PHYTOCHROME AND SEED GERMINATION

Size: px
Start display at page:

Download "PHYTOCHROME AND SEED GERMINATION"

Transcription

1 New Phytol. (197) 71, PHYTOCHROME AND SEED GERMNATON BY M. HOLDSWORTH University of Otago, New Zealand {Received l^june 1971) SUMMARY Both tobacco 'Virginia Gold' and Plantago hirtella seed germinate on exposure to red light. During the first day or so after sowing, the response can be stopped by a following exposure to deep-red, indicating phj'tochrome action. However, the effects of successive exposures to red are additive through intervening exposures to deep-red. Moreover, after several days in the dark, both red and deep-red induce germination. NTRODUCTON The existence of phytochrome, proposed 5 years ago to account for the contrary photoperiodic effects of different hues of red light, was soon used to explain practically all lightgrowth effects (Borthwick, Hendricks and Parker, 195). The prediction has recently been fulfilled in the isolation of a pigment with the required photochemical characteristics, but in the meantime most light-dependant growth effects have proved too complex to be explained by simple phytochrome action. The only apparent exception is the promotion of seed germination, the light-dependant growth effect from which Borthwick originally gained the idea of a chameleon-like pigment. Borthwick argued from the spectral sensitivity of Grand Rapids lettuce seed (Flint and McAlister, 195) but the light sensitivity of that example is an artefact (Berrie, 1966) manifest only in a narrow and unnatural temperature range. Examples of seeds needing illumination at ordinary temperatures are, indeed, uncommon but tobacco (Gardner, 191) and Plantago hirtella appear genuine. MATERALS AND METHODS T obacco seed (cv. Virginia Gold) was supplied by the Tobacco Research nstitute, Motueka. Plantago hirtella is a South American plantain naturalized in New Zealand. T he stock used was derived from Wanganui Forest, Westland. Seed, in lots of 1, was sown on filter paper in petri dishes. The dishes were kept before and after illumination in double black-cloth bags and those in honey-tins painted black inside. Orange-red ('Red') light was taken from two W Philips' No. 17 fluorescent lamps; green from a single No. 15 screened with green Perspex; and blue from two No. 18 screened with blue. As these lamps flicker before striking, short exposures were measured With a mechanical shutter. Deep-red light was from a 5 W reflector bulb, through a dish of water, and then through red and royal-blue Perspex (the greener shades of blue Perspex arc opaque to deep-red). The dishes were exposed. m from the lamps. The tobacco fests were done at C, the plantain tests at 5. The need for light is no less at lower temperatures but, of course, experiments would take longer. At ^ C, tobacco germinates 15

2 6 M. HOLDSWORTH in 7 days in the light, and in 5 days after a saturating exposure to light given on the fourth day or later. For plantain the corresponding times are 4 and days. Germination is, however, rather slower following earlier or less illumination and in the tests, one day's grace was allowed before counting. RESULTS Tobacco n complete darkness, tobacco did not germinate at all, not even old seed years after harvest. Red, deep-red, blue and green light could all induce germination but, at Table i. Tobacco: percentage germination in response to a single exposure to red light {averages usually of two experiments, but some of only one and of ten for minutes at 4 hours) sowing to end of Duration of exposure (minutes) exposure i i i i 4 8 i6 hours o 1 4 hours o 61 8 hours hours o days days days days days 6 7 days 57 8 days 7 least immediately after sowing, red was much more active than the others: in the order green, blue, deep-red. After sowing, sensitivity to a brief illumination increased with time (Table i and ). With non-saturating exposures to red, the probits increased practically linearly for days, then more slowly to become stationary after the fifth day. Sensitivity to green and blue ran a parallel course, but to deep-red it seemed to increase more rapidly until by the fourth day it equalled the sensitivity to red. The effects of the Table. Tobacco: percentage germination in response to a single exposure to deepred light {averages of two experiments usually) Duration of exposure (seconds or minutes) sowing (days) is 5s 15 s s im m 4m 8m 16 m 144m 88m 8,S ^ '^! ' ^ 9 - * o i» two reds cannot, however, really be compared. At any time after sowing, a longer exposure to red, blue or green increased germination and, for red, the probits are hyperbolic to the dosage. To deep-red, any exposure of more than a few seconds seemed to cause the same proportion to germinate on any particular day. So if exposures of less than a minute were to be given on the first day or two after sowing, the seed would appear more sensitive to deep-red than to any other colour. Although deep-red, by itself, made tobacco seed germinate, it reduced germination

3 Phytochrome and germination when given after red (Tables and 4). During the first day, 1 seconds deep-red almost stopped response. With the passage of time after sowing, however, its abilit\' to counteract red declined, and response to exposures given after the third day could not be stopped however long the following exposure. rrespective of the duration of the exposure to red, maximum reduction of germination was attained, on any day, by about 1 seconds deepred. When deep-red was given before red on the first or second days, it neither increased nor decreased the effect of the red. On the third day and after, it appeared to add to the effect of red. Table. Tobacco: percentage germination in response to deep-red light, following an exposure to red which ought to have caused half to germinate {average of two experiments only except on first day) sovifing (days) 4 Red exposure min min 15 s 7 s S SO Duration 5 s of deep-red 1[second or minutes) s m 4 m During the first day, if saturating exposures to red were alternated with saturating exposures to deep-red, the effect of each appeared to be completely reversible by the other. For example, if 16 minutes of red was alternated with 8 seconds of deep-red, the germination was either complete or negligible, according to the final exposure. f, however, 8 seconds of deep-red was alternated with only i minute red, germination, although always small if the last exposure was deep-red, gradually increased if the last exposure was red and with many alternations virtually all the seed germinated. On the other hand, the effects of successive exposures to deep-red were not additive through alternative periods in red. f, say, on the first day 8 minutes red was alternated with seconds deepred, the final germination was never less than about 7%. Table 4. Tobacco: percentage germination in response to deepred light, following an exposure to red which ought to have caused all to germinate {single tests except on first andfourth days, which are averages of pairs) 8 n 7 S sowing 6 hours 8 hours day days days 4 days Red exposure h h min 16 min min s Duration S of deep-red (seconds or 5 s 15 s m minute Newly harvested seed, at least from plants outdoors, did not germinate at all in the dark. With keeping, however, the need for light declined and after a year's storage more ftari half were able to germinate without exposure. From greenhouse plants a few seed occasionally germinated in darkness even when fresh. n the case of fresh outdoor seed a few minutes exposure to red light later than about S hours after sowing would produce some germination, and, although the responses were

4 O8 M. HOLDSWORTH much less consistent than those of tobacco, the collective results of many experiments leave no doubt that germination increased both with the length of exposure and its time after sowing (Table 5). Response to blue or green light was always much less, an hour's exposure even as late as a week after sowing, causing only a small percentage to germinate. None germinated in response to deep-red, however long continued. Deep-red given before red had no apparent effect on germination. Given immediately following red, it reduced it often to zero during the first day after sowing (Table 6). Even so, the effect of the red had not been completely erased. For example, in one experi- Table 5. Plantain: new seed ripened outdoors; percentage germination in response to a single exposure to red light {averages of pairs from a single batch of seed the absolute values varied from one batch to another) sowing when exposed (days) 4 5 i 5 8 i Duration of exposure (minutes) ment, minutes red by itself caused 1% to germinate, but none germinated if the red was followed by minutes deep-red. A second exposure then to minutes red raised the percentage to 17, a further alternation to 5 and practically every seed could be made to germinate by continuing. Conversely constructed experiments showed that the effects of deep-red also, are carried over through intervening periods in red light. For example, 4 minutes red caused 98% germination and 15 seconds of deep-red reduced this only to 91, but a second alternation of 4 minutes red and 15 seconds deep-red brought the percentage down to 9. The addition of deep-red exposures was, however, never so consistent Table 6. Plantain: new seed ripened outdoors; percentage germination in response to deep-red light given after an exposure to red more than sufficient to make all germinate {single tests with a single batch of seed; the trends of parts of the table having been confirmed with other batches) sowing (days) 4 Exposure to red m 16 m 8 m 4 m S OO 9 OO OO Exposure to deep-red (seconds or minutes) 5 s 1 s 15 s s m 16 m as that of red for subsequent alternations usually did not lower the germination further, sometimes indeed it rose again. As mentioned earlier a small percentage of some batches of greenhouse-ripened plantain seed would germinate in darkness. The rest could, of course, be made to germinate by sufficient exposure to red. A following exposure to deep-red would reduce the germination again, but in no test could it be brought below the dark germination of the same batch. With both stored seed and greenhouse seed (even batches which would not germinate at all in darkness) short exposure to deep-red promoted germination if given alone- As towards red, the seed became more sensitive to deep-red with storage in the dark

5 Phytochrome and germination 19 after sowing. f, however, a very long exposure (more than 4 hours) to deep-red was begun as the seed was sown, none at all germinated in addition to that expected in darkness. Moreover, the long initial exposure also reduced germination in response to a later short exposure to the same colour. For example, minutes deep-red given 5 days after sowing caused 5% to germinate, but a preceding long exposure to deep-red reduced this to 11. DSCUSSON Morphogenetic effects of blue light have sometimes been quoted as evidence that phytochrome is not the sensor but as most organic pigments are blackish when concentrated they all, presumably, absorb all colours. Both tobacco and plantain seeds germinate in blue or green light, but both are much more sensitive to red. Both seeds can be prevented from responding to red if subsequently exposed to deep-red, so phytochrome is very probably the primary detector of illumination. All the same, the evidence is ambiguous: (i) the effects of red and deep-red may be complementary but only in certain circumstances; () the 'reversal' is more apparent than real though the seeds react only to the last sort of red they experience, all previous experiences of the other kind were not wholly eliminated. The first of these contingencies is familiar in the photoperiodism of short-day plants (e.g. Takimoto and Hamner, 1965) in which deep-red counteracts an immediately preceding red 'night-break', but long exposure to deep-red (and exposures given a long time after the red) themselves act as night-breaks. Tobacco seed germinates in response to deepred just as well as to red, if exposed a long time after sowing; plantain seed likewise if exposed a long time after harvesting. According to Duke and Wickliff (1969), growth of the mesocotyl of Zea is inhibited by both red and deep-red, even though deep-red prevents inhibition by previous red. There are some puzzling features of the positive response of tobacco seed to deep-red. in particular, it is curious that unlike red, green or blue, no amount of deep-red could, cause 1% germination immediately after sowing. On the contrary, during the first day, there seemed to be only about 5% of the seed that could show the positive response, however long an exposure was given. Yet for those 5%, very little (less than 1 seconds) sufficed. The sensitivity, in fact, did not really change as the days passed, it was the proportion of susceptible seed which increased. As mentioned, C was adopted as the test temperature for tobacco but the response to a short exposure (to red or deep-red) on each of the first or 4 days is considerably greater at 5 C. Undoubtedly the higher temperature hastens the sensitization. n plantain it appeared that high temperature in the greenhouse during ripening of the seed also hastened the sensitization (to deep-red) ^ that it occurred during ripening itself instead of during storage. f!k' second contingency, the summation of the effects of repeated exposures to red through intervening periods in deep-red has also been recorded before in Blaauw, olaauw-jansen and van Leeuwen (1968) investigation of the effects of light on the growth ot Oat mesocotyls. Most attempts to show the 'reversal' of red effects by deep-red, whether on growth, on germination, or on flowering, have deliberately used saturating dosages of th colours in order to demonstrate that reversal can be complete. Blaauw et al., nowcverj were concerned to measure quantitative effects of graded doses of red light and "'^'r Table i {he. cit. p. 91) shows quite clearly the addition of the effects of successive ^^ exposures through intervening periods in deep-red. f tobacco and Plantago hirtella

6 no M. HOLDSWORTH are at all typical, it appears very likely that seed photoblasty has some, if not all, of the features that make phytochromatic explanations of photoperiodism so tortuous. Biinning has repeatedly (e.g. i96) emphasized that in photoperiodism a plant reacts to light in the daytime oppositely from what it does at night. t is now known that it may also react conversely to red or deep-red light as the night itself wears on (e.g. Takimoto and Hamner, 1965). n seed germination too, responses to deep-red appear to reverse as the period in darkness is extended. So far, attempts to explain the time factors in photoperiodism in terms of phytochrome have been unconvincing. Similar difficulties obviously present themselves in considering the part played by phytochrome in germination. REFERENCES BERRE, A. M. M. (1966). The effect of temperature and light on the germination of lettuce seeds. Physiologia PL, 19, 49. BLAAUW, O. H., BLAAUW-JANSEN, G., LEEUWEN, W. J. VAN (1968). An irreversible red-light-induced growth response in Arena. Planta, 8, 87. BoRTHWicK, H. A., HENDRCKS, S. B., P.\RKER, M. W. (195). The reaction controlling floral initiation. Proc. natn. Acad. Sci. U.S.A., 8, 99. Bt'NNiNG, E. (i96). Circadian rhythms and the time measurement in photoperiodism. Cold Spring Harb. Symp. quant. BioL, 5, 49. DUKE, S. C, WCKLFF, J. L. (1969). Zea shoot development in response to red light interruption of the dark-growth period. PL PhysioL, Lancaster, 44, 17. FLNT, L. H., MCALSTER, E. E). (195). Wavelength of radiation in the visible spectrum inhibiting the germination of light sensitive lettuce seed. Smithson. misc. Collns, 94, i. GARD.MHR, W. A. (191). Effect of light on germination of light sensitive seeds. Bot. Gas., 71, 49. T.wiMOTo, A., HAMNER, K. C. (1965). Effect of far-red light and its interaction with red light in the photoperiodic response of Pharbitis nil. PL Physiol., Lancaster, 4, 859.

7

Effect of red, far-red radiations on germination of cotton seed

Effect of red, far-red radiations on germination of cotton seed Plant & Cell Physiol. 12: 411-415 (1971) Effect of red, far-red radiations on germination of cotton seed GURBAKSH SINGH and O. P. GARG Department of Botany, Haryana Agricultural University, Hissar, India

More information

GERMINATION OF THE LIGHT-SENSITIVE SEEDS OF OCIMUM AMERICANUM LINN.

GERMINATION OF THE LIGHT-SENSITIVE SEEDS OF OCIMUM AMERICANUM LINN. New Phytol. (1968) 67, 125-129. GERMINATION OF THE LIGHT-SENSITIVE SEEDS OF OCIMUM AMERICANUM LINN. BY C. K. VARSHNEY Department of Botany, University of Delhi {Received 30 June 1967) SUMIVT.'\RY A brief

More information

Not just the presence of light, but direction, intensity, wavelength as well.

Not just the presence of light, but direction, intensity, wavelength as well. Not just the presence of light, but direction, intensity, wavelength as well. Need this to measure the passage of days and seasons ED and BLUE light are the most important colors in regulating this in

More information

Studies on the Light Controlling Flower Initiation of Pharbitis Nil. VI. Effect of Natural Twilight. by Atsushi TAKIMOTO* and Katsuhiko IKEVA*

Studies on the Light Controlling Flower Initiation of Pharbitis Nil. VI. Effect of Natural Twilight. by Atsushi TAKIMOTO* and Katsuhiko IKEVA* Studies on the Light Controlling Flower Initiation of Pharbitis Nil. Received September 9, 1959 VI. Effect of Natural Twilight by Atsushi TAKIMOTO* and Katsuhiko IKEVA* Many investigators consider that

More information

15. PHOTOPERIODISM. 1. Short day plants

15. PHOTOPERIODISM. 1. Short day plants 15. PHOTOPERIODISM Photoperiodism is the phenomenon of physiological changes that occur in plants in response to relative length of day and night (i.e. photoperiod). The response of the plants to the photoperiod,

More information

A. Stimulus Response:

A. Stimulus Response: Plant Hormones A. Stimulus Response: A house plant on a windowsill grows light. If you rotate the plant, it reorients its growth until its leaves face the window again. The growth of a shoot towards light

More information

WAVE LENGTHS OF RADIATION IN THE

WAVE LENGTHS OF RADIATION IN THE . CITY SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 96 NUMBER 2 WAVE LENGTHS OF RADIATION IN THE VISIBLE SPECTRUM PROMOTING THE GERMINATION OF LIGHT-SENSITIVE LETTUCE SEED (With One Plate) BY LEWIS H.

More information

o f the Dark Phase on Diapause Determination in Papilio xuthus L.

o f the Dark Phase on Diapause Determination in Papilio xuthus L. No. 6] Proc. Japan Acad., 46 (1970) 541 127. Effect o f Non 24 Hour Photo period and Light Interruption o f the Dark Phase on Diapause Determination in Papilio xuthus L. By Toshitaka HIDAKA and Yoshio

More information

Light Quality. Light Quality. Light Quality. Light Quality. Roberto Lopez, Purdue Univ. Review of Light Concepts

Light Quality. Light Quality. Light Quality. Light Quality. Roberto Lopez, Purdue Univ. Review of Light Concepts Effects of & Duration Review of Light Concepts Effects of and Duration on Greenhouse Crops Roberto Lopez Light is a form of energy referred to as electromagnetic radiation. The amount of energy of each

More information

7/31/2014 WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE

7/31/2014 WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE Electromagnetic radiation Energy emitted by a light source Measured in watts Visible

More information

AP Biology Plant Control and Coordination

AP Biology Plant Control and Coordination AP Biology Plant Control and Coordination 1. What is the effect of the plant hormone ethylene on fruit ripening? 2. How does fruit change as it ripens? 3. What is the mechanism behind ripening? 4. Why

More information

INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING

INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING R. D. Heins and H. F. Wilkins Department of Horticultural Science University of

More information

Chapter 39. Plant Reactions. Plant Hormones 2/25/2013. Plants Response. What mechanisms causes this response? Signal Transduction Pathway model

Chapter 39. Plant Reactions. Plant Hormones 2/25/2013. Plants Response. What mechanisms causes this response? Signal Transduction Pathway model Chapter 39 Plants Response Plant Reactions Stimuli & a Stationary life Animals respond to stimuli by changing behavior Move toward positive stimuli Move away from negative stimuli Plants respond to stimuli

More information

Light and Photosynthesis. Supplemental notes Lab 4 Horticultural Therapy

Light and Photosynthesis. Supplemental notes Lab 4 Horticultural Therapy Light and Photosynthesis Supplemental notes Lab 4 Horticultural Therapy Light The Electromagnetic Spectrum is a continuum of all electromagnetic waves arranged according to frequency and wavelength, the

More information

The new physiology of vision-chapter The colours of interference. SIR C V RAMAN Received October 14, 1965

The new physiology of vision-chapter The colours of interference. SIR C V RAMAN Received October 14, 1965 Proc. Indian Acad. Sci. A62 243-248 (1965) The new physiology of vision-chapter The colours of interference XXVII. SIR C V RAMAN Received October 14, 1965 The characteristic features and properties of

More information

Multiple inductive pathways control the timing of flowering. Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway

Multiple inductive pathways control the timing of flowering. Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway Multiple inductive pathways control the timing of flowering Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway Induction of flowering Multiple cues Photoperiodism Duration of the Light

More information

Photosynthesis Revision 1

Photosynthesis Revision 1 Photosynthesis Revision 73 minutes 73 marks Page of 35 Q. This question is about photosynthesis. (a) Plants make glucose during photosynthesis. Some of the glucose is changed into insoluble starch. What

More information

Let light motivate your flowers

Let light motivate your flowers Let light motivate your flowers LightDec Horticulture Light recipes from LEDIG are the best in this market. Their recommendations increased my profits in year one by 23% LED Solutions from LEDIG LED Industrial

More information

Chapter 39. Plant Response. AP Biology

Chapter 39. Plant Response. AP Biology Chapter 39. Plant Response 1 Plant Reactions Stimuli & a Stationary Life u animals respond to stimuli by changing behavior move toward positive stimuli move away from negative stimuli u plants respond

More information

SRGC Bulb Log Diary Pictures and text Ian Young. BULB LOG st April 2015

SRGC Bulb Log Diary Pictures and text Ian Young. BULB LOG st April 2015 SRGC ----- Bulb Log Diary ----- Pictures and text BULB LOG 13...1 st April 2015 Regular readers will know that I do not differentiate between my art and my gardening to me they are one and the same - gardening

More information

CHANGES WITH AGE IN THE PHOTOSYNTHETIC AND RESPIRATORY COMPONENTS OF THE NET ASSIMILATION RATES OF SUGAR BEET AND WHEAT

CHANGES WITH AGE IN THE PHOTOSYNTHETIC AND RESPIRATORY COMPONENTS OF THE NET ASSIMILATION RATES OF SUGAR BEET AND WHEAT CHANGES WITH AGE IN THE PHOTOSYNTHETIC AND RESPIRATORY COMPONENTS OF THE NET ASSIMILATION RATES OF SUGAR BEET AND WHEAT BY D. J. WATSON, J. H. WILSON*, MARGARET A. FORD AND S. A. W. FRENCH Rothamsted Experimental

More information

Snapdragon Lighting. Harrison Flint. Cornell University. ing mid-winter. Several good approaches to this problem

Snapdragon Lighting. Harrison Flint. Cornell University. ing mid-winter. Several good approaches to this problem Snapdragon Lighting Harrison Flint Department of Floriculture Cornell University One of the greatest problems in the commercial pro duction of winter snapdragons has been the expense brought about by extremely

More information

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase.

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase. Assessment Chapter Test B Plant Responses In the space provided, write the letter of the description that best matches the term or phrase. 1. thigmonasty 2. auxin 3. ethylene 4. phytochrome 5. abscisic

More information

16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING.

16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING. 16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING. Photoperiodic Induction The influence of the length of day and night on the initiation of flowering is called photoperiodic induction or photo induction.

More information

Class XI Chapter 15 Plant Growth and Development Biology

Class XI Chapter 15 Plant Growth and Development Biology Question 1: Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate. (a) Growth It is an irreversible and permanent process, accomplished

More information

Class XI Chapter 15 Plant Growth and Development Biology

Class XI Chapter 15 Plant Growth and Development Biology Question 1: Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate. (a) Growth It is an irreversible and permanent process, accomplished

More information

INFLUENCE OF LIGHT UPON PLANTS

INFLUENCE OF LIGHT UPON PLANTS AUGUST 1949 43 INFLUENCE OF LIGHT UPON PLANTS by R. van der VEEN. 581.1.035. Plants need light! By and large this is undoubtedly truc, but a closer investigation shows that this cannot be accepted without

More information

Breeding and Genetics

Breeding and Genetics Breeding and Genetics I FLOWERING OF SUGARCANE WITH REFERENCE TO INDUCTION AND INHIBITION E. D. Paliatseas Louisiana Agricultural Experiment Station Baton Rouge, Louisiana ABSTRACT The minimum,time required

More information

Regulatory Systems in Plants (Ch 39)

Regulatory Systems in Plants (Ch 39) Regulatory Systems in Plants (Ch 39) Plants show complex responses to environmental stimuli Problem: no nervous system (detection) & no muscular system (response) Various mechanisms for detecting stimuli

More information

Understanding Light, Temperature, Air, and Water Effects on Plant Growth

Understanding Light, Temperature, Air, and Water Effects on Plant Growth Lesson A2 7 Understanding Light, Temperature, Air, and Water Effects on Plant Growth Unit A. Horticultural Science Problem Area 2. Plant Anatomy and Physiology Lesson 7. Understanding Light, Temperature,

More information

Unit C: Plant Physiology. Lesson 2: Understanding Light, Temperature, Air, and Water Effects on Plant Growth

Unit C: Plant Physiology. Lesson 2: Understanding Light, Temperature, Air, and Water Effects on Plant Growth Unit C: Plant Physiology Lesson 2: Understanding Light, Temperature, Air, and Water Effects on Plant Growth 1 Terms Day neutral plant (DNP) Foot-candles Hardiness Long day plant (LDP) Photoperiod Short

More information

INEA HYBRIDISATION PROTOCOLS 2011

INEA HYBRIDISATION PROTOCOLS 2011 INEA HYBRIDISATION PROTOCOLS 2011 Anton Ivancic Hybridisation of taro (Colocasia esculenta) Floral characteristics of taro Colocasia esculenta is an allogamous, protogynous species, for which the main

More information

CONTROL SYSTEMS IN PLANTS

CONTROL SYSTEMS IN PLANTS AP BIOLOGY PLANTS FORM & FUNCTION ACTIVITY #5 NAME DATE HOUR CONTROL SYSTEMS IN PLANTS HORMONES MECHANISM FOR HORMONE ACTION Plant Form and Function Activity #5 page 1 CONTROL OF CELL ELONGATION Plant

More information

(not by naphthylacetic acid and

(not by naphthylacetic acid and Acta Bot. Neerl. 22(3), June 1973, p. 221-227. The auxin production of the physiological tip of the Avena coleoptile and the repression of tip regeneration by indoleacetic acid (not by naphthylacetic acid

More information

FOREST TREE PHYSIOLOGY RESEARCH AT THE OHIO AGRICULTURAL EXPERIMENT STATION

FOREST TREE PHYSIOLOGY RESEARCH AT THE OHIO AGRICULTURAL EXPERIMENT STATION FOREST TREE PHYSIOLOGY RESEARCH AT THE OHIO AGRICULTURAL EXPERIMENT STATION JOHN HACSKAYLO AND WILLIAM E. GOSLIN Department of Forestry, Ohio Agricultural Experiment Station, Wooster The research in tree

More information

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only.

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. ATOMS AND NUCLEAR RADIATION PART II Q1. The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. Two different types of absorber are

More information

STUDIES IN THE PHYSIOLOGY OF LICHENS

STUDIES IN THE PHYSIOLOGY OF LICHENS STUDIES IN THE PHYSIOLOGY OF LICHENS V. TRANSLOCATION FROM THE ALGAL LAYER TO THE MEDULLA IN PELTIGERA POLYDACTYLA BY D. C. SMITH AND E. A. DREW Department of Agriculture, University of Oxford {Received

More information

Unit C: Usage of Graphics in Agricultural Economics. Lesson 3: Understanding the Relationship of Data, Graphics, and Statistics

Unit C: Usage of Graphics in Agricultural Economics. Lesson 3: Understanding the Relationship of Data, Graphics, and Statistics Unit C: Usage of Graphics in Agricultural Economics Lesson 3: Understanding the Relationship of Data, Graphics, and Statistics 1 Terms Correlation Erratic Gradual Interpretation Mean Median Mode Negative

More information

QUANTUM PHENOMENA IN THE BIOLOGICAL ACTION OF X-RAYS E. U. CONDON AND H. M. TERRILL

QUANTUM PHENOMENA IN THE BIOLOGICAL ACTION OF X-RAYS E. U. CONDON AND H. M. TERRILL QUANTUM PHENOMENA IN THE BIOLOGICAL ACTION OF X-RAYS E. U. CONDON AND H. M. TERRILL (From Department of Physics, Columbia University, N. Y., and Institute of Cancer Research, Columbia University, N. Y.,

More information

Plant. Responses and Adaptations. Plant Hormones. Plant Hormones. Auxins. Auxins. Hormones tell plants:

Plant. Responses and Adaptations. Plant Hormones. Plant Hormones. Auxins. Auxins. Hormones tell plants: Plant Responses and Adaptations Plant Hormones Hormone - a substance that is produced in 1 part of an organism & affects another part of the same individual (a chemical messenger) Plant hormones are chemical

More information

A MODIFIED HALDANE GAS ANALYZER FOR ANALYSIS OF MIXTURES WITH ONE HUNDRED PER CENT ABSORBABLE GAS

A MODIFIED HALDANE GAS ANALYZER FOR ANALYSIS OF MIXTURES WITH ONE HUNDRED PER CENT ABSORBABLE GAS A MODIFIED HALDANE GAS ANALYZER FOR ANALYSIS OF MIXTURES WITH ONE HUNDRED PER CENT ABSORBABLE GAS BY H. C. BAZETT (From the Department of Physiology, University of Pennsylvania, Philadelphia, and the Department

More information

PHOTOPERIOD CONTROL OF CONTAINER SEEDLINGS. James T. Arnott

PHOTOPERIOD CONTROL OF CONTAINER SEEDLINGS. James T. Arnott PHOTOPERIOD CONTROL OF CONTAINER SEEDLINGS James T. Arnott ABSTRACT: Research at the Pacific Forest Research Centre, Victoria. on the use of photoperiod lighting to grow seedlings of white spruce, Engelmann

More information

Ch 25 - Plant Hormones and Plant Growth

Ch 25 - Plant Hormones and Plant Growth Ch 25 - Plant Hormones and Plant Growth I. Patterns of plant growth A. Plant continue to grow, even in old age. i.e. new leaves, needles, new wood, new cones, new flowers, etc. B. Meristem continues to

More information

Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering

Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering by Valverde et. Al Published in Science 2004 Presented by Boyana Grigorova CBMG 688R Feb. 12, 2007 Circadian Rhythms: The Clock Within

More information

Chemistry with Light Using Photons as Reagents E2-1

Chemistry with Light Using Photons as Reagents E2-1 Experiment 2 Chemistry with Light Using Photons as Reagents E2-1 E2-2 The Task To establish the exposure times required to make contact prints using a photochemical system. Skills By the end of the experiment

More information

Chapter 25 Plant Processes. Biology II

Chapter 25 Plant Processes. Biology II Chapter 25 Plant Processes Biology II 25.1 Nutrients and Transport Plants grow by adding new cells through cell division Must have steady supply of raw materials to build new cells Nutrients (most) Plants

More information

Seeing without eyes-how plants learn from light

Seeing without eyes-how plants learn from light Seeing without eyes-how plants learn from light by STEPHEN DAY 1. INTRODUCTION Plants detect the intensity, direction, colour, and duration of light and use this information to regulate their growth and

More information

Studies on the Coloration of Carnation Flowers. III. The Effect of Light Quality on the Anthocyanin Formation in Detached Petals

Studies on the Coloration of Carnation Flowers. III. The Effect of Light Quality on the Anthocyanin Formation in Detached Petals J. Japan. Soc. Hort. Sci. 43(4) : 443-448. 1975. Studies on the Coloration of Carnation Flowers III. The Effect of Light Quality on the Anthocyanin Formation in Detached Petals Susumu MAEKAWA Faculty of

More information

DISPERSION VERY SHORT ANSWER QUESTIONS. Two identical prisms made of the same material placed with their based on opposite sides (of the

DISPERSION VERY SHORT ANSWER QUESTIONS. Two identical prisms made of the same material placed with their based on opposite sides (of the DISPERSION VERY SHORT ANSWER QUESTIONS Q-1. What will be the spectrum of sun during a total solar eclipse? Q-2. Why the secondary rainbow is always fainter than the primary rainbow? Q-3. Two identical

More information

Photosynthesis Light for Horticulture

Photosynthesis Light for Horticulture GE Lighting Photosynthesis Light for Horticulture GE imagination at work www.gelighting.com Horticulture Lamps Lighting for growth Lamps and lighting for horticulture Properly balanced Improves Specially

More information

Ch Plant Hormones

Ch Plant Hormones Ch. 39 Plant Hormones I. Plant Hormones Chemical signals that coordinate the parts of an organism. Only minute amounts are needed to get the desired response. Control plant growth and development by affecting

More information

Revision Guide. Chapter 7 Quantum Behaviour

Revision Guide. Chapter 7 Quantum Behaviour Revision Guide Chapter 7 Quantum Behaviour Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS...

More information

I. Tick ( ) the most appropriate answer. 1. Physical or chemical changes are a result of absorption of :

I. Tick ( ) the most appropriate answer. 1. Physical or chemical changes are a result of absorption of : 4 CHANGES AROUND US I. Tick ( ) the most appropriate answer. 1. Physical or chemical changes are a result of absorption of : (a) heat energy only (b) light energy only (c) sound energy only (d) some kind

More information

INHIBITION OF PHOTOSYNTHESIS IN CERTAIN ALGAE BY EXTREME RED LIGHT

INHIBITION OF PHOTOSYNTHESIS IN CERTAIN ALGAE BY EXTREME RED LIGHT INHIBITION OF PHOTOSYNTHESIS IN CERTAIN ALGAE BY EXTREME RED LIGHT GOVINDJEE, EUGENE RABINOWITCH, and JAN B. THOMAS From the Photosynthesis Research Laboratory, Department of Botany, University of Illinois,

More information

Grower Summary PC 296. Protected Ornamentals: Assessing the suitability of energy saving bulbs for day extension and night break lighting.

Grower Summary PC 296. Protected Ornamentals: Assessing the suitability of energy saving bulbs for day extension and night break lighting. Grower Summary PC 296 Protected Ornamentals: Assessing the suitability of energy saving bulbs for day extension and night break lighting Final 2012 Disclaimer AHDB, operating through its HDC division seeks

More information

Speed of Light in Air

Speed of Light in Air Speed of Light in Air Electromagnetic waves represent energy in the form of oscillating electric and magnetic fields which propagate through vacuum with a speed c = 2.9979246x10 8 m/s. Electromagnetic

More information

PLANT GROWTH AND DEVELOPMENT

PLANT GROWTH AND DEVELOPMENT 84 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 15 PLANT GROWTH AND DEVELOPMENT MULTIPLE CHOICE QUESTIONS 1. Ethylene is used for a. Retarding ripening of tomatoes b. Hastening of ripening of fruits c. Slowing down

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603)

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) NCEA Level 3 Biology (91603) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) Assessment Criteria

More information

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface 1. Base your answer to the following question on the diagram below which shows two identical houses, A and B, in a city in North Carolina. One house was built on the east side of a factory, and the other

More information

EFFECT OF UGHT AND TEMPERANRE APPLIED T0 ONEON SULBS 1N STORAGE 0N THEE SUBSEQUENT VEGETATEVE AND REPRODUCTWE'DEVELOPMENT

EFFECT OF UGHT AND TEMPERANRE APPLIED T0 ONEON SULBS 1N STORAGE 0N THEE SUBSEQUENT VEGETATEVE AND REPRODUCTWE'DEVELOPMENT EFFECT OF UGHT AND TEMPERANRE APPLED T0 ONEON SULBS 1N STORAGE 0N THEE SUBSEQUENT VEGETATEVE AND REPRODUCTWE'DEVELOPMENT finesis for the Degree of M. 5. meme: STATE UNVERSTY. PHELDON BRENT 999:1.qu 1974

More information

Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida

Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida Meriam G. Karlsson Associate Professor of Horticulture Agricultural and Forestry Experiment Station

More information

OB50 Investigate the growth response of plants to gravity (geotropism) and light (phototropism)

OB50 Investigate the growth response of plants to gravity (geotropism) and light (phototropism) Biology: 12. Photosynthesis and Plant Responses Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OB48 Describe, using a word equation,

More information

Response Of Blueberry To Day Length During Propagation

Response Of Blueberry To Day Length During Propagation Response Of Blueberry To Day Length During Propagation Internal report for Young Plant Research Center Not for publication or reproduction in part or full without permission of the authors. Paul Fisher

More information

Plant Growth and Development

Plant Growth and Development Plant Growth and Development Concept 26.1 Plants Develop in Response to the Environment Factors involved in regulating plant growth and development: 1. Environmental cues (e.g., day length) 2. Receptors

More information

arxiv: v1 [physics.ins-det] 24 Jan 2010

arxiv: v1 [physics.ins-det] 24 Jan 2010 A Study of the Fluorescence Response of Tetraphenyl-butadiene R. Jerry arxiv:1001.4214v1 [physics.ins-det] 24 Jan 2010 Abstract Physics Dept., Howard University, Washington, DC 20059 L. Winslow, L. Bugel

More information

The luminescence of diamond-i

The luminescence of diamond-i Curr. Sci. 19 357-363 (1950) The luminescence of diamond-i SIR C V RAMAN 1. Introduction' No less than seventy-five distinct papers which concerned themselves with the structure and properties of diamond

More information

Plant Growth as a Function of LED Lights

Plant Growth as a Function of LED Lights Plant Growth as a Function of LED Lights Authors' Names Redacted Abstract: In most lab settings the Brassica Rapa plant can be efficiently grown under a 32-watt fluorescent light bulb. In this experiment

More information

PfIP exceeds 0.4 require another addition concerned with the photochemical

PfIP exceeds 0.4 require another addition concerned with the photochemical THE HIGH-ENERGY LIGHT ACTION CONTROLLING PLANT RESPONSES AND DEVELOPMENT H. A. BORTHWICK, S. B. HENDRICKS, M. J. SCHNEIDER,* R. B. TAYLORSON, AND V. K. TOOLE AGRICULTURAL RESEARCH SERVICE, U. S. DEPARTMENT

More information

1 29 g, 18% Potato chips 32 g, 23% 2 30 g, 18% Sugar cookies 35 g, 30% 3 28 g, 19% Mouse food 27 g, 18%

1 29 g, 18% Potato chips 32 g, 23% 2 30 g, 18% Sugar cookies 35 g, 30% 3 28 g, 19% Mouse food 27 g, 18% 1. When testing the benefits of a new fertilizer on the growth of tomato plants, the control group should include which of the following? A Tomato plants grown in soil with no fertilizer B Tomato plants

More information

LIGHT PENETRATION INTO FRESH WATER.

LIGHT PENETRATION INTO FRESH WATER. LIGHT PENETRATION INTO FRESH WATER. III. SEASONAL VARIATIONS IN THE LIGHT CONDITIONS IN WINDERMERE IN RELATION TO VEGETATION. BY W. H. PEARS ALL AND PHILIP ULLYOTT. {Received 29th May, 1933.) (With Three

More information

Deterioration of Crop Varieties Causes and Maintenance

Deterioration of Crop Varieties Causes and Maintenance Deterioration of Crop Varieties Causes and Maintenance Deterioration of Genetic Purity The genetic purity of a variety or trueness to its type deteriorates due to several factors during the production

More information

they give no information about the rate at which repolarization restores the

they give no information about the rate at which repolarization restores the 497 J. Physiol. (1952) ii6, 497-506 THE DUAL EFFECT OF MEMBRANE POTENTIAL ON SODIUM CONDUCTANCE IN THE GIANT AXON OF LOLIGO BY A. L. HODGKIN AND A. F. HUXLEY From the Laboratory of the Marine Biological

More information

PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999

PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999 PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999 1) Which of the following is the naturally occurring auxin in plants? a) indolebutyric acid b) naphthaleneacetic acid c) indoleacetic acid d) zeatin e) kinetin

More information

FACTORS CONTROLLING VARIATIONS IN THE RATE OF TRANSPIRATION. HISTORICAL.

FACTORS CONTROLLING VARIATIONS IN THE RATE OF TRANSPIRATION. HISTORICAL. FACTORS CONTROLLING VARIATIONS IN THE RATE OF TRANSPIRATION. J. D. SAYRE. While investigating the relation of hairy leaf coverings to the resistance of leaves to water loss,* a number of experiments were

More information

A NOTE ON THE MEASUREMENT OF STOMATAL APERTURE

A NOTE ON THE MEASUREMENT OF STOMATAL APERTURE New Phytol. (1969) 68, 1047-1049. A NOTE ON THE MEASUREMENT OF STOMATAL APERTURE BY Y. LESHEM* AND R. THAINE The Grassland Research Institute, Hurley, Maidenhead, Berkshire {Received 18 March 1969) SUMMARY

More information

Importance. The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use.

Importance. The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use. PLANT PROCESSES Photosynthesis Importance The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use. Photo light Synthesis to put together 3 Important

More information

Megaman Horticulture Lighting

Megaman Horticulture Lighting Megaman Horticulture Lighting Horticultural lighting is the LED industry s most explosive new market, revolutionizing the future of farming with technologies and innovations enabling year-round sustainable

More information

AS Plant Responses

AS Plant Responses AS 91603 Demonstrate understanding of the responses of plants and animals to their external environment (2017, 1) Plant Responses Manuka seeds Manuka seeds germinating Manuka seedlings When the mānuka

More information

Chapter 31 Active Reading Guide Plant Responses to Internal and External Signals

Chapter 31 Active Reading Guide Plant Responses to Internal and External Signals Name: AP Biology Mr. Croft Chapter 31 Active Reading Guide Plant Responses to Internal and External Signals This concept brings together the general ideas on cell communication from Chapter 5.6 with specific

More information

Grower Summary PC 296. Protected ornamentals: assessing the suitability of energy saving bulbs for day extension and night break lighting.

Grower Summary PC 296. Protected ornamentals: assessing the suitability of energy saving bulbs for day extension and night break lighting. Grower Summary PC 296 Protected ornamentals: assessing the suitability of energy saving bulbs for day extension and night break lighting Annual 2010 Disclaimer AHDB, operating through its HDC division

More information

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE 1 CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE Photomorphogenesis and Light Signaling Photoregulation 1. Light Quantity 2. Light Quality 3. Light Duration 4. Light

More information

SPECTROSCOPIC STUDY OF LUMINESCENCE PATTERNS IN DIAMOND BY ANNA MANI. Received August 21, 1944 (Communicated by Sir C. V. Raman, Kt., F.R.S., N.L.

SPECTROSCOPIC STUDY OF LUMINESCENCE PATTERNS IN DIAMOND BY ANNA MANI. Received August 21, 1944 (Communicated by Sir C. V. Raman, Kt., F.R.S., N.L. SPECTROSCOPIC STUDY OF LUMINESCENCE PATTERNS IN DIAMOND BY ANNA MANI (From the Department of Physics, Indian Institute of Science, Bangalore) Received August 21, 1944 (Communicated by Sir C. V. Raman,

More information

Name: Photosynthesis. Class: Date: 76 minutes. Time: 76 marks. Marks: level 1, 2 and 3. Increasing demand. Comments:

Name: Photosynthesis. Class: Date: 76 minutes. Time: 76 marks. Marks: level 1, 2 and 3. Increasing demand. Comments: Photosynthesis Name: Class: Date: Time: 76 minutes Marks: 76 marks Comments: level, 2 and 3. Increasing demand Q. Complete the word equation for photosynthesis. carbon dioxide + water energy glucose +

More information

AN ATTEMPT TO IMPROVE THROUGH SELECTION THE STYLE LENGTH AND FERTILITY OF OENOTHERA BREVISTYLIS'

AN ATTEMPT TO IMPROVE THROUGH SELECTION THE STYLE LENGTH AND FERTILITY OF OENOTHERA BREVISTYLIS' AN ATTEMPT TO IMPROVE THROUGH SELECTION THE STYLE LENGTH AND FERTILITY OF OENOTHERA BREVISTYLIS' BRADLEY MOORE DAVIS University of Michigan, Ann Arbor, Michigan Received January 2, 22 In an earlier paper

More information

Effect of high temperature exposure time during ower bud formation on the occurrence of double pistils in `Satohnishiki' sweet cherry

Effect of high temperature exposure time during ower bud formation on the occurrence of double pistils in `Satohnishiki' sweet cherry Scientia Horticulturae 87 (2001) 77±84 Effect of high temperature exposure time during ower bud formation on the occurrence of double pistils in `Satohnishiki' sweet cherry Kenji Beppu *, Takayuki Ikeda,

More information

EFFECTS OF SEED SIZE AND EMERGENCE TIME ON SUBSEQUENT GROWTH OF PERENNIAL RYEGRASS

EFFECTS OF SEED SIZE AND EMERGENCE TIME ON SUBSEQUENT GROWTH OF PERENNIAL RYEGRASS Phytol (980) 84, 33-38 EFFECTS OF SEED SIZE AND EMERGENCE TIME ON SUBSEQUENT GROWTH OF PERENNIAL RYEGRASS BY ROBERT E. L. NAYLOR School of Agriculture, The University, Aberdeen {Accepted 2 January 979)

More information

CONTROLLING CHRYSANTHEMUM FLOWERING BY ALTERING DAYLENGTH

CONTROLLING CHRYSANTHEMUM FLOWERING BY ALTERING DAYLENGTH CONTROLLING CHRYSANTHEMUM FLOWERING BY ALTERING DAYLENGTH H. KAMEMOTO AND H. Y. NAKASONE Although chrysanthemums are popular in Hawaii, their production has never reached major proportions. This is primarily

More information

? Lighting is in our culture Lighting is in our culture LED USE WHY

? Lighting is in our culture Lighting is in our culture LED USE WHY WHY USE LED? Lighting is in is our in culture our culture THE FUNDAMENTAL REASONING BEHIND THE USE OF GROW LIGHTS - COMMUNITY CONCERNS NOURISHING OUR PLANET AND ITS PEOPLE In the last 50 years, our world

More information

Minnesota Commercial Flower Growers Association Bulletin

Minnesota Commercial Flower Growers Association Bulletin Minnesota Commercial Flower Growers Association Bulletin Serving the Floriculture Industry in the Upper Midwest i IN THIS ISSUE 1 Light Quality: A Brief OvervieM January, 1993 Volume 42, Number 1 LIGHT

More information

4 Bioenergetics higher (import)

4 Bioenergetics higher (import) 4 Bioenergetics higher (import) Name: Class: Date: Time: 56 minutes Marks: 56 marks Comments: Page of 2 Plants are grown in glasshouses to protect them from the weather or extend the growing season. Plants

More information

GE Consumer & Industrial Lighting. Lighting for growth. Lamps and lighting for horticulture

GE Consumer & Industrial Lighting. Lighting for growth. Lamps and lighting for horticulture GE Consumer & Industrial Lighting Lighting for growth Lamps and lighting for horticulture Extending daylight Growth and development of plants and vegetables is strongly influenced by the quality and amount

More information

What Is Air Temperature?

What Is Air Temperature? 2.2 Read What Is Air Temperature? In Learning Set 1, you used a thermometer to measure air temperature. But what exactly was the thermometer measuring? What is different about cold air and warm air that

More information

A species of plants. In maize 20 genes for male sterility are listed by

A species of plants. In maize 20 genes for male sterility are listed by THE INTERRELATION OF PLASMAGENES AND CHROMO- GENES IN POLLEN PRODUCTION IN MAIZE DONALD F. JONES Connecticut Agricultural Experiment Station, New Haven, Connecticut Received January 24, 195 IV INHERITED

More information

Spectral reflectance: When the solar radiation is incident upon the earth s surface, it is either

Spectral reflectance: When the solar radiation is incident upon the earth s surface, it is either Spectral reflectance: When the solar radiation is incident upon the earth s surface, it is either reflected by the surface, transmitted into the surface or absorbed and emitted by the surface. Remote sensing

More information

A PERSISTENT DIURNAL RHYTHM IN CHAOBORUS LARVAE. II. ECO LOGICAL SIGNIFICANCE

A PERSISTENT DIURNAL RHYTHM IN CHAOBORUS LARVAE. II. ECO LOGICAL SIGNIFICANCE A PERSISTENT DIURNAL RHYTHM IN CHAOBORUS LARVAE. II. ECO LOGICAL SIGNIFICANCE Edward J. LaRow2 Department of Zoology, Rutgers University, New Brunswick, NJ. 08903 ABSTRACT- When Chaoborus larvae (Diptcra:Culicidae)

More information

SEED DORMANCY. Seed dormancy definitions. Seed dormancy. Seed dormancy 10/14/2013

SEED DORMANCY. Seed dormancy definitions. Seed dormancy. Seed dormancy 10/14/2013 Seed dormancy definitions SEED DORMANCY Seed dormancy is a survival mechanism by which seeds can delay germination until the right environmental conditions for seedling growth and development. Seed dormancy

More information

THE EFFECT OF ABSCISIC ACID ON STOMATAL BEHAVIOUR IN FLACCA, A V\^ILTY MUTANT OF TOMATO, IN DARKNESS

THE EFFECT OF ABSCISIC ACID ON STOMATAL BEHAVIOUR IN FLACCA, A V\^ILTY MUTANT OF TOMATO, IN DARKNESS New Phytol (1972) 71, 81-84. THE EFFECT OF ABSCISIC ACID ON STOMATAL BEHAVIOUR IN FLACCA, A V\^ILTY MUTANT OF TOMATO, IN DARKNESS BY M. T A L AND D O R O T I M B E R Division of Life Sciences, Negev Institute

More information

Plant Responses and Adaptations Video

Plant Responses and Adaptations Video Plant Responses and Adaptations Video Hormone -a substance that is produced in one part of an organism & affects another part of the same individual Plant hormones are chemical substances Control a plant

More information

is the important factor in influencingthe chlorophyll leaves are so yellow that hardly any photosynthesis were studied.

is the important factor in influencingthe chlorophyll leaves are so yellow that hardly any photosynthesis were studied. dry matter production, chlorophyll concentration and * photosynthesis different The effect of low of maize temperature ages plants on of Th. Alberda Institute for Biological and Chemical Research of Field

More information

Name Date Class _. Please turn to the section titled The Nature of Light.

Name Date Class _. Please turn to the section titled The Nature of Light. Please turn to the section titled The Nature of Light. In this section, you will learn that light has both wave and particle characteristics. You will also see that visible light is just part of a wide

More information