecular Biology 21: Bate NJ, Orr J, Ni W, Meromi A, Nadler-Hassar T, Doerner PW, Dixon RA, Lamb CJ, Elkind Y Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proceedings of the National Academy of Sciences, USA 91: Bécard G, Fortin JA Early events of vesicular arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist 108: Bécard G, Piché Y Establishment of VA mycorrhizae in root organ culture: review and proposed methodology. In: Norris JR, Read DJ, Varma AK, eds. Methods in microbiology. New York, USA: Academic Press, Blee KA, Anderson AJ Defense-related transcript accumulation in Phaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith. Plant Physiology 110: Block A, Dangl JL, Hahlbrock K, Schulze-Lefert P Functional borders, genetic fine structure, and distance requirement of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Proceedings of the Japan Academy Series B Physical and Biological Sciences 87: Bonfante P, Perotto S Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist 130: Catoira R, Galera C, de Billy F, Penmetsa RV, Journet E-P, Maillet F, Rosenberg C, Cook D, Gough C, Dénarié J Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12: Danilatos GD Foundations of environmental scanning electron microscopy. Advances in Electronics and Electron Physics 71: Gianinazzi-Pearson V Host-fungus specificity, recognition and compatibility in mycorrhizae. In: Dennis ES, Hohn B, Hohn Th, King P, Schell J, Verma DPS, eds. Genes involved in microbe plant interactions. New York, USA: Springer Verlag, Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytologist 133: Giovannetti M, Mosse B An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytologist 125: Harrison MJ, Dixon RA Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular arbuscular mycorrhizal associations in roots of Medicago truncatula. Molecular Plant-Microbe Interactions 6: New Phytologist (2001) 150:

10 582 Harrison MJ, Dixon RA Spatial patterns of expression of flavonoid/ isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant Journal 6: Hepper CM Techniques for studying the infection of plants by vesicular arbuscular mycorrhizal fungi under axenic conditions. New Phytologist 88: Higgins DG, Sharp PM CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73: Higgins DG, Sharp PM Fast and sensitive multiple sequence alignments on a microcomputer. Computer Applications in the Biosciences 5: Junghans H, Dalkin K, Dixon AR Stress responses in alfalfa (Medicago sativa L.). 15. Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Molecular Biology 22: Lanz T, Tropf S, Marner F, Schroeder J, Schroeder G The role of cysteine in polyketide synthases. Site-directed mutagenesis of resveratrol and chalcone synthases, two key enzymes in different plant specific pathways. Journal of Biological Chemistry 266: Liang P, Averboukh L, Pardee AB Distribution and cloning of mrnas by means of differential display: refinements and optimization. Nucleic Acids 21: McKhann HI, Hirsch AM Isolation of chalcone synthase and chalcone isomerase cdnas from alfalfa (Medicago sativa L.): highest transcript levels occur in young roots and root tips. Plant Molecular Biology 24: van der Meer IM, Brouwer M, Spelt CE, Mol JNM, Stuitje AR The TACPyAT repeat in the chalcone synthase promoter of Petunia hybrida act as a dominant negative cis-acting module in the control of organ-specific expression. Plant Journal 2: Mohr U, Lange J, Boller T, Wiemken A, Vögeli-Lange R Plant defence genes are induced in the pathogenic interaction between bean roots and Fusarium solani, but not in the symbiotic interaction with the arbuscular mycorrhizal fungus Glomus mosseae. New Phytologist 138: Nutman PS Some observations on root hair infection by nodule bacteria. Journal of Experimental Botany 10: Philips Electron Optics Environmental scanning electron microscopy. Eindhoven, The Netherlands: Robert Johnson Associates. Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook D, Boller T Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation and pathogen-infection. Molecular Plant Microbe Interactions 13: Schmidt PE, Parniske M, Werner D Production of the phytoalexin glyceollin I by soybean roots in response to symbiotic and pathogenic infections. Botanica Acta 105: Tsai SM, Philipps DA Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Applied and Environmental Microbiology 57: Vögeli-Lange R, Bürckert N, Boller T, Wiemken A Rapid selection and classification of positive clones generated by mrna differential display. Nucleic Acids 24: Volpin H, Elking Y, Okon Y, Kapulnik Y A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiology 104: Volpin H, Phillips DA, Okon Y, Kapulnik Y Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiology 108: New Phytologist (2001) 150:

Appressorium formation by AM fungi on isolated cell walls of carrot roots

Appressorium formation by AM fungi on isolated cell walls of carrot roots New Phytol. (1997), 136, 299-304 Appressorium formation by AM fungi on isolated cell walls of carrot roots BY G. NAGAHASHI* AND D. D. DOUDS, JR USDA, Agricultural Research Service, Eastern Regional Research

More information

Factors Affecting the Infection of Vesicular Arbuscular Mycorrhizal Fungi in Transformed Root Culture

Factors Affecting the Infection of Vesicular Arbuscular Mycorrhizal Fungi in Transformed Root Culture Factors Affecting the Infection of Vesicular Arbuscular Mycorrhizal Fungi in Transformed Root Culture Poonpilai Suwanaritl, Savitri Ascharakul2, Omsub Nopamornbodi3 and Malee Suwana-adth4 I Department

More information

COMPONENTS OF VA MYCORRHIZAL INOCULUM AND THEIR EFFECTS ON GROWTH OF ONION

COMPONENTS OF VA MYCORRHIZAL INOCULUM AND THEIR EFFECTS ON GROWTH OF ONION New Phytol. (1981) 87, 3 5 5.161 355 OMPONENTS OF VA MYORRHIZAL INOULUM AND THEIR EFFETS ON GROWTH OF ONION BY A. MANJUNATH AND D. J. BAGYARAJ Depart?nent of Agricultural Microbiology, University of Agricultural

More information

Horizontal gene transfer from trees to ectomycorrhizal fungi: Lessons from laboratory and host plant liberation experiments

Horizontal gene transfer from trees to ectomycorrhizal fungi: Lessons from laboratory and host plant liberation experiments Horizontal gene transfer from trees to ectomycorrhizal fungi: Lessons from laboratory and host plant liberation experiments Dr. Uwe Nehls 1,2, Dr. Chi Zhang 1, Dr. Mika Tarkka 1, Andrea Bock 1 1: University

More information

Proc. Indian Acad. Sci. (Plaat Sci.), Vol. 95, No. 1, August 1985, pp Printed in India. K PARVATHI, K VENKATESWARLU and A S RAO

Proc. Indian Acad. Sci. (Plaat Sci.), Vol. 95, No. 1, August 1985, pp Printed in India. K PARVATHI, K VENKATESWARLU and A S RAO Proc. Indian Acad. Sci. (Plaat Sci.), Vol. 95, No. 1, August 1985, pp. 35--40. 9 Printed in India. Response of groundnut (Arachis hypogaea L) to combined inoculation with Glomus mosseae and Rhizobium sp

More information

Working with Mycorrhizas in Forestry and Agriculture

Working with Mycorrhizas in Forestry and Agriculture Working with Mycorrhizas in Forestry and Agriculture SUB Gdttingen 206 384661 Mark Brundrett, Neale Bougher, Bernie Dell, Tim Grove and Nick Malajczuk CONTENTS Chapter I. INTRODUCTION 1.1. MYCORRHIZAL

More information

PHYLOGENETIC GROUPING BY PCR ANALYSES OF Sinorhizobium meliloti STRAINS ISOLATED FROM EUTROPHIC SOIL. Abstract

PHYLOGENETIC GROUPING BY PCR ANALYSES OF Sinorhizobium meliloti STRAINS ISOLATED FROM EUTROPHIC SOIL. Abstract ID # 15-01 PHYLOGENETIC GROUPING BY PCR ANALYSES OF Sinorhizobium meliloti STRAINS ISOLATED FROM EUTROPHIC SOIL. W.S. Oliveira 1, P.P.A. Oliveira 2, C.M. Bellato 1, F.R.S. Duarte 1, S.M. Tsai 1 1 Universidade

More information

QUANTIFYING VESICULAR-ARBUSCULAR MYCORRHIZAE: A PROPOSED METHOD TOWARDS STANDARDIZATION*

QUANTIFYING VESICULAR-ARBUSCULAR MYCORRHIZAE: A PROPOSED METHOD TOWARDS STANDARDIZATION* W. (1981)87, 6-67 6 QUANTIFYING VESICULAR-ARBUSCULAR MYCORRHIZAE: A PROPOSED METHOD TOWARDS STANDARDIZATION* BY BRENDA BIERMANN Department of Botany and Plant Pathology, Oregon State University, Corvallis,

More information

EFFECT OF INOCULATION WITH VAM-FUNGI AND BRADYRHIZOBIUM ON GROWTH AND YIELD OF SOYBEAN IN SINDH

EFFECT OF INOCULATION WITH VAM-FUNGI AND BRADYRHIZOBIUM ON GROWTH AND YIELD OF SOYBEAN IN SINDH Pak. J. Bot., 37(1): 169-173, 2005. EFFECT OF INOCULATION WITH VAM-FUNGI AND BRADYRHIZOBIUM ON GROWTH AND YIELD OF SOYBEAN IN SINDH Department of Botany, University of Karachi, Karachi-75270, Pakistan.

More information

A Study of the Moss Parasite Eocronartium muscicola By: Alicia Knudson Advisor: Dr. Elizabeth Frieders

A Study of the Moss Parasite Eocronartium muscicola By: Alicia Knudson Advisor: Dr. Elizabeth Frieders A Study of the Moss Parasite Eocronartium muscicola By: Alicia Knudson Advisor: Dr. Elizabeth Frieders Abstract The genus Eocronartium contains a single described species of parasitic fungus on moss plants

More information

When do arbuscular mycorrhizal fungi protect plant roots from pathogens?

When do arbuscular mycorrhizal fungi protect plant roots from pathogens? 1 1 When do arbuscular mycorrhizal fungi protect plant roots from pathogens? 2 3 4 Benjamin A. Sikes Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G2W1 5 6 7 8 9 10 11 Addendum

More information

Most terrestrial flowering plants have the ability to establish

Most terrestrial flowering plants have the ability to establish Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules Christian Staehelin*, Celine Charon*, Thomas Boller,

More information

AUXIN CONJUGATE HYDROLYSIS DURING PLANT-MICROBE INTERACTION AND EVOLUTION

AUXIN CONJUGATE HYDROLYSIS DURING PLANT-MICROBE INTERACTION AND EVOLUTION AUXIN CONJUGATE HYDROLYSIS DURING PLANT-MICROBE INTERACTION AND EVOLUTION J. Ludwig-Müller 1, A. Schuller 1, A.F. Olajide 2, V. Bakllamaja 2, J.J. Campanella 2 ABSTRACT Plants regulate auxin balance through

More information

Effect of host plant, cultivation media and inoculants sources on propagation of mycorrhizal fungus Glomus Mossae

Effect of host plant, cultivation media and inoculants sources on propagation of mycorrhizal fungus Glomus Mossae EUROPEAN ACADEMIC RESEARCH Vol. V, Issue 12/ March 2018 ISSN 2286-4822 www.euacademic.org Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+) Effect of host plant, cultivation and inoculants sources on propagation

More information

Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre infection stages

Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre infection stages New Phytol. (1993), 125, 587-593 Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre infection stages BY M. GIOVANNETTP, C. SBRANA\ L. AVIO\ A. S. CITERNESP AND C. LOGP ^ Istituto

More information

Bacterial Growth Rates and Competition Affect Nodulation and

Bacterial Growth Rates and Competition Affect Nodulation and APPLIED AND ENVIRONMENTAL MICROBIOLOGY, OCt. 1986, p. 807-811 0099-2240/86/100807-05$02.00/0 Copyright C 1986, American Society for Microbiology Vol. 52, No. 4 Bacterial Growth Rates and Competition Affect

More information

Arbuscular mycorrhizal symbiosis regulates plasma membrane H + -ATPase gene expression in tomato plants

Arbuscular mycorrhizal symbiosis regulates plasma membrane H + -ATPase gene expression in tomato plants Journal of Experimental Botany, Vol. 53, No. 374, pp. 1683±1687, July 2002 DOI: 10.1093/jxb/erf014 SHORT COMMUNICATION Arbuscular mycorrhizal symbiosis regulates plasma membrane H + -ATPase gene expression

More information

Inoculation and Growth with Mycorrhizal Fungi

Inoculation and Growth with Mycorrhizal Fungi Inoculation and Growth with Mycorrhizal Fungi Mireille Chabaud 1, Maria Harrison 2, Fernanda de Carvalho-Niebel 1, Guillaume Bécard 3 and David G. Barker 1. 1 Laboratoire des Interactions Plantes-Microorganismes,

More information

Chapter 37: Plant Nutrition - A Nutritional Network

Chapter 37: Plant Nutrition - A Nutritional Network Chapter 37: Plant Nutrition - A Nutritional Network Every organism continually exchanges energy and materials with its environment For a typical plant, water and minerals come from the soil, while carbon

More information

mrna Isolation Kit for Blood/Bone Marrow For isolation mrna from blood or bone marrow lysates Cat. No

mrna Isolation Kit for Blood/Bone Marrow For isolation mrna from blood or bone marrow lysates Cat. No For isolation mrna from blood or bone marrow lysates Cat. No. 1 934 333 Principle Starting material Application Time required Results Key advantages The purification of mrna requires two steps: 1. Cells

More information

Impact of cropping system on mycorrhiza

Impact of cropping system on mycorrhiza Impact of cropping system on mycorrhiza H. Kahiluoto 1 and M. Vestberg 2 Agricultural Research Centre of Finland 1 Ecological Production, Partala, FIN-51900 Juva, Finland 2 Laukaa Research and Elite Plant

More information

Does the presence of arbuscular mycorrhizal fungi

Does the presence of arbuscular mycorrhizal fungi Does the presence of arbuscular mycorrhizal fungi Blackwell Publishing, Ltd. influence growth and nutrient uptake of a wild-type tomato cultivar and a mycorrhiza-defective mutant, cultivated with roots

More information

Isolation of Two Different Phenotypes of Mycorrhizal Mutants in the Model Legume Plant Lotus japonicus after EMS-Treatment

Isolation of Two Different Phenotypes of Mycorrhizal Mutants in the Model Legume Plant Lotus japonicus after EMS-Treatment Plant CellPhysiol. 41(6): 726-732 (2000) JSPP 2000 Isolation of Two Different Phenotypes of Mycorrhizal Mutants in the Model Legume Plant Lotus japonicus after EMS-Treatment Keishi Senoo lj 4, M. Zakaria

More information

Legume-rhizobia interaction; from simple to complex associations. Simona Radutoiu Aarhus University, Department of Molecular Biology and Genetics

Legume-rhizobia interaction; from simple to complex associations. Simona Radutoiu Aarhus University, Department of Molecular Biology and Genetics Legume-rhizobia interaction; from simple to complex associations Simona Radutoiu Aarhus University, Department of Molecular Biology and Genetics Nitrogen-fixing symbiosis in root nodules Nitrogen-fixing

More information

Studies on Basidiospore Development in Schizophyllum commune

Studies on Basidiospore Development in Schizophyllum commune Journal of General Microbiology (1976), 96,49-41 3 Printed in Great Britain 49 Studies on Basidiospore Development in Schizophyllum commune By SUSAN K. BROMBERG" AND MARVIN N. SCHWALB Department of Microbiology,

More information

Nitrogen-Fixing Symbioses

Nitrogen-Fixing Symbioses Research for Tomorrow Pathway to Stable Products of Photosynthetic Energy Conversion. CHOH CHOH CH2OPO3" CH2OPO3 2 CHOH COOH CH2OPO3 COO Photosynthetic COo Fixation CH2OPO3 *^ Respiration j With Loss CHOH

More information

Amutha and Kokila, IJALS, Volume (7) Issue (2) May RESEARCH ARTICLE

Amutha and Kokila, IJALS, Volume (7) Issue (2) May RESEARCH ARTICLE Effect of on symbiotic association of Glomus aggregatum an Arbuscular Mycorrhizal Fungus K. Amutha and V. Kokila Department of Biotechnology, Vels University, Pallavaram, Chennai, Tamilnadu, India Email

More information

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated form by recombinant UGT74E2. The naturally occurring auxin

More information

Life Cycle of Glomus Species in Monoxenic Culture

Life Cycle of Glomus Species in Monoxenic Culture 4 Life Cycle of Glomus Species in Monoxenic Culture Yolande Dalpé 1,FranciscoAdrianodeSouza 2,StéphaneDeclerck 3 1 Introduction With respect to the Glomeromycota taxonomy, the genus Glomus includes close

More information

By Jonathan I. Watkinson. Virginia Polytechnic Institute and State University. Doctor of Philosophy Horticulture

By Jonathan I. Watkinson. Virginia Polytechnic Institute and State University. Doctor of Philosophy Horticulture Characterization of two genes, trehalose-6-phosphate synthase/phosphatase and nucleotide binding protein, shown to be differentially regulated in roots of Cypripedium parviflorum var. pubescens grown with

More information

MYCORRHIZAL FUNGI AS BIOFERTILIZER FOR FRUIT TREE PRODUCTION IN THAILAND. Supaporn Thamsurakul 1 and Sompetch Charoensook 2

MYCORRHIZAL FUNGI AS BIOFERTILIZER FOR FRUIT TREE PRODUCTION IN THAILAND. Supaporn Thamsurakul 1 and Sompetch Charoensook 2 MYCORRHIZAL FUNGI AS BIOFERTILIZER FOR FRUIT TREE PRODUCTION IN THAILAND Supaporn Thamsurakul 1 and Sompetch Charoensook 2 1 Soil Microbiology Research Group, Soil Science Division, Department of Agriculture,

More information

Int. J. Adv. Res. Biol. Sci. (2016). 3(10):

Int. J. Adv. Res. Biol. Sci. (2016). 3(10): International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com DOI: 10.22192/ijarbs Coden: IJARQG(USA) Volume 3, Issue 10-2016 Research Article DOI: http://dx.doi.org/10.22192/ijarbs.2016.03.10.026

More information

Journal of Agricultural Technology

Journal of Agricultural Technology Study on the growth patterns of transformed carrot hairy roots in an optimized system Y.R. Danesh *, E. Mohammadi Goltapeh and A. Alizadeh Department of Plant Pathology, College of Agriculture, Tarbiat

More information

In vitro Cultivation of Vesicular- Arbuscular Mycorrhizal Fungi and its Biological Efficacy

In vitro Cultivation of Vesicular- Arbuscular Mycorrhizal Fungi and its Biological Efficacy International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 03 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.703.110

More information

F.A. SMITH S.E. SMITH

F.A. SMITH S.E. SMITH BIOTROPIA No. 8, 1995: 1-10 NUTRIENT TRANSFER IN VESICULAR-ARBUSCULAR MYCORRHIZAS: A NEW MODEL BASED ON THE DISTRIBUTION OF ATPases ON FUNGAL AND PLANT MEMBRANES*) F.A. SMITH Department of Botany, The

More information

Eppendorf Plate Deepwell 96 and 384: RecoverMax

Eppendorf Plate Deepwell 96 and 384: RecoverMax Applications Note 145 March 2007 Eppendorf Plate Deepwell 96 and 384: RecoverMax Investigation into the impact of an optimized well design on resuspension properties, sample losses and contamination effects

More information

Supplemental Data. Perea-Resa et al. Plant Cell. (2012) /tpc

Supplemental Data. Perea-Resa et al. Plant Cell. (2012) /tpc Supplemental Data. Perea-Resa et al. Plant Cell. (22)..5/tpc.2.3697 Sm Sm2 Supplemental Figure. Sequence alignment of Arabidopsis LSM proteins. Alignment of the eleven Arabidopsis LSM proteins. Sm and

More information

Ph.D. Course Work 2012 Sub : Botany

Ph.D. Course Work 2012 Sub : Botany Ph.D. Course Work 2012 Sub : Botany Important points to be noted: Duration of Course Work : One Semester (6 Months) Total : 200 (Four papers 50 Each) Passing marks will be: 40 %. Duration of Examination:

More information

AGR1006. Assessment of Arbuscular Mycorrhizal Fungal Inoculants for Pulse Crop Production Systems

AGR1006. Assessment of Arbuscular Mycorrhizal Fungal Inoculants for Pulse Crop Production Systems AGR1006 Assessment of AMF Inoculants for pulse crop production systems 1 AGR1006 Assessment of Arbuscular Mycorrhizal Fungal Inoculants for Pulse Crop Production Systems INVESTIGATORS Principal Investigator:

More information

Growth and Colony Patterning of Filamentous Fungi

Growth and Colony Patterning of Filamentous Fungi Letter Forma, 14, 315 320, 1999 Growth and Colony Patterning of Filamentous Fungi Shu MATSUURA School of High-Technology for Human Welfare, Tokai University, Numazu, Shizuoka 410-0395, Japan E-mail: shum@wing.

More information

Mycorrhizae in relation to crop rotation and tillage Terence McGonigle

Mycorrhizae in relation to crop rotation and tillage Terence McGonigle Mycorrhizae in relation to crop rotation and tillage Terence McGonigle, Dept. of Biology, Brandon University, Brandon, MB R7A 6A9 E- mail: mcgoniglet@brandonu.ca Abstract: Many crops form mycorrhizae,

More information

Rhizobium Strain. scanning electron microscopy to study how Rhizobium. interact with the pole bean and the lima bean.

Rhizobium Strain. scanning electron microscopy to study how Rhizobium. interact with the pole bean and the lima bean. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 1982, p. 677-685 0099-2240/82/030677-09$02.00/0 Vol. 43, No. 3 Recognition of Leguminous Hosts by a Promiscuous Rhizobium Strain S. SHANTHARAM AND PETER P.

More information

Supplemental Data. Perrella et al. (2013). Plant Cell /tpc

Supplemental Data. Perrella et al. (2013). Plant Cell /tpc Intensity Intensity Intensity Intensity Intensity Intensity 150 50 150 0 10 20 50 C 150 0 10 20 50 D 0 10 20 Distance (μm) 50 20 40 E 50 F 0 10 20 50 0 15 30 Distance (μm) Supplemental Figure 1: Co-localization

More information

Published in: Plant and Soil. Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal

Published in: Plant and Soil. Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Establishment of monoxenic culture between the arbuscular mycorrhizal fungus Glomus sinuosum and Ri T-DNA-transformed carrot roots Bi, Y. L., Li, X. L., Wang, H. G., & Christie, P. (2004). Establishment

More information

Evaluating SYDlbiotic Potential of Rhizobia

Evaluating SYDlbiotic Potential of Rhizobia SECTION III Evaluating SYDlbiotic Potential of Rhizobia SIGNIFICANCE OF SYMBIOTIC NITROGEN FIXATION TO AGRICULTURE The value of legumes in improving and sustaining soil fertility was well known to agriculturalists,

More information

Microbial Activity in the Rhizosphere

Microbial Activity in the Rhizosphere K. G. Mukerji C. Manoharachary J. Singh (Eds.) Microbial Activity in the Rhizosphere With 35 Figures 4y Springer 1 Rhizosphere Biology - an Overview 1 Chakravarthula Manoharachary, Krishna G. Mukerji 1.1

More information

7. M2/1 Subfamily Caesalpinoideae. A flower of Bauhinia sp. shows floral morphology typical of the species in the subfamily Caesalpinoideae.

7. M2/1 Subfamily Caesalpinoideae. A flower of Bauhinia sp. shows floral morphology typical of the species in the subfamily Caesalpinoideae. SLIDE NOTES AND EXPLANATIONS 1. M1/1 The Nitrogen Cycle. Gaseous nitrogen in the air is converted into a biologically useful form through biological nitrogen fixation in legumes and through chemical fixation

More information

Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees

Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.8 No.1, Issue of April 15, 2005 2005 by Pontificia Universidad Católica de Valparaíso -- Chile Received September 30, 2004 / Accepted March 2, 2005

More information

Wantira Ranabuht Department of Botany, Faculty of Science Chulalongkorn University

Wantira Ranabuht Department of Botany, Faculty of Science Chulalongkorn University EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI ON GROWTH AND PRODUCTIVITY OF LETTUCE Wantira Ranabuht Department of Botany, Faculty of Science Chulalongkorn University Lettuce Lettuce : Lactuca sativa L. Family

More information

EFFECT OF GLOMUS MOSSEAE ON GROWTH AND CHEMICAL COMPOSITION OF CAJANUS CAJAN (VAR. ICPL-87)

EFFECT OF GLOMUS MOSSEAE ON GROWTH AND CHEMICAL COMPOSITION OF CAJANUS CAJAN (VAR. ICPL-87) Scholarly Research Journal for Interdisciplinary Studies, Online ISSN 2278-8808, SJIF 2016 = 6.17, www.srjis.com UGC Approved Sr. No.45269, SEPT-OCT 2017, VOL- 4/36 EFFECT OF GLOMUS MOSSEAE ON GROWTH AND

More information

THE EFFECT OF MYCORRHIZAL (GLOMUS INTRARADICES) COLONIZATION ON THE DEVELOPMENT OF ROOT AND STEM ROT (PHYTOPHTHORA VIGNAE) OF COWPEA

THE EFFECT OF MYCORRHIZAL (GLOMUS INTRARADICES) COLONIZATION ON THE DEVELOPMENT OF ROOT AND STEM ROT (PHYTOPHTHORA VIGNAE) OF COWPEA J. Natn. Sci. Coun. Sri Lanka 1997 25(1): 39-47 THE EFFECT OF MYCORRHIZAL (GLOMUS INTRARADICES) COLONIZATION ON THE DEVELOPMENT OF ROOT AND STEM ROT (PHYTOPHTHORA VIGNAE) OF COWPEA W.G.D. FERNANDO1 and

More information

TIME-LINE OF INFECTION

TIME-LINE OF INFECTION Review of Lecture 8: Getting inside the host is a critical step in disease development Fungal pathogens use contact and chemical tropisms to guide their way to a site where infection is possible Pathogens

More information

The occurrence of anastomosis formation and nuclear. exchange in intact arbuscular mycorrhizal networks

The occurrence of anastomosis formation and nuclear. exchange in intact arbuscular mycorrhizal networks Research The occurrence of anastomosis formation and nuclear Blackwell Science Ltd exchange in intact arbuscular mycorrhizal networks Manuela Giovannetti 1, Paola Fortuna 2, Anna Silvia Citernesi 1, Stefano

More information

Influence of Aphelenchus avenae on Vesicular-arbuscular Endomycorrhizal Growth Response in Cotton

Influence of Aphelenchus avenae on Vesicular-arbuscular Endomycorrhizal Growth Response in Cotton Influence of Aphelenchus avenae on Vesicular-arbuscular Endomycorrhizal Growth Response in Cotton R. S. Hussey and R. W. Roncadori ~ Abstract: The influence of,4phelenchus avenae on the relationship between

More information

Towards Growth of Arbuscular Mycorrhizal Fungi Independent of a Plant Host

Towards Growth of Arbuscular Mycorrhizal Fungi Independent of a Plant Host APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 2002, p. 1919 1924 Vol. 68, No. 4 0099-2240/02/$04.00 0 DOI: 10.1128/AEM.68.4.1919 1924.2002 Copyright 2002, American Society for Microbiology. All Rights Reserved.

More information

An Active Factor from Tomato Root Exudates Plays an Important Role in Efficient Establishment of Mycorrhizal Symbiosis

An Active Factor from Tomato Root Exudates Plays an Important Role in Efficient Establishment of Mycorrhizal Symbiosis An Active Factor from Tomato Root Exudates Plays an Important Role in Efficient Establishment of Mycorrhizal Symbiosis Shubin Sun 1,2, Jingjing Wang 1,2, Lingling Zhu 1,2, Dehua Liao 1,2, Mian Gu 1,2,

More information

Component Product # Product # Cell Lysis Reagent 100 ml 500 ml Product Insert 1 1

Component Product # Product # Cell Lysis Reagent 100 ml 500 ml Product Insert 1 1 3430 Schmon Parkway Thorold, ON, Canada L2V 4Y6 Phone: 866-667-4362 (905) 227-8848 Fax: (905) 227-1061 Email: techsupport@norgenbiotek.com Cell Lysis Reagent Product # 18800 (100 ml) Product # 18801 (500

More information

The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply

The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply Neto Phytol. (1993), 125, 581-586 The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply BY F. AMIJEE^*, D. P. STRIBLEY^ AND P. W. LANE'^

More information

E.Z.N.A. MicroElute Clean-up Kits Table of Contents

E.Z.N.A. MicroElute Clean-up Kits Table of Contents E.Z.N.A. MicroElute Clean-up Kits Table of Contents Introduction... 2 Kit Contents... 3 Preparing Reagents/Storage and Stability... 4 Guideline for Vacuum Manifold... 5 MicroElute Cycle-Pure - Spin Protocol...

More information

Giving the Nod to Bacterial Symbionts: The Nod Signal Transduction Pathway

Giving the Nod to Bacterial Symbionts: The Nod Signal Transduction Pathway Giving the Nod to Bacterial Symbionts: The Nod Signal Transduction Pathway Kevin Murray Abstract This in-depth review summarises recent advances in the elucidation of the Nod factor-induced signal transduction

More information

Absorption of Mineral Salts by Higher Plant

Absorption of Mineral Salts by Higher Plant Article Shared by Absorption of Mineral Salts by Higher Plant Let us make an in-depth study of the Mycorrhizae. After reading this article you will learn about their role in absorption of mineral salts

More information

Development of the VAM fungus, Glomus mosseae in groundnut in static solution culture

Development of the VAM fungus, Glomus mosseae in groundnut in static solution culture Proc. Indian Acad. Sci. (Plant Sci.), Vol. 93, No. 2, May 1984, pp. 105-110 9 Printed in India. Development of the VAM fungus, Glomus mosseae in groundnut in static solution culture K PARVATHI, K VENKATESWARLU

More information

Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.)

Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.) Plant and Soil 257: 125 131, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 125 Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus

More information

Microbial DNA qpcr Multi-Assay Kit Clostridium perfringens Pathogenicity

Microbial DNA qpcr Multi-Assay Kit Clostridium perfringens Pathogenicity Microbial DNA qpcr Multi-Assay Kit Clostridium perfringens Pathogenicity Cat. no. 330043 BBID-1507ZR-3 For real-time PCR-based, application-specific microbial identification or profiling The Clostridium

More information

Importance of Mycorrhizae for Agricultural Crops 1

Importance of Mycorrhizae for Agricultural Crops 1 SS-AGR-170 Importance of Mycorrhizae for Agricultural Crops 1 R. M. Muchovej 2 What are Mycorrhizae? The word mycorrhizae was first used by German researcher A.B. Frank in 1885, and originates from the

More information

Vesicular-arbuscular mycorrhizal associations of sesamum

Vesicular-arbuscular mycorrhizal associations of sesamum Proc. lndian Acad. Sci. (Plant Sci.), Vol. 98, No. 1, February 1988, pp. 55-59. 9 Printed in India. Vesicular-arbuscular mycorrhizal associations of sesamum M VIJAYALAKSHMI and A S RAO Department of Botany,

More information

Doug Kremer President Mike Kelly Director Turf Operations. Maximizing Earth s Potential

Doug Kremer President Mike Kelly Director Turf Operations. Maximizing Earth s Potential Doug Kremer President Mike Kelly Director Turf Operations Company Background Founded in 1998 to develop microbiological products - Integrated Fertility Management (IFM) Convert atmospheric nitrogen to

More information

Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach

Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach ABSTRACT SUBMITTED TO JAMIA MILLIA ISLAMIA NEW DELHI IN PARTIAL FULFILMENT OF

More information

As negative mycorrhizal growth responses (MGR) have received more experimental attention

As negative mycorrhizal growth responses (MGR) have received more experimental attention Supplemental Material: Annu. Rev. Plant Biol. 2011. 62:227-250 Supplementary A Negative mycorrhizal responses As negative mycorrhizal growth responses (MGR) have received more experimental attention it

More information

GERMINATION OF BASIDIOSPORES OF MYCORRHIZAL FUNGI IN THE RHIZOSPHERE OF PINUS RADIATA D. DON

GERMINATION OF BASIDIOSPORES OF MYCORRHIZAL FUNGI IN THE RHIZOSPHERE OF PINUS RADIATA D. DON New Phytol. (1987) 106, 217-223 217 GERMINATION OF BASIDIOSPORES OF MYCORRHIZAL FUNGI IN THE RHIZOSPHERE OF PINUS RADIATA D. DON BY C. THEODOROU AND G. D. BOWEN* Commonwealth Scientific and Industrial

More information

Cost-efficient production of in vitro Rhizophagus irregularis

Cost-efficient production of in vitro Rhizophagus irregularis Mycorrhiza (2017) 27:477 486 DOI 10.1007/s00572-017-0763-2 ORIGINAL ARTICLE Cost-efficient production of in vitro Rhizophagus irregularis Pawel Rosikiewicz 1 & Jérémy Bonvin 1 & Ian R. Sanders 1 Received:

More information

Data Sheet. Azide Cy5 RNA T7 Transcription Kit

Data Sheet. Azide Cy5 RNA T7 Transcription Kit Cat. No. Size 1. Description PP-501-Cy5 10 reactions à 40 µl For in vitro use only Quality guaranteed for 12 months Store all components at -20 C. Avoid freeze and thaw cycles. DBCO-Sulfo-Cy5 must be stored

More information

Plants are some of nature s best chemists

Plants are some of nature s best chemists Outline: Alkaloids: Function and biosynthesis Secondary metabolites of plants are naturally occurring products that appear to have no direct function to growth and development. Physiological Role: They

More information

Symbiotic Fungal Endophytes that Confer Tolerance for Plant Growth in Saline and Dry Soils Zakia Boubakir, Elizabeth Cronin, Susan Kaminskyj

Symbiotic Fungal Endophytes that Confer Tolerance for Plant Growth in Saline and Dry Soils Zakia Boubakir, Elizabeth Cronin, Susan Kaminskyj Symbiotic Fungal Endophytes that Confer Tolerance for Plant Growth in Saline and Dry Soils Zakia Boubakir, Elizabeth Cronin, Susan Kaminskyj Department of Biology University of Saskatchewan 1 Outline Background

More information

Elucidating the Mystery of the Tripartite Symbiosis Plant Mycorrhizal fungi Dark Septate Endophytes

Elucidating the Mystery of the Tripartite Symbiosis Plant Mycorrhizal fungi Dark Septate Endophytes Elucidating the Mystery of the Tripartite Symbiosis Plant Mycorrhizal fungi Dark Septate Endophytes Navarro-Borrell, Adriana 1,2, Hamel, C. 1,2, Germida, J 1 Gan, Y 2. 1 Dept. of Soil Science, University

More information

Growth responses of Acacia angustissima to vesicular-arbuscular mycorrhizal. inoculation. Abstract

Growth responses of Acacia angustissima to vesicular-arbuscular mycorrhizal. inoculation. Abstract Growth responses of Acacia angustissima to vesicular-arbuscular mycorrhizal inoculation ID # 04-32 N. Lucena Costa 1, V.T. Paulino 2 and T.S. Paulino 3 1 EMBRAPA - Amapá,, C.P. 10, Macapá, Amapá, 68902-208,

More information

I. Stancheva 1*, M. Geneva 1, E. Djonova 2, N. Kaloyanova 2, M. Sichanova 1, M. Boychinova 1, G. Georgiev 1

I. Stancheva 1*, M. Geneva 1, E. Djonova 2, N. Kaloyanova 2, M. Sichanova 1, M. Boychinova 1, G. Georgiev 1 Ge n. Appl. Response Pl a n t of Phalfalfa y s i o l ogrowth g y, 2008, at low Spaccessible e c i a l Issue, phosphorus 34 (3-4), source 319-326 319 RESPONSE OF ALFALFA (MEDICAGO SATIVA L) GROWTH AT LOW

More information

Research review. Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. Review. P. Franken 1 and N. Requena 2.

Research review. Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. Review. P. Franken 1 and N. Requena 2. Review Blackwell Science Ltd Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges Author for correspondence: P. Franken Tel: +49 6421 178300 Fax: +49 6421 178309 Email:

More information

Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids

Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids Plant growth conditions The soil was a 1:1 v/v mixture of loamy soil and organic compost. Initial soil water content was determined

More information

Biological Roles of Cytokinins

Biological Roles of Cytokinins Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme By Kurakawa et. Al. Published in Nature Presented by Boyana Grigorova Biological Roles of Cytokinins Cytokinins are positive regulators

More information

Comparison of two main mycorrhizal types

Comparison of two main mycorrhizal types Comparison of two main mycorrhizal types VAM (Endos) Ectos Plant hosts Most vascular plants, including herbs, shrubs, trees. examples of tree you know: Maples, Ash, giant Sequoia, Sequoia, Incense Cedar

More information

Introduction to Molecular and Cell Biology

Introduction to Molecular and Cell Biology Introduction to Molecular and Cell Biology Molecular biology seeks to understand the physical and chemical basis of life. and helps us answer the following? What is the molecular basis of disease? What

More information

Supplemental Data. Wang et al. (2014). Plant Cell /tpc

Supplemental Data. Wang et al. (2014). Plant Cell /tpc Supplemental Figure1: Mock and NPA-treated tomato plants. (A) NPA treated tomato (cv. Moneymaker) developed a pin-like inflorescence (arrowhead). (B) Comparison of first and second leaves from mock and

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1. HSP21 expression in 35S:HSP21 and hsp21 knockdown plants. (a) Since no T- DNA insertion line for HSP21 is available in the publicly available T-DNA collections,

More information

Plant-associated Proteobacteria (and a few outsiders): the good and the bad

Plant-associated Proteobacteria (and a few outsiders): the good and the bad Plant-associated Proteobacteria (and a few outsiders): the good and the bad nitrogenase N 2 NH 3 Today s Topics: 1. Rhizobeacae and other nitrogen-fixing genera 2. Nitrogen fixation and why we need it

More information

Life in an unusual intracellular niche a bacterial symbiont infecting the nucleus of amoebae

Life in an unusual intracellular niche a bacterial symbiont infecting the nucleus of amoebae Life in an unusual intracellular niche a bacterial symbiont infecting the nucleus of amoebae Frederik Schulz, Ilias Lagkouvardos, Florian Wascher, Karin Aistleitner, Rok Kostanjšek, Matthias Horn Supplementary

More information

Plant Growth-promoting Rhizobacteria and Soybean [Glycine max (L.) Merr.] Growth and Physiology at Suboptimal Root Zone Temperatures

Plant Growth-promoting Rhizobacteria and Soybean [Glycine max (L.) Merr.] Growth and Physiology at Suboptimal Root Zone Temperatures Annals of Botany 79: 3 9, 1997 Plant Growth-promoting Rhizobacteria and Soybean [Glycine max (L.) Merr.] Growth and Physiology at Suboptimal Root Zone Temperatures FENG ZHANG*, NARJES DASHTI*, R. K. HYNES

More information

(DMB 01) M.Sc. (Previous) DEGREE EXAMINATION, DECEMBER First Year. Microbiology. Paper I INTRODUCTION TO MICROORGANISMS

(DMB 01) M.Sc. (Previous) DEGREE EXAMINATION, DECEMBER First Year. Microbiology. Paper I INTRODUCTION TO MICROORGANISMS wk 7 (DMB 01) Paper I INTRODUCTION TO MICROORGANISMS PART A (5 8 = 40 marks) 1. Explain the growth of microbiology in the twentieth century. 2. Describe the structure of eukaryotic cell with a neat-labeled

More information

2012 Univ Aguilera Lecture. Introduction to Molecular and Cell Biology

2012 Univ Aguilera Lecture. Introduction to Molecular and Cell Biology 2012 Univ. 1301 Aguilera Lecture Introduction to Molecular and Cell Biology Molecular biology seeks to understand the physical and chemical basis of life. and helps us answer the following? What is the

More information

Applications Note 202 October 2008

Applications Note 202 October 2008 Applications Note 202 October 2008 Technical Report Eppendorf Polypropylene Microplates Fast and secure identification of samples Natascha Weiß 1, Wolf Wente 2, Sophie Freitag 2, Daniel Wehrhahn 1 1 Eppendorf

More information

MYCORRHIZAL RELATIONSHIPS IN THICKET COMMUNITIES

MYCORRHIZAL RELATIONSHIPS IN THICKET COMMUNITIES MYCORRHIZAL RELATIONSHIPS IN THICKET COMMUNITIES DR JOANNA DAMES Mycorrhizal Research Laboratory Department of Biochemistry, Microbiology & Biotechnology Rhodes University What are mycorrhizas? Mycorrhizas

More information

Mycorrhiza Fungus + Plant Host (Root)

Mycorrhiza Fungus + Plant Host (Root) Mycorrhiza Fungus + Plant Host (Root) Root Anatomy Mycorrhizal fungi Cryptomycota http://www.mykoweb.com/articles/index.html#apm1_4 Summary Mycorrhizal symbioses are mutualistic Fungal benefits carbohydrates

More information

TEST BANK FOR PRESCOTTS MICROBIOLOGY 9TH EDITION BY WILLEY SHERWOOD WOOLVERTON

TEST BANK FOR PRESCOTTS MICROBIOLOGY 9TH EDITION BY WILLEY SHERWOOD WOOLVERTON TEST BANK FOR PRESCOTTS MICROBIOLOGY 9TH EDITION BY WILLEY SHERWOOD WOOLVERTON Link download full: https://testbankservice.com/download/test-bank-for-prescottsmicrobiology-9th-edition-by-willey-sherwood-woolverton/

More information

New Rhizobium leguminosarum bv. trifolii isolates: collection, identification and screening of efficiency in symbiosis with clover

New Rhizobium leguminosarum bv. trifolii isolates: collection, identification and screening of efficiency in symbiosis with clover New Rhizobium leguminosarum bv. trifolii isolates: collection, identification and screening of efficiency in symbiosis with clover T. Šimon Research Institute of Crop Production, Prague-Ruzyne, Czech Republic

More information

RNA Synthesis and Processing

RNA Synthesis and Processing RNA Synthesis and Processing Introduction Regulation of gene expression allows cells to adapt to environmental changes and is responsible for the distinct activities of the differentiated cell types that

More information

The occurrence and diversity of mycorrhizal fungi found in blueberry. Susan McCallum

The occurrence and diversity of mycorrhizal fungi found in blueberry. Susan McCallum The occurrence and diversity of mycorrhizal fungi found in blueberry Susan McCallum Blueberry root system Shallow rooting system mainly concentrated near the soil surface Roots that are larger than 1mm

More information

Rukhsana Bajwa, Arshad Javaid and Nusrat Rabbani. Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan

Rukhsana Bajwa, Arshad Javaid and Nusrat Rabbani. Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan Pakistan Journal of Biological Sciences, 2 (2): 590-593, 1999 Research Article EM and VAM Technology in Pakistan VII: Effect of Organic Amendments and Effective Microorganisms (EM) on VA Mycorrhiza, Nodulation

More information

Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula

Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula Research Phytologist Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula Hannah Kuhn 1, Helge Küster 2 and Natalia Requena 1 1

More information

Why Should You Consider Using Mycorrhizae? Northeast Greenhouse Conference 2018 Mycorrhizal Applications LLC 1

Why Should You Consider Using Mycorrhizae? Northeast Greenhouse Conference 2018 Mycorrhizal Applications LLC 1 Why Should You Consider Using Mycorrhizae? Mycorrhizal Applications LLC 1 A mutually beneficial relationship, which is characterized by movement of carbon flows to the fungus and inorganic nutrients move

More information

METHOD TO STUDY THE MICROBIAL INTERACTIONS BETWEEN THE INOCULATED MICROSYMBIONTS AND THE INDIGENOUS MICROBES IN THE RHIZOSPHERE

METHOD TO STUDY THE MICROBIAL INTERACTIONS BETWEEN THE INOCULATED MICROSYMBIONTS AND THE INDIGENOUS MICROBES IN THE RHIZOSPHERE 5 th INTERNATIONAL MULTIDISCIPLINARY CONFERENCE METHOD TO STUDY THE MICROBIAL INTERACTIONS BETWEEN THE INOCULATED MICROSYMBIONTS AND THE INDIGENOUS MICROBES IN THE RHIZOSPHERE KÖVES-PÉCHY, K. 1, BIRÓ,

More information