Nitrogen-Fixing Symbioses

Size: px
Start display at page:

Download "Nitrogen-Fixing Symbioses"

Transcription

1 Research for Tomorrow Pathway to Stable Products of Photosynthetic Energy Conversion. CHOH CHOH CH2OPO3" CH2OPO3 2 CHOH COOH CH2OPO3 COO Photosynthetic COo Fixation CH2OPO3 *^ Respiration j With Loss CHOH ofc02 COOH of CO2 as shown in the lower pathway, and the result is a lowering of CO2 fixation and a decrease in productivity. This undesirable alternative often occurs in crop plants. Presently we are learning the precise structure and the chemical details of functioning of this enzyme. There is a good possibility that the powerful tools of biotechnology molecular biology and genetic engineering will allow us to regulate the choice between these two alternative reactions and so improve crop productivity at its most fundamental level. Nitrogen Fixation in Nonleguminous Plants Iris F. Martin, associate program manager, Competitive Research Grants Office, Office of Grants and Programs Tremendous advances have been made in the last 10 years toward understanding nitrogen fixation at the molecular level. The transfer to plants of nitrogen-fixation genes is an intriguing consideration. Let us first look at the process of biological nitrogen fixation and then at the more recent developments in molecular genetics that are providing information that may make such transfer of genes possible in future years. Process of Biological Nitrogen Fixation Nitrogen gas (N2) makes up 79 percent of the earth's atmosphere. But before plants can use this molecular nitrogen for the synthesis of amino acids and proteins, it must be converted to combined or "fixed" nitrogen compounds. Plants do not have this abifity. Making atmospheric nitrogen available to the food chain is restricted to certain prokaryotes (cellular organisms without a distinct nucleus), such as bacteria and cyanobacteria (blue-green algae), which contain an enzyme called nitrogenase. Nitrogenase is composed of two proteins iron and molybdenumiron and catalyzes the reduction of gaseous nitrogen (N2) to ammonia (NH3). This process requires large 112 BIOTECHNOLOGY: ITS APPLICATION TO PLANTS

2 Research for Tomorroiv amounts of energy (ATP) and reducing equivalents (electrons). The sun is the ultimate source of the energy for nitrogen fixation with the ATP being derived from carbon compounds such as sugars manufactured by the plants through photosynthesis. The reducing equivalents pass from an electron donor, a protein such as ferredoxin or flavodoxin, to the iron protein and then on to the molybdenum-iron protein where the conversion of N2 to NH3 occurs. Since both proteins of the enzyme are inactivated by oxygen, some bacteria fix nitrogen only when they are growing in the absence of oxygen. Others have evolved mechanisms and anatomical structures which protect the enzyme from oxygen. Nitrogen-Fixing Symbioses Some bacteria fix nitrogen in the free-living state and others only when living in a symbiotic relationship with a plant. Dissimilar organisms which live together in a mutually beneficial relationship are said to be in symbiosis. The smaller member is the symbiont. Legumes such as soybeans, peas, and alfalfa are well-known plants which enter into nitrogen-fixing symbioses when their roots are infected by specific bacteria called Rhizobia. The plant forms nodules in which the bacterium reduces N2 to ammonia. More complex compounds of nitrogen are synthesized from the ammonia and transported to other parts of the plant. The plant provides the bacterium with carbon compounds that are metabolized to obtain the energy for the reduction of the nitrogen. Some plants that are not legumes also enter into nitrogen-fixing relationships and contribute significant quantities of fixed nitrogen to their environments. One example is a small water-fern, Azolla, which harbors a When Anabaena filaments grow in ttie absence of fixed nitrogen, some cells may differentiate into tieterocysts (indicated by arrows). cyanobacterium Anabaena azollae, as a symbiont. It is used as a source of nitrogen in the cultivation of rice. Another group includes certain trees and Nitrogen Fixation in Nonteguminous Plants 113

3 Research for Tomorrow As an Azolla leaf develops at the apex of ttie stem, a cavity forms and becomes inoculated with Anabaena filaments. Klebsiella Pneumoniae Nitrogen Fixation Genes "o Electron Uptake Activatioti Repressoft Transpon B A LFM 01 I I 11 I (ZU [ZZl V s U X N I E Y K 1 I II H C Electrwi Transpon Low Potential ^ > Reductant (e-) ^J Molybdenum Iron Protein ^9^^'' MgADP 2H+ H, shrubs, whose roots become infected with the bacterium Frankia, for example, the alder tree. Study of the partners of these symbioses and their interactions are Ukely to provide new insights and unique opportunities to obtain genetic information that wul have parallels in the legumes. Azoffa-Anabaena Symbiosis. Nitrogen is frequently a limiting element in rice paddies, and the cost of nitrogen fertilizer is often prohibitive especially in the poorer countries. The water-fern, Azolla, can serve as a source of biologically fixed nitrogen for lice. The Anabaena symbiont can meet the complete nitrogen requirement of the fern, and decomposition of the fern supplies nitrogen to the rice plant. Azolla can be used as a green manure or grown as a companion crop with rice plants increasing rice yields by as much as 100 percent over unfertilized controls. Cyanobacteria such as Anabaena are not only among the few organisms which can fix nitrogen while growing under aerobic conditions (that is, with oxygen present) but are the only oxygen-evolving organisms with this capability. Free-living Anabaena grows in the presence of combined nitrogen as a filament of vege- 114 BIOTECHNOLOGY: ITS APPLICATION TO PLANTS

4 Research for Tomorroiir tative cells. In the absence of a combined nitrogen source, some cells along the filament differentiate into specialized cells called heterocysts. They develop an outer envelope, lose their oxygen-evolving capacity, and provide an environment in which nitrogenase can function. When certain strains oí Anabaena live in symbiosis with Azolla, they become less dependent on their own photosynthetic capacity as an energy supply. More vegetative cells differentiate into heterocysts, more nitrogen can therefore be fixed, and the nitrogen requirements of the host can be met. In Azolla the Anabaena reside in a cavity of the leaf This symbiosis exhibits synchronous development. As a leaf develops at the apex of the stem, the forming leaf cavity becomes inoculated with Anabaena. As leaves age, an increasing percentage, up to 40 percent, of the Anabaena cells become differentiated into heterocysts, and parallel adaptations occur in the fern tissues. Actinorhizal Symbioses» Strains of the bacterium, Frankia, infect a large array of nonleguminous trees and shrubs. These plants (actinorhizal) fix significant nitrogen in forests, especially in poor soils, and a number of them can grow under dry or acid conditions. These attributes make them excellent primary colonizers of post-glacial and post-mining soils. Although nodules have been observed on actinorhizal plants for over 150 yeais, Frankia was not isolated in pure culture until Many different strains of the bacterium have since been isolated. Some have recently been grown on a scale adequate for inoculant production. Frankia behave very much like the bacteria that infect legumes but considerably less is known about the actinorhizal symbioses. The bacterium multiplies rapidly in the area of the Nitrogen Fixation in Nonleguminous Plants root and there is evidence of recognition between the Frankia and the plant. The bacterium invades the root, and the plant responds to this invasion by the formation of a nodule. Unlike a soybean nodule, in which the concentration of oxygen is quite low, actinorhizal nodules contain oxygen at approximately atmospheric levels. Within the nodule of most host plants, Frankia develop vesicles, or pouches, which apparently protect nitrogenase from oxygen and in which nitrogen fixation occurs. A compound resembling hemoglobin, capable of readily binding and releasing oxygen, has recently been identified in nodules of some actinorhizal plants. It may prove to have a function comparable to that of leghemoglobin in legumes maintenance of oxygen flux at low concentration. Molecular Genetics Actinorhizal symbioses, cyanobacterial symbioses, and fi:ee-li\1ng cyanobacteria can be of agronomic benefit through their capacity to use the sun's energy for photosynthesis and through the conversion of nitrogen from the air to more usable forms. Recently developed probes of molecular genetics are providing significant new insights about nitrogen-fixing organisms, but they are dependent upon physiological and biochemical advances for an understanding of which genes should be modified and the function of the gene products. The following nitrogen-fixing bacteria have been studied at some length. KlBbsiella Pneumoniae, The nitrogen fixation (nif) genes have been most fully characterized in the free-hving bacterium, Klebsiella pneumoniae. The genes were first cloned, mapped, and subjected to nucleotide sequencing in the late 1970's. At least 17 adjacent genes code for the struc 1Í5

5 Research for Tomorr&w ture and regulation of the enzymes required for nitrogen fixation. The structural genes, nif H and D, and K that code for the protein precursors of the two nitrogenase components, the iron protein and the molybdenumiron protein respectively, have been most thoroughly studied. Their nucleotide sequences have been determined and the amino acid sequences of the proteins deduced from these. Nif A controls the activation of the other nif genes, and nif L codes for a protein that acts to repress nitrogen fixation. The expression of nif A and L is in turn regulated by a central nitrogen assimilatory system. lîhîzowa. Significant information has been gained in the last few years on the nitrogen fixation genes in Rhizobia, which primarily infect legumes. Genes required for nodulation have been located in some strains and evidence for signaling between the plant and the bacterium is just emerging. ilffabaena. Gene structure and regulation have been studied extensively in one strain of free-living Anabaena. Only four nif genes have so far been identified, among them the three structural genes for nitrogenase. In the vegetative cells where one does not observe any nitrogen fixation, one of these genes is separated from the other two. A significant recent development is the discovery of gene rearrangement that occurs when the vegetative cell differentiates to a heterocyst. A section of DNA that separated the genes in the vegetative ceu is excised such that, under nitrogen-fixing conditions, the structural genes are present and are transcribed as a single unit. When growing in symbiosis with Azolla, Anabaena exports a large portion of the ammonia produced to the. host. Biochemical and genetic studies have revealed significant modifica- tions in the nitrogen assimilatory system of the Anabaena. A thorough understanding of the regulatory system could allow genetic manipulation of Anabaena in the free-living state for large-scale ammonia production. FrmnkiBm Among the least studied of the symbiotic nitrogen-fixing bacteria are Frankia. Initially, their slow growth rate in culture made molecular genetic studies difficult. However, culture methods have been improved, and genetic studies are now possible. Work is actively being pursued on the molecular biology of both the nitrogen-fixation genes and the interaction of the symbionts. Frankia are unusual in that they are capable of infecting a wider range of host plants than other known nitrogen-fixing bacteria. Biotechnology may be able to further extend that range. FututB of Transfer of Nitrogen Fixation Genes It has been suggested that nitrogenfixation genes might be transferred to plants that do not now have this nitrogen-fixation capacity. These genes would have to be in a form that could be incorporated into the plant genome, replicated, and expressed. The genes would have to be expressed in an environment amenable to nitrogen fixation where the enzyme, nitrogenase, could be protected from oxygen and where the enzyme system could tap into the sources of reductant and energy from the plant. The fuu complement of nitrogen fixation genes has been cloned from Klebsiella pneumoniae and transferred to and expressed in another bacterium, Escherichia coli. These genes also have been transferred to yeast, but they could not be expressed. Transfer to a plant is a much more complicated process involving many more genes and still remains highly speculative. Í1B BIOTECHNOLOGY: ITS APPLICATION TO PLANTS

Plant-associated Proteobacteria (and a few outsiders): the good and the bad

Plant-associated Proteobacteria (and a few outsiders): the good and the bad Plant-associated Proteobacteria (and a few outsiders): the good and the bad nitrogenase N 2 NH 3 Today s Topics: 1. Rhizobeacae and other nitrogen-fixing genera 2. Nitrogen fixation and why we need it

More information

Title: Plant Nitrogen Speaker: Bill Pan. online.wsu.edu

Title: Plant Nitrogen Speaker: Bill Pan. online.wsu.edu Title: Plant Nitrogen Speaker: Bill Pan online.wsu.edu Lesson 2.3 Plant Nitrogen Nitrogen distribution in the soil-plantatmosphere Chemical N forms and oxidation states Biological roles of N in plants

More information

Anabaena azollae -This relationship is useful in rice-based crop systems throughout Asia.

Anabaena azollae -This relationship is useful in rice-based crop systems throughout Asia. GLOSSARY Anabaena azollae -This relationship is useful in rice-based crop systems throughout Asia. Azolla-Anabaena symbiosis -A biological nitrogen fixation relationship between the aquatic fern Azolla

More information

7. M2/1 Subfamily Caesalpinoideae. A flower of Bauhinia sp. shows floral morphology typical of the species in the subfamily Caesalpinoideae.

7. M2/1 Subfamily Caesalpinoideae. A flower of Bauhinia sp. shows floral morphology typical of the species in the subfamily Caesalpinoideae. SLIDE NOTES AND EXPLANATIONS 1. M1/1 The Nitrogen Cycle. Gaseous nitrogen in the air is converted into a biologically useful form through biological nitrogen fixation in legumes and through chemical fixation

More information

The Prokaryotic World

The Prokaryotic World The Prokaryotic World A. An overview of prokaryotic life There is no doubt that prokaryotes are everywhere. By everywhere, I mean living in every geographic region, in extremes of environmental conditions,

More information

Eukaryotic Cells. Figure 1: A mitochondrion

Eukaryotic Cells. Figure 1: A mitochondrion Eukaryotic Cells Figure 1: A mitochondrion How do cells accomplish all their functions in such a tiny, crowded package? Eukaryotic cells those that make up cattails and apple trees, mushrooms and dust

More information

The diagram below represents levels of organization within a cell of a multicellular organism.

The diagram below represents levels of organization within a cell of a multicellular organism. STATION 1 1. Unlike prokaryotic cells, eukaryotic cells have the capacity to a. assemble into multicellular organisms b. establish symbiotic relationships with other organisms c. obtain energy from the

More information

Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations

Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations Edited by Claudine Elmerich Institut Pasteur, Paris, France and William E. Newton Department of Biochemistry Virginia

More information

Oceans: the cradle of life? Chapter 5. Cells: a sense of scale. Head of a needle

Oceans: the cradle of life? Chapter 5. Cells: a sense of scale. Head of a needle Oceans: the cradle of life? Highest diversity of life, particularly archae, bacteria, and animals Will start discussion of life in the ocean with prokaryote microorganisms Prokaryotes are also believed

More information

CHAPTER 5 WARM UPS. Mrs. Hilliard

CHAPTER 5 WARM UPS. Mrs. Hilliard CHAPTER 5 WARM UPS Mrs. Hilliard CHAPTER 5 VOCABULARY 1. Photosynthesis 2. Cellular respiration 3. Producer 4. Consumer 5. Decomposer 6. Food chain 7. Food web 8. Trophic level 9. Carbon cycle 10. Nitrogen-fixing

More information

1 Soil Factors Affecting Nutrient Bioavailability... 1 N.B. Comerford

1 Soil Factors Affecting Nutrient Bioavailability... 1 N.B. Comerford Contents 1 Soil Factors Affecting Nutrient Bioavailability........ 1 N.B. Comerford 1.1 Introduction........................... 1 1.2 Release of Nutrients from the Soil Solid Phase........ 2 1.3 Nutrient

More information

Cell Respiration/Photosynthesis

Cell Respiration/Photosynthesis ell Respiration/Photosynthesis Name: ate: 1. The equation below represents a summary of a biological process. carbon dioxide + water glucose + water + oxygen This process is completed in 3. Which process

More information

Round One All play. Each question = 1 point

Round One All play. Each question = 1 point Ecology Unit Review Round One All play Each question = 1 point Leaf cells are one type of tree cell. Which process occurs in a live leaf cell? a. Evolution b. Adaptation c. sugar production d. sexual reproduction

More information

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS Name: 4667-1 - Page 1 UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS 1) The diagram below illustrates the movement of materials involved in a process that is vital for the energy needs of organisms.

More information

BACTERIA AND ARCHAEA 10/15/2012

BACTERIA AND ARCHAEA 10/15/2012 BACTERIA AND ARCHAEA Chapter 27 KEY CONCEPTS: Structural and functional adaptations contribute to prokaryotic success Rapid reproduction, mutation, and genetic recombination promote genetic diversity in

More information

Nadia Langha Biology 106 Honors Project

Nadia Langha Biology 106 Honors Project Nadia Langha Biology 106 Honors Project Cyanobacteria Domain Bacteria Division Cyanophyta Cyanobacteria also known as BlueGreen Algae -Cyano=blue Bacteria are more closely related to prokaryotic bacteria

More information

Nutritional Adaptations of Plants *

Nutritional Adaptations of Plants * OpenStax-CNX module: m44718 1 Nutritional Adaptations of Plants * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Amino sugars 5-10% Purine and Pyrimidine Bases trace amounts. Undescribed Lots - non-protein N Crude proteins Lignin - N

Amino sugars 5-10% Purine and Pyrimidine Bases trace amounts. Undescribed Lots - non-protein N Crude proteins Lignin - N N in Soil Note: soil concentrations can be anywhere, depending on vegetation, land use, etc. But a substantial amount indeed most (ca. 99%) soil nitrogen is organic Free amino acids trace amounts Amino

More information

Heterotrophs: Organisms that depend on an external source of organic compounds

Heterotrophs: Organisms that depend on an external source of organic compounds Heterotrophs: Organisms that depend on an external source of organic compounds Autotrophs: Organisms capable of surviving on CO2 as their principle carbon source. 2 types: chemoautotrophs and photoautotrophs

More information

ORIGIN OF CELLULARITY AND CELLULAR DIVERSITY

ORIGIN OF CELLULARITY AND CELLULAR DIVERSITY ORIGIN OF CELLULARITY AND CELLULAR DIVERSITY Geological stratigraphy, together with radioactive dating, show the sequence of events in the history of the Earth. Note the entry for cyanobacteria and stromatolites

More information

Soil Biology. Chapter 10

Soil Biology. Chapter 10 Soil Biology Chapter 10 The Sounds of Soil Soil as a Transition Between Aquatic and Aerial System Bacteria in a Drying Environment Wet (open structure) Dry (dense) Holden P.A., J.R. Hunt, and M. K. Firestone,

More information

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson:

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson: BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D Steve Thompson: stthompson@valdosta.edu http://www.bioinfo4u.net 1 How plants get the stuff they need Feed me... feed me...

More information

Biology Unit Overview and Pacing Guide

Biology Unit Overview and Pacing Guide This document provides teachers with an overview of each unit in the Biology curriculum. The Curriculum Engine provides additional information including knowledge and performance learning targets, key

More information

13. The diagram below shows two different kinds of substances, A and B, entering a cell.

13. The diagram below shows two different kinds of substances, A and B, entering a cell. Name 1. In the binomial system of nomenclature, which two classification groups provide the scientific name of an organism? A) kingdom and phylum B) phylum and species C) kingdom and genus D) genus and

More information

Structures and Functions of Living Organisms (LS1)

Structures and Functions of Living Organisms (LS1) EALR 4: Big Idea: Core Content: Life Science Structures and Functions of Living Organisms (LS1) Processes Within Cells In prior grades students learned that all living systems are composed of cells which

More information

Plant form and function. Photosynthesis Phloem Plant Nutrition

Plant form and function. Photosynthesis Phloem Plant Nutrition Plant form and function Photosynthesis Phloem Plant Nutrition Photosynthetic Water Use Efficiency Fundamental plant problem: Stomata: pathway for diffusion of CO 2 into leaves is the same as the pathway

More information

Unit 5 Cellular Energy

Unit 5 Cellular Energy Unit 5 Cellular Energy I. Enzymes (159) 1.Are CATALYSTS: Speed up chemical reactions that would otherwise happen too slowly to support life. Catalysts DO NOT make reactions happen that couldn t happen

More information

1 Name. ECOSYSTEMS: THE ROLE OF ABIOTIC FACTORS from the series Biology: The Science of Life Pre-Test

1 Name. ECOSYSTEMS: THE ROLE OF ABIOTIC FACTORS from the series Biology: The Science of Life Pre-Test 1 Pre-Test Directions: Answer each of the following either true or false: 1. In ecosystems, non-living (abiotic) factors usually have insignificant effects on living things. True False 2. Carbon dioxide

More information

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell.

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell. I. Molecules & Cells A. Unit One: The Nature of Science a. How is the scientific method used to solve problems? b. What is the importance of controls? c. How does Darwin s theory of evolution illustrate

More information

Which row in the chart below identifies the lettered substances in this process?

Which row in the chart below identifies the lettered substances in this process? 1. A biological process that occurs in both plants and animals is shown below. Which row in the chart below identifies the lettered substances in this process? A) 1 B) 2 C) 3 D) 4 2. All life depends on

More information

Name: Date: Answer: Answer:

Name: Date: Answer: Answer: Name: Date: 5 6 7 8 9 0 Scoring Guide: Scoring Guide: 5 6 7 8 9 0 5 6 7 8 9 0 Scoring Guide: Scoring Guide: 5 Scoring Guide: 6 7 8 9 0 5 6 7 8 9 50 Scoring Guide: 5 Scoring Guide: Standard(s):..0.F,...F,..0.D,...D,..0.C,...C,..0.E,...E,.5.0.F,.5..F

More information

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome CELL PART Expanded Definition Cell Structure Illustration Function Summary Location is the material that contains the Carry genetic ALL CELLS information that determines material inherited characteristics.

More information

CELL PRACTICE TEST

CELL PRACTICE TEST Name: Date: 1. As a human red blood cell matures, it loses its nucleus. As a result of this loss, a mature red blood cell lacks the ability to (1) take in material from the blood (2) release hormones to

More information

Untitled Document Eco Photo Cell resp Use the information below to answer the following question(s).

Untitled Document Eco Photo Cell resp Use the information below to answer the following question(s). Untitled Document Eco Photo Cell resp 25 1. Use the information below to answer the following question(s). The drawing below shows a field habitat. 3. An increase in which atmospheric gas would most likely

More information

Which row in the chart correctly identifies the functions of structures A, B, and C? A) 1 B) 2 C) 3 D) 4

Which row in the chart correctly identifies the functions of structures A, B, and C? A) 1 B) 2 C) 3 D) 4 1. What is a similarity between all bacteria and plants? A) They both have a nucleus B) They are both composed of cells C) They both have chloroplasts D) They both lack a cell wall 2. Which statement is

More information

S Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem.

S Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem. Biogeochemical Cycles S2-1-01 Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem. Biogeochemical Cycles Let s take a closer look at the interactions between LIVING

More information

98 Washington State K-12 Science Learning Standards Version 1.2

98 Washington State K-12 Science Learning Standards Version 1.2 EALR 4: Big Idea: Core Content: Life Science Structures and Functions of Living Organisms (LS1) Processes Within Cells In prior grades students learned that all living systems are composed of cells which

More information

Announcements KEY CONCEPTS

Announcements KEY CONCEPTS What do these things have in common? Announcements Lab this week: bring textbook and photo atlas. Relevant reading BEFORE lab: Ch. 30 http://i.cnn.net/cnn/specials/2001/trade.center/images/anthrax.jpg

More information

FINAL VERSION_ Secondary Preservice Teacher Standards -- Life Science AFK12SE/NGSS Strand Disciplinary Core Idea

FINAL VERSION_ Secondary Preservice Teacher Standards -- Life Science AFK12SE/NGSS Strand Disciplinary Core Idea Secondary Preservice Teacher Standards -- Life Science AFK12SE/NGSS Strand Disciplinary Core Idea LS1: From Molecules to Organisms: Structures and Processes LS1.A: Structure and Function How do the structures

More information

Biochemistry: A Review and Introduction

Biochemistry: A Review and Introduction Biochemistry: A Review and Introduction CHAPTER 1 Chem 40/ Chem 35/ Fundamentals of 1 Outline: I. Essence of Biochemistry II. Essential Elements for Living Systems III. Classes of Organic Compounds IV.

More information

The Ultrastructure of Cells (1.2) IB Diploma Biology

The Ultrastructure of Cells (1.2) IB Diploma Biology The Ultrastructure of Cells (1.2) IB Diploma Biology Explain why cells with different functions have different structures. Cells have different organelles depending on the primary function of the cell

More information

Define: Alleles. Define: Chromosome. In DNA and RNA, molecules called bases pair up in certain ways.

Define: Alleles. Define: Chromosome. In DNA and RNA, molecules called bases pair up in certain ways. Alleles Chromosome In DNA and RNA, molecules called bases pair up in certain ways. How do the bases A, C, G, T, and U match up in DNA? How about RNA? Summarize the cell process called protein synthesis!

More information

!"#$%&!"&'(&%")(*(+& '4567,846/-&*,/69450.:&*,.;42/9450&<&#7595.=097,.4.& #259,40& &95&523/0,--,.

!#$%&!&'(&%)(*(+& '4567,846/-&*,/69450.:&*,.;42/9450&<&#7595.=097,.4.& #259,40& &95&523/0,--,. 1 2 Contact Information Dr. Sonish Azam Office: SP 375.23 Tel: 514-848-2424 ex 3488 Email: sonish.azam@concordia.ca (Please mention BIOL 266 in subject) Office hours: after the class or by appointment

More information

Slide 1 / Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results?

Slide 1 / Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results? Slide 1 / 57 1 Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results? Slide 2 / 57 2 Explain how dehydration synthesis and hydrolysis are related.

More information

Outline 10: Origin of Life. Better Living Through Chemistry

Outline 10: Origin of Life. Better Living Through Chemistry Outline 10: Origin of Life Better Living Through Chemistry What is Life? Internal chemical activity providing growth, repair, and generation of energy. The ability to reproduce. The capacity to respond

More information

Introductory Microbiology Dr. Hala Al Daghistani

Introductory Microbiology Dr. Hala Al Daghistani Introductory Microbiology Dr. Hala Al Daghistani Why Study Microbes? Microbiology is the branch of biological sciences concerned with the study of the microbes. 1. Microbes and Man in Sickness and Health

More information

Plant Function. KEB no office hour on Monday 23 March. Chs 38, 39 (parts), March 2009 ECOL 182R UofA K. E. Bonine

Plant Function. KEB no office hour on Monday 23 March. Chs 38, 39 (parts), March 2009 ECOL 182R UofA K. E. Bonine Plant Function Chs 38, 39 (parts), 40 KEB no office hour on Monday 23 March 10 March 2009 ECOL 182R UofA K. E. Bonine Videos: 39.3, 34.3, 39.1, 34.1 Web Browser Open 1 Video 39.3 Pollination of a night-blooming

More information

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. A. Chemistry of Life B. Cells 1. Water How do the unique chemical

More information

Text of objective. Investigate and describe the structure and functions of cells including: Cell organelles

Text of objective. Investigate and describe the structure and functions of cells including: Cell organelles This document is designed to help North Carolina educators teach the s (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Biology 2009-to-2004

More information

Endosymbiotic Theory

Endosymbiotic Theory Endosymbiotic Theory Evolution of Prokaryotes The oldest known fossils are 3.5 bya = stromatolites which are rock like layers of bacteria and sediment. Earliest life forms may have emerged as early as

More information

Plant Function Chs 38, 39 (parts), 40

Plant Function Chs 38, 39 (parts), 40 Plant Function Chs 38, 39 (parts), 40 KEB no office hour on Monday 23 March 10 March 2009 ECOL 182R UofA K. E. Bonine Videos: 39.3, 34.3, 39.1, 34.1 Web Browser Open 1 Video 39.3 Pollination of a night-blooming

More information

Characteristics of Life

Characteristics of Life Characteristics of Life All living things share some basic characteristics: 1. Organization 2. Movement 3. Made up of cells 4. Reproduce 5. Grow and / or develop 6. Obtain and use energy 7. Respond to

More information

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927)

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927) NCEA Level 1 Biology (90927) 2016 page 1 of 5 Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927) Evidence Statement Question One No response

More information

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time...

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time... Text Readings Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # 332-145. Geologic Time........ Geological Sources - 4.5 Billion Years Atmospheric Gases: Nitrogen (N 2 ) Water Vapor

More information

Bacterial Genetics & Operons

Bacterial Genetics & Operons Bacterial Genetics & Operons The Bacterial Genome Because bacteria have simple genomes, they are used most often in molecular genetics studies Most of what we know about bacterial genetics comes from the

More information

SECTION 14-1 REVIEW BIOGENESIS. 2. The purpose of the netting in Redi s experiment was to prevent

SECTION 14-1 REVIEW BIOGENESIS. 2. The purpose of the netting in Redi s experiment was to prevent SECTION 14-1 REVIEW BIOGENESIS VOCABULARY REVIEW Define the following terms. 1. biogenesis 2. spontaneous generation 3. vital force MULTIPLE CHOICE Write the correct letter in the blank. 1. One of the

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON

CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON PROKARYOTE GENES: E. COLI LAC OPERON CHAPTER 13 CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON Figure 1. Electron micrograph of growing E. coli. Some show the constriction at the location where daughter

More information

6 th Grade Life Science Strand 3: Characteristics and Interactions of Living Organisms

6 th Grade Life Science Strand 3: Characteristics and Interactions of Living Organisms Middle School Life Science Standards There are 15 standards that encompass the proposed middle school life science standards. The new standards are listed 4 times to match the four times life science is

More information

DAY 1 Leaf Structure

DAY 1 Leaf Structure DAY 1 Leaf Structure Design a Leaf!! What would be the best structure for a leaf to carry out its major function PHOTOSYNTHESIS!!!??? Place the following in order from the top of the leaf to the bottom.

More information

Nutritional Adaptations of Plants *

Nutritional Adaptations of Plants * OpenStax-CNX module: m47408 1 Nutritional Adaptations of Plants * Robert Bear David Rintoul Based on Nutritional Adaptations of Plants by OpenStax This work is produced by OpenStax-CNX and licensed under

More information

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis Cell (Outline) - Components of a functional cell - Major Events in the History of Earth: abiotic and biotic phases; anaerobic and aerobic atmosphere - Prokaryotic cells impact on the biosphere - Origin

More information

Chapter 37: Plant Nutrition - A Nutritional Network

Chapter 37: Plant Nutrition - A Nutritional Network Chapter 37: Plant Nutrition - A Nutritional Network Every organism continually exchanges energy and materials with its environment For a typical plant, water and minerals come from the soil, while carbon

More information

Biology Reading Assignment: Chapter 9 in textbook

Biology Reading Assignment: Chapter 9 in textbook Biology 205 5.10.06 Reading Assignment: Chapter 9 in textbook HTTP://WUNMR.WUSTL.EDU/EDUDEV/LABTUTORIALS/CYTOCHROMES/CYTOCHROMES.HTML What does a cell need to do? propagate itself (and its genetic program)

More information

02/02/ Living things are organized. Analyze the functional inter-relationship of cell structures. Learning Outcome B1

02/02/ Living things are organized. Analyze the functional inter-relationship of cell structures. Learning Outcome B1 Analyze the functional inter-relationship of cell structures Learning Outcome B1 Describe the following cell structures and their functions: Cell membrane Cell wall Chloroplast Cytoskeleton Cytoplasm Golgi

More information

Roots, Shoots & Leaves

Roots, Shoots & Leaves Name Test Date Hour Plant Structure & Function #2 - Notebook Roots, Shoots & Leaves LEARNING TARGETS I can describe the functions of roots I can explain the nitrogen fixing process and why it is needed.

More information

Name: Class: _ Date: ID: A. AP Photosynthesis Test 2012

Name: Class: _ Date: ID: A. AP Photosynthesis Test 2012 Name: Class: _ Date: ID: A AP Photosynthesis Test 2012 Multiple Choice (3 polnts each) _ Directions: Each of the questions or incomplete statements below is followed by four suggested answers or completions.

More information

Mineral and Organic Components. Soil Organisms, Biology, and Nutrients. Homework III: The State Soil of Florida. Posted on website.

Mineral and Organic Components. Soil Organisms, Biology, and Nutrients. Homework III: The State Soil of Florida. Posted on website. Homework III: The State Soil of Florida Posted on website 5 bonus points Type all answers Soil Organisms, Biology, and Nutrients Mineral and Organic Components Functions of soils: recycler of raw materials

More information

Universiteit van Pretoria University of Pretoria. Mikrobiologie 251 Toets Maart 2012 Microbiology 251 Test March Examiners: Dr L Moleleki

Universiteit van Pretoria University of Pretoria. Mikrobiologie 251 Toets Maart 2012 Microbiology 251 Test March Examiners: Dr L Moleleki Universiteit van Pretoria University of Pretoria Mikrobiologie 251 Toets Maart 2012 Microbiology 251 Test March 2012 Tyd: 1 uur Time: 1 hour Eksaminatore: Dr L Moleleki Examiners: Dr L Moleleki Beantwoord

More information

NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4)

NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4) NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4) 10.3 - The Calvin cycle uses ATP and NADPH to convert CO 2 to sugar The Calvin cycle, like the citric acid cycle,

More information

Biology. Slide 1 of 36. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 36. End Show. Copyright Pearson Prentice Hall Biology 1 of 36 2 of 36 Formation of Earth Formation of Earth Hypotheses about Earth s early history are based on a relatively small amount of evidence. Gaps and uncertainties make it likely that scientific

More information

2 4 Chemical Reactions and Enzymes Chemical Reactions

2 4 Chemical Reactions and Enzymes Chemical Reactions Chemical Reactions A chemical reaction occurs when chemical bonds are broken and reformed. Rust forms very slowly, while rocket fuel combustion is explosive! The significance of this comparison is that

More information

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast Photosynthesis Lecture 7 Fall 2008 Photosynthesis Photosynthesis The process by which light energy from the sun is converted into chemical energy 1 Photosynthesis Inputs CO 2 Gas exchange occurs through

More information

PART 1 MULTIPLE CHOICE SECTION

PART 1 MULTIPLE CHOICE SECTION Name: Total: / 54 = % = TOPIC 3 TEST PART 1 MULTIPLE CHOICE SECTION 18 marks 1. Which of the following substances are organic? I. Lipids II. III. Water Carbon dioxide A. I only B. II and III only C. I

More information

BIOLOGY STANDARDS BASED RUBRIC

BIOLOGY STANDARDS BASED RUBRIC BIOLOGY STANDARDS BASED RUBRIC STUDENTS WILL UNDERSTAND THAT THE FUNDAMENTAL PROCESSES OF ALL LIVING THINGS DEPEND ON A VARIETY OF SPECIALIZED CELL STRUCTURES AND CHEMICAL PROCESSES. First Semester Benchmarks:

More information

Correlations to Next Generation Science Standards. Life Sciences Disciplinary Core Ideas. LS-1 From Molecules to Organisms: Structures and Processes

Correlations to Next Generation Science Standards. Life Sciences Disciplinary Core Ideas. LS-1 From Molecules to Organisms: Structures and Processes Correlations to Next Generation Science Standards Life Sciences Disciplinary Core Ideas LS-1 From Molecules to Organisms: Structures and Processes LS1.A Structure and Function Systems of specialized cells

More information

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another sparked by just the right combination of physical events & chemical processes Origin of Life 500 Paleozoic 1500 2000 2500 3000 3500 ARCHEAN Millions of years ago 1000 PROTEROZOIC Cenozoic Mesozoic 4000

More information

Performance Indicators: Students who demonstrate this understanding can:

Performance Indicators: Students who demonstrate this understanding can: OVERVIEW The academic standards and performance indicators establish the practices and core content for all Biology courses in South Carolina high schools. The core ideas within the standards are not meant

More information

Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms.

Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms. Subject Area - 3: Science and Technology and Engineering Education Standard Area - 3.1: Biological Sciences Organizing Category - 3.1.A: Organisms and Cells Course - 3.1.B.A: BIOLOGY Standard - 3.1.B.A1:

More information

OCR Biology Checklist

OCR Biology Checklist Topic 1. Cell level systems Video: Eukaryotic and prokaryotic cells Compare the structure of animal and plant cells. Label typical and atypical prokaryotic cells. Compare prokaryotic and eukaryotic cells.

More information

OCR Biology Checklist

OCR Biology Checklist Topic 1. Cell level systems Video: Eukaryotic and prokaryotic cells Compare the structure of animal and plant cells. Label typical and atypical prokaryotic cells. Compare prokaryotic and eukaryotic cells.

More information

Name # Class Date Regents Review: Cells & Cell Transport

Name # Class Date Regents Review: Cells & Cell Transport Name # Class Date Regents Review: Cells & Cell Transport 1. All of the following are true regarding cells except? A) All cells have genetic material B) All cells have cell walls C) All cells have plasma

More information

Use evidence of characteristics of life to differentiate between living and nonliving things.

Use evidence of characteristics of life to differentiate between living and nonliving things. Grade Big Idea Essential Questions Concepts Competencies Vocabulary 2002 Standards All living things have a common set characteristic needs and functions that separate them from nonliving things such as:

More information

West Windsor-Plainsboro Regional School District AP Biology Grades 11-12

West Windsor-Plainsboro Regional School District AP Biology Grades 11-12 West Windsor-Plainsboro Regional School District AP Biology Grades 11-12 Unit 1: Chemistry of Life Content Area: Science Course & Grade Level: AP Biology, 11 12 Summary and Rationale The structural levels

More information

Lecture 6 Environmental microbiology and Aqueous Geochemistry of Natural Waters

Lecture 6 Environmental microbiology and Aqueous Geochemistry of Natural Waters Lecture 6 Environmental microbiology and Aqueous Geochemistry of Natural Waters Please read these Manahan chapters: Ch 5 (aquatic microbial biochemistry) Ch 21 (environmental biochemistry) (Aquatic) Microbial

More information

Evaluating SYDlbiotic Potential of Rhizobia

Evaluating SYDlbiotic Potential of Rhizobia SECTION III Evaluating SYDlbiotic Potential of Rhizobia SIGNIFICANCE OF SYMBIOTIC NITROGEN FIXATION TO AGRICULTURE The value of legumes in improving and sustaining soil fertility was well known to agriculturalists,

More information

9- #60 5. Photosynthesis. Sixth edition. D. O. Hall. and. K. K. Rao. Published in association with the Institute of Biology CAMBRIDGE UNIVERSITY PRESS

9- #60 5. Photosynthesis. Sixth edition. D. O. Hall. and. K. K. Rao. Published in association with the Institute of Biology CAMBRIDGE UNIVERSITY PRESS 9- #60 5 Photosynthesis Sixth edition D. O. Hall and K. K. Rao Published in association with the Institute of Biology CAMBRIDGE UNIVERSITY PRESS Contents General preface to the series Preface to the sixth

More information

Soil Biology. The Sounds of Soil. Soils and Water, Spring Lecture 9, Soil Biology 1. Soil as a Transition Between Aquatic and Aerial System

Soil Biology. The Sounds of Soil. Soils and Water, Spring Lecture 9, Soil Biology 1. Soil as a Transition Between Aquatic and Aerial System Soil Biology Chapter 10 The Sounds of Soil Soil as a Transition Between Aquatic and Aerial System Lecture 9, Soil Biology 1 Bacteria in a Drying Environment Wet (open structure) Dry (dense) Holden P.A.,

More information

NAME ONE THING we have in common with plants. If

NAME ONE THING we have in common with plants. If Cellular Respiration NAME ONE THING we have in common with plants. If you said cellular respiration, you are right. That is one thing we have in common with plants, slugs, slime mold, and spiders. Living

More information

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Gene: A sequence of DNA that codes for a particular trait Gene pool: All

More information

Chapter 32 Plant Nutrition and Transport

Chapter 32 Plant Nutrition and Transport Chapter 32 Plant Nutrition and Transport PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture

More information

AP Plants II Practice test

AP Plants II Practice test AP Plants II Practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. The figure below shows the results of a study to determine the effect

More information

Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life s Activity

Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life s Activity 1 EVPP 110 Lecture Dr. Largen - Fall 2003 Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life s Activity 2 Levels of Organization of Life Levels of organization of

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1)

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) 1 Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) Focus Standards BIO1.LS1.2 Evaluate comparative models of various cell types with a focus on organic molecules

More information

BL1102 Essay. The Cells Behind The Cells

BL1102 Essay. The Cells Behind The Cells BL1102 Essay The Cells Behind The Cells Matriculation Number: 120019783 19 April 2013 1 The Cells Behind The Cells For the first 3,000 million years on the early planet, bacteria were largely dominant.

More information

The Origin of Cells (1.5) IB Diploma Biology

The Origin of Cells (1.5) IB Diploma Biology The Origin of Cells (1.5) IB Diploma Biology Cell theory states that: All living things are composed of cells (or cell products) The cell is the smallest unit of life Cells only arise from pre-existing

More information

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Overview of Cells Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Prokaryotic Cells Archaea Bacteria Come in many different shapes and sizes.5 µm 2 µm, up to 60 µm long Have large

More information