Revision Guide. Chapter 7 Quantum Behaviour

Size: px
Start display at page:

Download "Revision Guide. Chapter 7 Quantum Behaviour"

Transcription

1 Revision Guide Chapter 7 Quantum Behaviour

2 Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS... 6 PHASOR ARROWS AN MANY PATHS... 7 Reflection... 8 Refraction slit Interference Single slit interference FERMAT S LEAST TIME PRINCIPLE QUANTUM BEHAVIOUR SUMMARY LINE SPECTRA Emission of photons from atoms iffraction gratings Energy levels ELECTRON IFFRACTION e Broglie wavelength

3 Revision Checklist I can show my understanding of effects, ideas and relationships by describing and explaining: how phasor arrows come to line up for paths near the path that takes the least time how phasor arrows 'lining up' and 'curling up' account for straight-line propagation, reflection, refraction, focusing, diffraction and interference (superposition) of light that the probability of arrival of a quantum is determined by graphical addition of arrows representing the phase and amplitude associated with each possible path evidence for random arrival of photons evidence for the relationship E = hf evidence from electron diffraction that electrons show quantum behaviour I can use the following words and phrases accurately when describing effects and observations: frequency, energy, amplitude, phase, superposition, intensity, probability path difference, interference, diffraction I can interpret: diagrams illustrating how paths contribute to an amplitude I can calculate: the energy of a photon using the relationship E = hf the de Broglie wavelength of an electron using the relationship = h/mv I can show my ability to make better measurements by: measuring the Planck constant h I can show an appreciation of the growth and use of scientific knowledge by: commenting on the nature of quantum behaviour 3

4 Revision Notes Quantum Behaviour In Chapter 6 of this course, light was regarded as a wave and as such as being a continuous flow of energy. However this model is not always adequate on its own to explain the observed behaviour of light and because of this quantum physics has developed. Quantisation is about physical quantities that may take discrete values only. The photon is the quantum or smallest lump of electromagnetic radiation. Examples showing evidence for quantum behaviour are: Random arrival of photons The random nature of the arrival of photons is most easily seen using high energy gamma ray photons, which can be heard arriving randomly in a Geiger counter. The pictures below illustrate the random arrival of photons. They are constructed as if made by collecting more and more photons to build up the picture. Where the picture is bright the probability of arrival of a photon is high. Where it is dark, the probability is low. You can see how the random arrival, governed by these probabilities, builds up the final picture. The random arrival of photons on a sensitive photographic film as it is gradually exposed for longer and longer. When the picture is fully built up the random arrival of photons is not evident but when only a few photons have arrived it is very clear. See the photograph of a woman s face below. The random arrival of (gamma)-rays at a Geiger-Muller tube. Quantum behaviour is more obvious when there are few photons and the energy of each is relatively high. 4

5 Photoelectric effect When light is shone on a metal surface, electrons can be emitted. Photoelectricity photons metal electron absorbs photon and leaves the metal For each metal there is a minimum frequency of light that will cause the emission of electrons. Below this frequency none are emitted whatever the intensity. Above it the rate of emission of electrons increases with increasing intensity. The maximum energy of each photoelectron depends on the frequency (colour) of the light. It is not possible to explain all of these observations by considering the light as a continuous flow of wave energy where the energy depends on the amplitude. However the photoelectric effect makes sense if light is considered as a stream of photons with each photon emitting one electron. It takes a certain amount of energy to emit an electron so photons with less energy than this will never emit one. The more energetic the photon the more energy the electron will have. The photon theory of electromagnetic radiation was proposed by Einstein to explain the photoelectric effect. Einstein s equation is just an application of the law of conservation of energy. Photon energy = energy needed to release electron + (maximum) k.e. of electron hf = + ½mv 2 (max) The energy needed to emit an electron from the metal is called the work function. Emission can be stopped if the metal is made sufficiently positive so that ev s =. Experiments such as the photoelectric effect show that high frequency radiation e.g. ultra-violet has more energy than visible light. The energy E of each photon is proportional to its frequency f E = hf (on formula sheet) The constant h is the Planck constant = Js in SI units. In most applications the quantum behaviour is not obvious as a very large number of low energy photons give the impression of a continuous flow. For example in the case of the visible light emitted from an ordinary light bulb the rate of emission of photons is many millions each second. 5

6 Phase and phasors 'Phase' refers to stages in a repeating change, as in 'phases of the Moon'. The phase difference between two objects vibrating at the same frequency is the fraction of a cycle that passes between one object being at maximum displacement in a certain direction and the other object being at maximum displacement in the same direction. Phase difference is expressed as a fraction of one cycle, or of 2 radians, or of 360. Phasors are used to represent amplitude and phase in a wave. A phasor is a rotating arrow used to represent a sinusoidally changing quantity. Suppose the amplitude s of a wave at a certain position is s = a sin(2 ft), where a is the amplitude of the wave and f is the frequency of the wave. The amplitude can be represented as the projection onto a straight line of a vector of length a rotating at constant frequency f, as shown in the diagram. The vector passes through the +x-axis in an anticlockwise direction at time t = 0 so its projection onto the y-axis at time t later is a sin(2 ft) since it turns through an angle 2 ft in this time. Phasors can be used to find the resultant amplitude when two or more waves superpose. The phasors for the waves at the same instant are added together 'tip to tail' to give a resultant phasor which has a length that represents the resultant amplitude. If all the phasors add together to give zero resultant, the resultant amplitude is zero at that point. Generating a sine wave B y A +a A B 0 0 T 2 T C C phasor rotating at constant frequency f Ša time t s = a sin (2 ft) 6

7 Phasor Arrows and Many Paths As a photon travels through space it can be represented by a rotating phasor arrow. The number of complete turns per second is equal to the frequency. You can work out how many times a photon s phasor arrow spins as it moves along a path of known length. Take a photon of frequency Hz moving along a path of length 0.5 m. Using speed = distance/time Time taken to cover the path = distance/speed = 0.5 m ( ms -1 ) = s. Number of rotations = ( Hz) ( s) = This is 833,333 1 / 3 rotations so if the phasor arrow starts off pointing vertically upwards and rotates anticlockwise it will have turned 1 / 3 of a rotation past the vertical at the end of its path. 120 Initial phasor arrow Arrow at end of path Where many of them arrive at a point they add tip to tail like vectors to give the resultant amplitude. The amplitude is squared to give the probability of a photon arriving at the detector and thus the intensity of the light. Intensity probability of arrival of photons (resultant phasor amplitude) 2 P A 2 One of the key ideas in this chapter is that photons travelling from a source to a receiver do not just travel along the expected path e.g. along a straight line between two points but that they try all possible paths. If we then add their photon arrows we find that those along the expected paths make a big contribution to the resultant amplitude but those along other paths tend to make only a small contribution. This idea can be applied to a number of familiar physical situations involving light such as reflection, refraction, diffraction and interference. The phasors arrows give low resultant amplitudes at dark regions and high resultant amplitudes at bright ones. 7

8 Reflection This diagram shows possible photon paths from the source S to the detector. S Mirror The next diagram shows how long photons take to follow paths via various points on the mirror. The minimum trip time occurs for the shortest path, which is the one for which the angle of incidence equals the angle of reflection. Trip time t for path t t x large t x large t x t x small x t x Position along mirror x The next diagram shows the directions of the phasor arrows at the end of each path. Note that near the minimum trip time path, movement along the mirror surface makes little difference to the trip time and hence the phasor direction is similar. At the edges of the mirror movement from one position to another makes a much bigger difference to the trip time so the phasor arrows show much more change in direction. The final diagram shows the effect of adding the arrows tip-to-tail. For paths near the centre the phasors line up to produce a large resultant amplitude. For paths near the edges the phasor arrows curl up and make little contribution to the amplitude. 8

9 starting with a plane mirror S not much chance of getting photons here set up detector where we would like to get a focus start bending the mirror to get the arrows to line up S keep bending until the arrows line up? up a little here down a little here up a little more here 9

10 Refraction Refraction Š explorations through a surface S Place the source, detector and surface. Light appears to travel more slowly below the surface, so we reduce the speed of the exploring phasor. The frequency is unchanged. S S Choose a photon frequency and define a characteristic set of paths going via the surface. Explore each path by moving a phasor along the path. Start with a fresh phasor each time and record the final arrow. Record these arrows in order. The trip time is calculated in two parts: above and below the surface. The phasor spins at the same frequency. The time taken determines the angle through which it has turned. Obtain and square the amplitude to find the chance that a photon ends up at this detector. Refraction occurs Š quantum mechanics says that there is a large chance that the photon be found at the detector. Most of the final amplitude comes from paths just to the right of the straight line path; paths close to the path of least time. near least time path far from least time path Explore more paths to get more arrows, a clearer picture and greater accuracy. The pattern is clear. Most of the amplitude comes from the paths close to the path that takes least time, only a little from those far out. 10

11 2 slit Interference If light from a narrow source is passed through a pair of closely spaced slits onto a screen, a pattern of interference fringes is seen on the screen. Photons have two paths to the screen, and must be thought of as trying both. There is a phasor quantity (amplitude and phase) associated with each path. Since the paths are nearly equal in length the magnitude of the amplitudes for each path is similar, but the phases differ. The phasor for a path rotates at the frequency of the light. The phase difference between two paths is proportional to the path difference. At points on the screen where the phasors have a phase difference of half a turn, that is 180, dark fringes are observed because the phasors added 'tip to tail' give zero resultant. Where the phasors are in phase (zero or an integer number of turns difference) there are bright fringes. The intensity on the screen is proportional to the square of the resultant phasor. Interference dark if phasors give zero resultant path difference L slits 11

12 Single slit interference In the propagation of photons from source to detector across an empty space, the probability of arrival of photons anywhere but close to the straight line from source to detector is very low. This is because, not in spite of, the many other possible paths. The quantum amplitudes for all these paths add to nearly zero everywhere except close to the straight line direction. As soon as the space through which the light must go is restricted, by putting a narrow slit in the way, the probability for photons to go far from the direction of straight line propagation increases. This is because the cancelling effect of other paths has been removed. The net effect is that the narrower one attempts to make the light beam, the wider it spreads. Trying to pin down photons Very wide slit x The photon has lots of space to explore between x and y: as a result its likely arrival places are not much spread out. S Only near the straight through path do the phasor arrows make a large resultant. y barrier to restrict paths explored scan detector to predict brightness on a screen chance the photon ends up at each place Wide slit x As the photon passes xy it has only a few paths to explore. Path differences are small. S Phasor arrows add to a large resultant at a wide spread of places. y barrier to restrict paths explored scan detector to predict brightness on a screen chance the photon ends up at each place 12

13 Fermat s least time principle Fermat had the idea that light always takes the quickest path the path of least time. You see below a number of paths close to the straight line path from source to detector. A graph of the time for each path has a minimum at the straight line path. Path of least time Negligible change in time near the minimum 0 distance of mid-point from that of straight line path phasors from paths near minimum are in phase and combine to give large resultant Near the minimum the graph is almost flat. This is a general property of any minimum (or maximum). That is, near the minimum the times are all almost the same. The amount by which a photon phasor turns along a path is proportional to the time taken along the path. Thus, for paths near the minimum all the phasors have turned by more or less the same amount. They are therefore all nearly in phase with one another. They line up, giving a large resultant amplitude. This is the reason why Fermat s idea works. Only for paths very close to the path of least time is there a large probability for photons to arrive. The photons try all paths, but all except the paths close to the least-time path contribute very little to the probability to arrive. The idea explains photon propagation in a straight line, reflection and refraction. 13

14 Quantum behaviour summary Quantum behaviour can be described as follows: 1. Particles are emitted and absorbed at distinct space-time events. 2. Between these events there are in general many space-time paths. 3. The presence of all possible space-time paths influences the probability of the passage of a particle from emission to absorption. 4. Each path has an associated amplitude and phase, represented by a rotating phasor arrow. 5. The phasor arrows for all possible paths combine by adding 'tip to tail', thus taking account of amplitude and phase. 6. The square of the amplitude of the resultant phasor is proportional to the probability of the emission event followed by the absorption event. A photon, although always exchanging energy in discrete quanta, cannot be thought of as travelling as a discrete 'lump' of anything. Photons (or electrons) arriving at well-defined places and times (space-time events) are observable. But their paths between emission and detection are not well-defined. Photons are not localised in time and space between emission and absorption. They must be thought of as trying all possible paths, all at once. Line spectra Emission of photons from atoms When an electron moves from a higher to a lower energy level in an atom, it loses energy which can be released as a photon of electromagnetic energy. Since the energy of a photon = h f, then if an electron transfers from an energy level E 2 to a lower energy level E 1, the energy of the photon released = h f = E 2 E 1. In this way, the existence of sharp energy levels in atoms gives rise to sharp line spectra of the light they emit. iffraction gratings Light can be split up into its component wavelengths by passing it through a diffraction grating to produce a spectrum. When the spectrum of a gas that has been made to glow by passing an electric discharge through it is observed it consists of a series of discrete wavelengths that is characteristic of the atoms present. This gives a series of lines as opposed Spectral to a continuous lines and spectrum. energy levels It is called a line spectrum. energy energy levels of an atom n = 4 n = low energy long wavelength n = n = 1 E = hf photon emitted as electron falls from one level to a lower level high energy short wavelength Spectral lines map energy levels 14 E = hf is the energy difference between two levels

15 Energy levels This occurs because the electrons in the gas atoms can only exist at certain energies called energy levels. emission spectrumeach line represents the energy of a particular level. Each type of atom has a characteristic set of energy levels. If an electron is knocked up to a higher level (it cannot have an energy between levels) it will fall back and emit a photon whose energy is equal to the difference in energy of the levels the electron falls between. An atom emits a photon as a result of an electron transferring to a lower energy level. If an electron transfers from energy level E 2 to a lower energy level E 1, the emitted photon has energy E = h f = E 2 E 1. The main application of this is in spectroscopy. By looking at the line spectrum emitted by a gas we can tell which atoms or molecules are present in the gas by looking to see which characteristic sets of lines are present. This is especially useful in examining the light emitted by hot gas clouds in space, as we cannot analyse their composition in any other way. Electron diffraction If a beam of electrons is accelerated by a high potential difference V applied between the negative cathode and the positive anode of an evacuated tube then the kinetic energy they gain is equal to the decrease in electrical potential energy ½ mv 2 = ev (where e is the charge on an electron) graphite target phosphor screen electron gun ~ 3-5 kv If the electrons pass through a thin piece of graphite they are diffracted by the layers of carbon atoms in the graphite and a series of concentric rings is formed. 15

16 Possible paths for electrons being scattered by successive layers of atoms differ in length, and so in the phase of the associated phasor. The phasors for paths going via successive layers of atoms only combine to give a large amplitude in certain directions. e Broglie wavelength If the quantum behaviour of a free electron is thought of as associated with a wave motion, the wavelength of the waves is the de Broglie wavelength Broglie wavelength h (where mv is the momentum) so h mv p Electron diffraction 2 nd order 1 st order film (or screen) electron beam thin crystal zero order 1 st order 2 nd order 16

Revision Guide for Chapter 7

Revision Guide for Chapter 7 Revision Guide for Chapter 7 Contents Student s Checklist Revision Notes Path of least time... 4 Interference of photons... 5 Quantum behaviour... 5 Photons... 6 Electron diffraction... 7 Probability...

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

Name the region of the electromagnetic radiation emitted by the laser. ...

Name the region of the electromagnetic radiation emitted by the laser. ... 1. An argon-laser emits electromagnetic radiation of wavelength 5.1 10 7 m. The radiation is directed onto the surface of a caesium plate. The work function energy for caesium is 1.9 ev. (i) Name the region

More information

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS CHAPTER 29 PARTICLES AND WAVES CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION A monochromatic light source emits photons of a single frequency. According to Equation 29.2, the energy, E, of a single photon

More information

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark) 1 A brick of mass 5.0 kg falls through water with an acceleration of 0.90 m s 2. Which of the following can be used to calculate the resistive force acting on the brick? A 5.0 (0.90 9.81) B 5.0 (0.90 +

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Visit for more fantastic resources. OCR. A Level. A Level Physics. Quantum Physics (Answers) Name: Total Marks: /30

Visit  for more fantastic resources. OCR. A Level. A Level Physics. Quantum Physics (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. OCR A Level A Level Physics Quantum Physics (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Numerous models

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

A Level. A Level Physics. Quantum Physics (Answers) AQA, Edexcel. Name: Total Marks: /30

A Level. A Level Physics. Quantum Physics (Answers) AQA, Edexcel. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA, Edexcel A Level A Level Physics Quantum Physics (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Numerous

More information

Explain how line spectra are produced. In your answer you should describe:

Explain how line spectra are produced. In your answer you should describe: The diagram below shows the line spectrum of a gas. Explain how line spectra are produced. In your answer you should describe: how the collisions of charged particles with gas atoms can cause the atoms

More information

REVISION: WAVES, SOUND & LIGHT 11 JUNE 2013

REVISION: WAVES, SOUND & LIGHT 11 JUNE 2013 REVISION: WAVES, SOUND & LIGHT 11 JUNE 2013 Lesson Description In this lesson we revise: the Doppler Effect, Huygens Principle, Diffraction of Light & the Photoelectric Effect Key Concepts The Doppler

More information

Show that the threshold frequency for the surface is approximately Hz.

Show that the threshold frequency for the surface is approximately Hz. 1 When illuminated with electromagnetic waves, a metal surface can exhibit the photoelectric effect. The maximum wavelength that causes the emission of photoelectrons with zero kinetic energy is 6.8 10

More information

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21.

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21. Early and the Wave Nature of Matter Winter 2018 Press CTRL-L to view as a slide show. Last Time Last time we discussed: Optical systems Midterm 2 Today we will discuss: Quick of X-ray diffraction Compton

More information

[2] (b) An electron is accelerated from rest through a potential difference of 300 V.

[2] (b) An electron is accelerated from rest through a potential difference of 300 V. 1 (a) In atomic physics electron energies are often stated in electronvolts (ev) Define the electronvolt. State its value in joule.. [2] (b) An electron is accelerated from rest through a potential difference

More information

Quantum physics practice question answers

Quantum physics practice question answers Quantum physics practice question answers 1. How electron gun creates beam of electrons Any four from: 1. hot filament (1) 2. thermionic emission / electrons have enough energy to leave (1) 3. anode and

More information

Electron Diffraction

Electron Diffraction Electron iffraction o moving electrons display wave nature? To answer this question you will direct a beam of electrons through a thin layer of carbon and analyze the resulting pattern. Theory Louis de

More information

Unit 2 - Particles and Waves - Part 2

Unit 2 - Particles and Waves - Part 2 WAVE-PARTICLE DUALITY Unit - Particles and Waves - Part 8. The photoelectric effect and wave particle duality Photoelectric effect as evidence for the particulate nature of light. Photons of sufficient

More information

It s a wave. It s a particle It s an electron It s a photon. It s light!

It s a wave. It s a particle It s an electron It s a photon. It s light! It s a wave It s a particle It s an electron It s a photon It s light! What they expected Young s famous experiment using a beam of electrons instead of a light beam. And, what they saw Wave-Particle Duality

More information

tip conducting surface

tip conducting surface PhysicsAndMathsTutor.com 1 1. The diagram shows the tip of a scanning tunnelling microscope (STM) above a conducting surface. The tip is at a potential of 1.0 V relative to the surface. If the tip is sufficiently

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Quantum Model Einstein s Hypothesis: Photoelectric Effect

Quantum Model Einstein s Hypothesis: Photoelectric Effect VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT Quantum Model Einstein s Hypothesis: Photoelectric Effect The photoelectric effect was discovered by Hertz in 1887 as he confirmed Maxwell s electromagnetic

More information

Which of the following classes of electromagnetic waves will not ionise neutral atoms?

Which of the following classes of electromagnetic waves will not ionise neutral atoms? 1 In an experiment to demonstrate the photoelectric effect, a charged metal plate is illuminated with light from different sources. The plate loses its charge when an ultraviolet light source is used but

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level)

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) Electromagnetic induction (Chapter 23): For a straight wire, the induced current or e.m.f. depends on: The magnitude of the magnetic

More information

Modern Physics Part 1: Quantization & Photons

Modern Physics Part 1: Quantization & Photons Modern Physics Part 1: Quantization & Photons Last modified: 15/12/2017 Contents Links Contents Introduction Classical Physics Modern Physics Quantization Definition & Examples Photons Black Body Radiation

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

SCH4U: History of the Quantum Theory

SCH4U: History of the Quantum Theory SCH4U: History of the Quantum Theory Black Body Radiation When an object is heated, it initially glows red hot and at higher temperatures becomes white hot. This white light must consist of all of the

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

LECTURE # 17 Modern Optics Matter Waves

LECTURE # 17 Modern Optics Matter Waves PHYS 270-SPRING 2011 LECTURE # 17 Modern Optics Matter Waves April 5, 2011 1 Spectroscopy: Unlocking the Structure of Atoms There are two types of spectra, continuous spectra and discrete spectra: Hot,

More information

λ = h = h p mv λ = h mv FXA 2008 Candidates should be able to :

λ = h = h p mv λ = h mv FXA 2008 Candidates should be able to : 1 Candidates should be able to : Explain electron diffraction as evidence for the wave nature of particles like electrons. Explain that electrons travelling through polycrystalline graphite will be diffracted

More information

Chapter 28: Quantum Physics. Don t Copy This. Quantum Physics 3/16/13

Chapter 28: Quantum Physics. Don t Copy This. Quantum Physics 3/16/13 Chapter 28: Quantum Physics Key Terms: Photoelectric effect Photons de Broglie wavelength Energy level diagram Wave-particle duality Don t Copy This Except for relativity, everything we have studied up

More information

Exam 2. Study Question. Conclusion. Question. Question. study question continued

Exam 2. Study Question. Conclusion. Question. Question. study question continued PS 110A-Hatch-Exam 2 Review - 1 Exam 2 Take exam in Grant Bldg. starting Friday, 13 th, through Monday, 16 th (by 4:00 pm). No late fee associated with Monday, before 4:00. Allow at least 1 hour for exam.

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Quantum theory and models of the atom

Quantum theory and models of the atom Guess now. It has been found experimentally that: (a) light behaves as a wave; (b) light behaves as a particle; (c) electrons behave as particles; (d) electrons behave as waves; (e) all of the above are

More information

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis:

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis: Announcements HW3: Ch.3-13, 17, 23, 25, 28, 31, 37, 38, 41, 44 HW3 due: 2/16 ** Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/ Lecture Notes,

More information

Electrons in Atoms. Before You Read. Chapter 4. Review the structure of the atom by completing the following table.

Electrons in Atoms. Before You Read. Chapter 4. Review the structure of the atom by completing the following table. Electrons in Atoms Before You Read Chapter 4 Review the structure of the atom by completing the following table. Part of the Atom Description proton centrally located part of the atom that contains protons

More information

Chapter 27 Quantum Physics

Chapter 27 Quantum Physics Key Ideas Two Principles of Relativity: The laws of physics are the same for all uniformly moving observers. The speed of light is the same for all observers. Consequences: Different observers measure

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

Today: Finish Color (Ch. 27) Intro to Quantum Theory (Ch.31)

Today: Finish Color (Ch. 27) Intro to Quantum Theory (Ch.31) Final exam: Dec 20, 11.30am -1.30pm, here, cumulative Chs: 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 22, 23, 24, 25, 26, 27, 31 Review Session Tue Dec 13 Today: Finish Color (Ch. 27) Intro to Quantum

More information

CHAPTER 12 TEST REVIEW

CHAPTER 12 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Diffraction of Electrons

Diffraction of Electrons Diffraction of Electrons Object: Apparatus: Verify that electrons are waves; i.e., that they diffract just like light waves. This lab is then used to measure their wavelength or, alternatively, measure

More information

CHAPTER 3 The Experimental Basis of Quantum Theory

CHAPTER 3 The Experimental Basis of Quantum Theory CHAPTER 3 The Experimental Basis of Quantum Theory 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Discovery of the X Ray and the Electron Determination of Electron Charge Line Spectra Quantization As far as I can

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx 1 Candidates should be able to : HISTORY Describe the nature of X-rays. Describe in simple terms how X-rays are produced. X-rays were discovered by Wilhelm Röntgen in 1865, when he found that a fluorescent

More information

Larbert High School. Quanta and Waves. Homework Exercises ADVANCED HIGHER PHYSICS

Larbert High School. Quanta and Waves. Homework Exercises ADVANCED HIGHER PHYSICS Larbert High School ADVANCED HIGHER PHYSICS Quanta and Waves Homework Exercises 3.1 3.6 3.1 Intro to Quantum Theory HW 1. (a) Explain what is meant by term black body. (1) (b) State two observations that

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

Light was recognised as a wave phenomenon well before its electromagnetic character became known.

Light was recognised as a wave phenomenon well before its electromagnetic character became known. VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT WAVE or PARTICLE??? Light was recognised as a wave phenomenon well before its electromagnetic character became known. The problem of the nature of light is

More information

GCE AS/A level 1322/01 PHYSICS PH2 Waves and Particles

GCE AS/A level 1322/01 PHYSICS PH2 Waves and Particles Surname Centre Number Candidate Number Other Names 2 GCE AS/A level 1322/01 PHYSICS PH2 Waves and Particles S15-1322-01 P.M. THURSDAY, 4 June 2015 1 hour 30 minutes For s use Question Maximum Mark Mark

More information

JURONG JUNIOR COLLEGE J2 H1 Physics (2011) 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum.

JURONG JUNIOR COLLEGE J2 H1 Physics (2011) 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum. JURONG JUNIOR COLLEGE J2 H1 Physics (2011) Tutorial: Quantum Physics 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum. Calculate the energy of a

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

ATOMIC WORLD P.1. ejected photoelectrons. current amplifier. photomultiplier tube (PMT)

ATOMIC WORLD P.1. ejected photoelectrons. current amplifier. photomultiplier tube (PMT) ATOMIC WORLD P. HKAL PAPER I 0 8 The metal Caesium has a work function of.08 ev. Given: Planck constant h = 6.63 0 34 J s, charge of an electron e =.60 0 9 C (a) (i) Calculate the longest wavelength of

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

WAVES AND PARTICLES. (c)

WAVES AND PARTICLES. (c) WAVES AND PARTICLES 1. An electron and a proton are accelerated through the same potential difference. The ration of their De Broglie wave length will be -- (a) (b) (c) (d) 1 2. What potential must be

More information

Photoelectric effect

Photoelectric effect Laboratory#3 Phys4480/5480 Dr. Cristian Bahrim Photoelectric effect In 1900, Planck postulated that light is emitted and absorbed in discrete but tiny bundles of energy, E = hν, called today photons. Here

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantization of Light Max Planck started the revolution of quantum theory by challenging the classical physics and the classical wave theory of light. He proposed the concept of quantization

More information

(i) Show that the energy of a single photon is about 3 x J.

(i) Show that the energy of a single photon is about 3 x J. 1(a) A helium-neon laser emits red light of wavelength 6.3 x 10 7 m. (i) Show that the energy of a single photon is about 3 x 10 19 J. [2] The power of the laser beam is 1.0 mw. Show that about 3 x 10

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) NAME: August 2009--------------------------------------------------------------------------------------------------------------------------------- 11 41.

More information

12.1 Foundations of Quantum Theory

12.1 Foundations of Quantum Theory 1.1 Foundations of Quantum Theory Physics Tool box A blacbody of a given temperature emits electromagnetic radiation over a continuous spectrum of frequencies, with a definite intensity maximum at one

More information

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Double-Slit Eperiment reading: Chapter 22 2. Single-Slit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter

More information

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths.

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Section7: The Bohr Atom Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Continuous Spectrum Everyone has seen the spectrum produced when white

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Lenard s experiment The photon model Light as photons Einstein s explanation of the photoelectric effect Photon energy Electron volts Electron energy 1 Lenard s experiment Philipp

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

H2 Physics Set A Paper 3 H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET A PAPER 3.

H2 Physics Set A Paper 3  H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET A PAPER 3. H2 PHYSICS Exam papers with worked solutions (Selected from Top JC) SET A PAPER 3 Compiled by THE PHYSICS CAFE 1 P a g e Candidates answer on the Question Paper. No Additional Materials are required. READ

More information

Physics 1161: Lecture 22

Physics 1161: Lecture 22 Physics 1161: Lecture 22 Blackbody Radiation Photoelectric Effect Wave-Particle Duality sections 30-1 30-4 Everything comes unglued The predictions of classical physics (Newton s laws and Maxwell s equations)

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Lecture 21 Matter acts like waves!

Lecture 21 Matter acts like waves! Particles Act Like Waves! De Broglie s Matter Waves λ = h / p Schrodinger s Equation Announcements Schedule: Today: de Broglie and matter waves, Schrodinger s Equation March Ch. 16, Lightman Ch. 4 Net

More information

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30. Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.3 The Mass and Momentum of a Photon 30.4 Photon Scattering and

More information

AQA Physics A-level Section 12: Turning Points in Physics

AQA Physics A-level Section 12: Turning Points in Physics AQA Physics A-level Section 12: Turning Points in Physics Key Points Discovery of electrons A discharge tube contains a low-pressure gas with a high potential difference across it. Electrons are pulled

More information

ESSENTIAL QUANTUM PHYSICS PETER LANDSHOFF. University of Cambridge ALLEN METHERELL. University of Central Florida GARETH REES. University of Cambridge

ESSENTIAL QUANTUM PHYSICS PETER LANDSHOFF. University of Cambridge ALLEN METHERELL. University of Central Florida GARETH REES. University of Cambridge ESSENTIAL QUANTUM PHYSICS PETER LANDSHOFF University of Cambridge ALLEN METHERELL University of Central Florida GARETH REES University of Cambridge CAMBRIDGE UNIVERSITY PRESS Constants of quantum physics

More information

Lecture 16 Quantum Physics Chapter 28

Lecture 16 Quantum Physics Chapter 28 Lecture 16 Quantum Physics Chapter 28 Particles vs. Waves Physics of particles p = mv K = ½ mv2 Particles collide and do not pass through each other Conservation of: Momentum Energy Electric Charge Physics

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 15: QUANTUM THEORY This lecture will help you understand: The Photoelectric Effect Absorption Spectra Fluorescence Incandescence Lasers Wave-Particle Duality Particles

More information

Photoelectric Effect Worksheet

Photoelectric Effect Worksheet Photoelectric Effect Worksheet The photoelectric effect refers to the emission of electrons from metallic surfaces usually caused by incident light. The incident light is absorbed by electrons thus giving

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

2010 Physics GA 3: Examination 2

2010 Physics GA 3: Examination 2 2010 Physics GA 3: Examination 2 GENERAL COMMENTS The number of students who sat for the 2010 Physics examination 2 was 6839. The mean score was 63 per cent; this indicated that students generally found

More information

Quantum Mechanics (made fun and easy)

Quantum Mechanics (made fun and easy) Lecture 7 Quantum Mechanics (made fun and easy) Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why

More information

Part 3: HANDS-ON ACTIVITIES

Part 3: HANDS-ON ACTIVITIES 1 Quantum Physics The physics of the very small with great applications Part 3: HANDS-ON ACTIVITIES Electron diffraction Quantum Spin-Off is funded by the European Union under the LLP Comenius programme

More information

The ELECTRON: Wave Particle Duality. chapter 4

The ELECTRON: Wave Particle Duality. chapter 4 The ELECTRON: Wave Particle Duality chapter 4 What do we know about light? Before 1900 s scientists thought light behaved as a wave. This belief changed when it was discovered that light also has particle

More information

Lecture 15 Notes: 07 / 26. The photoelectric effect and the particle nature of light

Lecture 15 Notes: 07 / 26. The photoelectric effect and the particle nature of light Lecture 15 Notes: 07 / 26 The photoelectric effect and the particle nature of light When diffraction of light was discovered, it was assumed that light was purely a wave phenomenon, since waves, but not

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

Chapter 5. Past and Proposed Experiments Detecting Absolute Motion

Chapter 5. Past and Proposed Experiments Detecting Absolute Motion Chapter 5 Past and Proposed Experiments Detecting Absolute Motion In this Chapter I gave different interpretations for the results of some famous past experiments. My interpretations are based on the following

More information

Physics 1C. Chapter 28 !!!!

Physics 1C. Chapter 28 !!!! Physics 1C Chapter 28!!!! "Splitting the atom is like trying to shoot a gnat in the Albert Hall at night and using ten million rounds of ammunition on the off chance of getting it. That should convince

More information

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA 1 Candidates should be able to : EMISSION LINE SPECTRA Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms (i.e. in a gas discharge lamp). Describe the

More information

Chapter 4 Spectroscopy

Chapter 4 Spectroscopy Chapter 4 Spectroscopy The beautiful visible spectrum of the star Procyon is shown here from red to blue, interrupted by hundreds of dark lines caused by the absorption of light in the hot star s cooler

More information

Physics Lecture 6

Physics Lecture 6 Physics 3313 - Lecture 6 Monday February 8, 2010 Dr. Andrew Brandt 1. HW1 Due today HW2 weds 2/10 2. Electron+X-rays 3. Black body radiation 4. Compton Effect 5. Pair Production 2/8/10 3313 Andrew Brandt

More information