The Pelophylax esculentus complex in North-Western Romania: distribution of the population systems

Size: px
Start display at page:

Download "The Pelophylax esculentus complex in North-Western Romania: distribution of the population systems"

Transcription

1 North-Western Journal of Zoology Vol. 6, No. 2, 2010, pp P-ISSN: , E-ISSN: Article No.: The Pelophylax esculentus complex in North-Western Romania: distribution of the population systems István SAS University of Oradea, Faculty of Sciences, Department of Biology, Universitatii str. 1, , Oradea, Romania, Abstract. The aim of this study was to clarify the distribution of the Pelophylax esculentus complex population systems in north-western Romania. The study area is represented by north-western Romania including the administrative territories delineated by Arad, Bihor and Satu-Mare counties. Surveys were conducted between September 2004 and May There were herpetofaunistically surveyed 884 geographic localities in north-western Romania. In 666 of these localities it was identified/reconfirmed the presence of water frogs from the P. esculentus complex (666-ridibundus, 97- esculentus, 33-lessonae). There were identified 39 distinct populations of P. lessonae and 127 populations of P. kl. esculentus respectively. In areas where all the three forms of water frogs or at least two of them are present, there were identified 127 population systems: R-E (83), L-R-E (39) and E (5). In all populations of water frogs from north-western Romania, the parental species (P. ridibundus, P. lessonae) are represented both by males and females. Concerning the hybrid P. kl. esculentus we could not identify males of this form in every population, the females being able to reproduce with the males of parental species. In the case of two populations of P. kl. esculentus we have not identified males (all-females E system). It is possible that these populations are included in a parthenogenetic cycle. During the study, mixed pairs in amplexus were identified exclusively between males of P. lessonae and females of P. kl. esculentus, and between males of P. kl. esculentus and females of P. ridibundus, being also identified several spawns. Most of the L-R-E system populations are found in Carei Plain and Livada Plain (the Tur Valley). Conservation in time of these populations is also ensured by their placement in Natura 2000 Habitats Directive sites. Key words: water frogs, Pelophylax esculentus complex, population systems, E system, all-females, parthenogenetic, north-western Romania Introduction Palearctic water frogs include several species (Dubois & Ohler 1996) characterized by their widespread distribution and frequent occurrence of interspecific hybridization (Graf & Polls-Pelaz 1989). The Palearctic water frogs comprise three hybridogenetic systems (Polls- Pellaz 1989, also see the references cited in: Schmeller et al. 2005, Marracci & Ragghianti 2008), which are geographically separated. Each complex consists of the largest water frog species, Pelophylax ridibundus, a small parental species and their medium-sized hybrids. In Romania, there are two valid species from the water frogs group {Pelophylax lessonae (Camerano, [1882]) and Pelophylax ridibundus (Pallas, 1771)} and the hybrid form between them {Pelophylax kl. esculentus (Linnaeus, 1758)}. In nature, there were described several ways of coexistence of the esculentus complex s forms, the hybrid being found in various habitats specific to the two parental species. Therefore, within the common distribution area of the P. esculentus complex s forms, besides pure populations of P. lessonae (L-L) and P. ridibundus (R-R) there are known L-E (lessonaeesculentus), R-E (ridibundus-esculen-tus), L-R-E (lessonae-ridibundus-esculentus) and E-E (esculentus) population systems (see reviewed in Plöt- NwjZ, Oradea, Romania, Oradea, Romania

2 The Pelophylax esculentus complex in North-Western Romania 295 ner 2005). Throughout the distribution area of these three forms, the L-E and R-E systems are considered to be the most common. There were frequently identified L-R-E systems also (e.g. Borkin et al. 1986, Günther 1983, Gubányi 1996, Tunner & Heppich-Tunner 1991, Gubányi & Korsós 1992, Krizmanić 2008a,b, Paunović et al. 2010); even so they are regarded as being much rarer. The parental species and the hybrid between them, in many situations are found in pure populations (Günther 1997a,b,c, Graf & Polls-Pellaz 1989, Arioli et al. 2010). The knowledge on the distribution of water frogs from the P. esculentus complex in Romania is not elucidated. This is primarily due to the fact that many Romanian herpetologists do not distinguish among the three forms of water frogs (e.g. Cogălniceanu et al. 2006, Demeter et al. 2006, Hartel et al. 2006, 2010, Ghiurcă et al. 2009, Székely et al. 2009), because morphological identification in the field requires experience. Data on the distribution of the three forms of water frogs in Romania are available only for the following regions: north-western Romania (e.g. Covaciu-Marcov 2004, Covaciu- Marcov et al. 2007a, 2008a, and see the material and methods), southern and south-western Romania (e.g. Covaciu-Marcov et al. 2009a,b, 2010a, Sas et al. 2010), north-eastern Romania (e.g. Covaciu-Marcov et al. 2008b, Gherghel et al. 2008) and Dobruja, respectively (e.g. Covaciu-Marcov et al. 2006a, Strugariu et al. 2008). However, these herpetofaunistic studies only bring data on the presence/absence of the water frogs close to some localities. Informations about integration of these in population systems are relatively few. In Romania, besides pure populations of P. ridibundus which are the most common, there were recorded mainly R-E system populations (e.g. Vancea et al 1989, Covaciu-Marcov 2004, Gherghel et al. 2008, Covaciu-Marcov et al. 2008c, 2009c), respectively there are a few references to L-R-E system populations also (e.g. Covaciu-Marcov et al. 2009b,d). Recently, in north-western Romania there was reported an E system population (Sas et al. 2009a). The highly complex hybridogenetic system of P. esculentus complex is very interesting for evolutionary ecology due to the various impacts hybridogenesis has on the ecology and genetics of the involved species (see in: Schmeller 2004). But in order to determine the status of any amphibian species, first it needs to be clarified its spatial distribution (see in Sas 2009, Strugariu et al. 2009, Covaciu-Marcov et al. 2010b). Thus, the aim of this study was to clarify the distribution situation of the population systems of water frogs in north-western Romania, to create a basis for future studies on the populations of the hybrido-genetic P. esculentus complex from this region. For P. lessonae species and the hybrid P. esculentus we also intended to identify the detailed distribution on reproductive populations. Materials and methods The study area is represented by north-western Romania including the administrative territories delineated by Arad, Bihor and Satu-Mare counties (Fig.1). Surveys were conducted between September 2004 and May During the study we used the ARVES method (amphibian and reptile visual encounter surveys), this being the most common and standardized method for herpetofauna studies and inventories (Campbell & Christian 1982, Crump & Scott 1994). Each locality from the study area was investigated, primarily being sought aquatic breeding habitats. Localities with water frogs, already known from the literature (Covaciu-Marcov 2004, and also see the reviewed reference list in Sas 2009), were examined in the first place. During the study there were identified several new localities with water frogs. These new data were part of herpetofaunistic studies conducted and published in collaboration with the members of the Herpetological Club of Oradea (for details see in Sas 2009). These published faunistic data refer only to the spatial distribution of species in localities (presence/absence) and are not based on displaying the distribution on reproductive populations, on integration in population systems of the water frogs. Identification of water frog individuals was based on their biometric attributes, indicated in the literature (e.g. Berger 1966, Wijnands & Van Gelder 1976). The simplest

3 296 Sas, I. method to identify water frogs from the P. esculentus complex (especially for determining the parental species) is according to the shape of the callus internus (e.g. Berger 1966, Günter et al. 1991) and depending on the presence or absence of the yellow coloration on the flanks (also see in: Krizmanić 2008a); these morphological characters being used regularly by many authors (Reyer & Bättig 2004, Ragghianti et al., 2007; Plötner et al., 2008, Neveu 2009, Arioli et al. 2010,). The biometric characters, for the studied populations of water frogs, were measured randomly, at about twothree individuals per population. Although morphological determination can be used successfully even in cases apparently more difficult (see in: Tunner 2000), data were confirmed based on the sound emissions of the studied frogs (this being considered the most accurate method to distinguish among water frogs e.g. Schneider et al. 1984, Wycherley et al. 2002). The obtained quantitative biometric and bioacoustic data (for details see Sas 2009) will not be mentioned on the pages of this paper. Results During the past ten yeas ( ), in collaboration with the members of the Herpetological Club of Oradea, there were herpetofaunistically surveyed 884 geographic localities in north-western Romania (see the faunistic works reviewed in Sas 2009). In 666 of these localities it was identified / reconfirmed the presence of water frogs from the P. esculentus complex (666-ridibundus, 97-esculentus, 33- lessonae). Since P. ridibundus is the most common amphibian species in north-western Romania (Covaciu-Marcov 2004, also see in Sas 2009) detailed information will be presented exclusively for P. lessonae and P. esculentus. Consequently, there were identified 39 distinct populations of P. lessonae and 127 populations of P. kl. esculentus respectively. In north-western Romania the three forms of water frogs from the P. esculentus complex occur in different population systems (Table 1, Fig.1). Most of the populations are composed exclusively of P. ridibundus species (R-R). Generally, in areas with populations of type R-R, the other two forms of water frogs (lessonae and esculentus) are missing. In areas where all the three forms of water frogs or at least two of them are present, there were identified 127 population systems: R-E (83), L-R-E (39) and E (5) (Table1, Fig.1). L-system populations, composed exclusively of P. lessonae, were not identified. If the species P. lessonae is present in a population, it always occurs with the other two forms (L-R-E system). In all populations of water frogs from north-western Romania, the parental species (P. ridibundus, P. lessonae) are represented both by males and females (Table 1). Concerning the hybrid P. kl. esculentus we could not identify males of this form in every population, the females being able to reproduce with the males of parental species. Even though males of esculentus are present in a population, their number is always small. In the case of two E system populations we identified only female individuals. Discussion In north-western Romania, populations of water frogs composed exclusively of the parental species P. ridibundus are prevailing. This species occur both in pure populations (R-R) and together with the other two forms of water frogs (R-E, L-R-E) (excepting 5 populations of E-E system). Beside the R-R system populations, in north-western Romania there are frequently found R-E system populations (83), those from the L-R-E system being much rarer (39). Distribution pattern, herpetofaunistical co-occurrence P. ridibundus is the best represented species of the herpetofauna from north-western Romania (Covaciu-Marcov 2004, Sas 2009). Here, it is a eurytopic species, inhabiting any type of aquatic habitat and is found up to an altitude of 700m (Covaciu-Marcov 2004) with species of amphibians and reptiles common to plain and

4 The Pelophylax esculentus complex in North-Western Romania 297 Population Cod Arad county Table 1. Locality and population record of the P. esculentus complex in NW Romania. (AR- Arad county, BH- Bihor county, SM- Satu-Mare county, R- ridibundus, L- lessonae, E- esculentus, Syst.- population system, pr.- predominate, m- males, f- females, X- presence) UTM (10x10 km) Locality Syst. pr. R L E m f m f m f POP 001 FS 12 Aciuţa (AR) RE R X X - - X X POP 002 ES 56/66 Apateu (AR) RE R X X - - X X POP 003 ES 74/75 Beliu (AR) RE R X X X POP 004 ES 74 Bocsig (AR) RE R X X X POP 005 ER 99 Căprioara (AR) RE R X X X POP 006 ES 70 Căpruţa (AR) RE R X X - - X X POP 007 ES 75 Chişlaca (AR) RE R X X X POP 008 ES 41 Cuvin (AR) E E X POP 009 ES 62 Dud (AR) RE R X X X POP 010 ES 80 Dumbrăviţa (AR) RE R X X X POP 011 ES 80 Dumbrăviţa (AR) RE R X X - - X X POP 012 FS 02 Gurahonţ (AR) RE R X X - - X X POP 013 ES 84 Igneşti (AR) RE R X X - - X X POP 014 ES 84 Igneşti (AR) LRE E X X X X X X POP 015 ES 64 Ineu de Arad (AR) RE R X X X POP 016 FS 02 Iosaş RE R X X X POP 017 ES 75 Lunca Teuzului (AR) RE R X X - - X X POP 018 ES 63 Mocrea (AR) RE R X X X POP 019 FS 02 Pescari (AR) RE R X X X POP 020 ES 84 Prunişor (AR) LRE E X X X X X X POP 021 ES 84 Prunişor (AR) RE E X X - - X X POP 022 ES 84 Prunişor (AR) RE R X X - - X X POP 023 ES 56 Satu Nou (AR) RE R X X X POP 024 ER 99 Săvîrşin (AR) RE R X X X POP 025 ES 83 Sebiş (AR) RE R X X - - X X POP 026 FS 13 Vidra (AR) RE R X X X Bihor county POP 027 ES 57 Arpăşel (BH) RE R X X - - X X POP 028 ET 86/96 Curtuişeni (BH) RE R X X - - X X POP 029 ET 86/96 Curtuişeni (BH) LRE R X X X X X X POP 030 ES 48/58 Salonta (BH) RE R X X X POP 031 ET 84 Săcuieni Bihor (BH) RE R X X X POP 032 ET 85/86 Şimian (BH) LRE E X X X X X X POP 033 ET 85/86 Şimian (BH) RE R X X - - X X POP 034 ET 86 Valea lui Mihai (BH) RE R X X - - X X POP 035 ET 86 Valea lui Mihai (BH) RE R X X - - X X POP 036 ET 75 Voivozi (V. lui Mihai) (BH) RE E X X - - X X POP 037 FT 03 Voivozi (V. lui Mihai) (BH) RE R X X - - X X Satu-Mare county POP 038 FT 48 Amaţ (SM) RE R X X X POP 039 ET96/FT06 Andrid (SM) RE R X X - - X X POP 040 FT 69 Apa (SM) RE R X X - - X X POP 041 FU 50 Agrij (SM) LRE E POP 042 FT59 Băbăşeşti (SM) RE E X X - - X X POP 043 FT 59 Băbăşeşti (SM) RE R X X - - X X

5 298 Sas, I. Table 1. (Continued) Population UTM R L E Locality Syst. pr. Cod (10x10 km) m f m f m f POP 044 FU 51 Băbeşti (SM) LRE R X X X X X X POP 045 FU 40 Bercu (SM) RE R X X - - X X POP 046 FT 08 Berea (SM) RE E X X - - X X POP 047 FT 08 Berea (SM) LRE E X X X X X X POP 048 FT 29 Boghiş (SM) RE R X X X POP 049 FT07/08/18 Carei (SM) RE R X X X POP 050 FT 07 Ciumeşti (SM) LRE E X X X X X X POP 051 FU 50 Ciuperceni (SM) LRE E X X X X X X POP 052 FU 62 Comlăuşa (SM) RE R X X X POP 053 FT 68 Crucişor (SM) RE R X X - - X X POP 054 FT 28 Dacia (SM) RE R X X - - X X POP 055 FT 39 Dara (SM) E E X X POP 056 FT 39 Dara (SM) LRE E X X X X X X POP 057 FT 39 Decebal (SM) LRE E X X X X X X POP 058 FT 28/29 Doba (SM) RE R X X - - X X POP 059 FU 30 Dorolţ (SM) RE E X X - - X X POP 060 FU 30 Dorolţ (SM) LRE E X X POP 061 FU 50 Drăguşeni (SM) LRE E X X X X X X POP 062 FU 50 Dumbrava (SM) RE R X X X POP 063 FT 08 Foieni (SM) E E X POP 064 FT 08 Foieni (SM) LRE E X X X X X X POP 065 FT 08 Foieni (SM) LRE E X X X X X X POP 066 FT 08 Foieni (SM) RE R X X - - X X POP 067 FT 38 Gelu (SM) RE R X X X POP 068 FU 61 Gherţa Mică (SM) RE E X X - - X X POP 069 FU 61 Gherţa Mică (SM) RE R X X - - X X POP 070 FU 61 Gherţa Mică (SM) RE R X X - - X X POP 071 FU 61 Gherţa Mică (SM) LRE E POP 072 FU 41/51 Halmeu (SM) RE R X X - - X X POP 073 ET 98 Horea (SM) LRE E X X X X X X POP 074 ET 98 Horea (SM) LRE E X X X X X X POP 075 FT 48 Hrip (SM) RE R X X X POP 076 FT 07 Ianculeşti (SM) RE R X X - - X X POP 077 FT 69 Iojib (SM) RE R X X - - X X POP 078 FU 50/60 Livada (SM) LRE E X X X X X X POP 079 FU 50/60 Livada (SM) LRE E X X X X X X POP 080 FU 50/60 Livada (SM) LRE E X X X X X X POP 081 FU 50/60 Livada (SM) E E X X POP 082 FU 50/60 Livada (SM) RE E X X - - X X POP 083 FU 50 Livada Mică (SM) LRE E X X X X X X POP 084 FT 48 Mădăras (SM) RE R X X X POP 085 FT 06 Mănăstirea Portăriţa (SM) RE R X X - - X X POP 086 FT 68 Măriuş (SM) RE R/E X X - - X X POP 087 FT 57 Mediaşa (SM) RE R X X X POP 088 FT 69 Medieşi Vii (SM) LRE E X X X X X X POP 089 FT 59/69 Medieşu Aurit (SM) RE R X X X POP 090 FT 69 Medieş Râturi (SM) RE R X X X POP 091 FU 51 Mesteacănu (SM) RE R X X X

6 The Pelophylax esculentus complex in North-Western Romania 299 Table 1. (Continued) Population Cod UTM (10x10 km) Locality Syst. pr. R L E m f m f m f POP 092 FU 40/41 Micula (SM) RE E X X - - X X POP 093 FU 40/41 Micula (SM) LRE E X X X X X X POP 094 FT 28 Moftinu Mare (SM) RE R X X - - X X POP 095 FU 40 Nisipeni (SM) RE E X X - - X X POP 096 FU 40 Noroieni (SM) RE E X X - - X X POP 097 FT79/FU70 Oraşu Nou (SM) RE E X X - - X X POP 098 FU 60 Păşunea Mare (SM) LRE E X X X X X X POP 099 FU 30 Petea (SM) E E X X POP 100 ET 96/97 Pişcolt (SM) RE E X X - - X X POP 101 ET 96/97 Pişcolt (SM) LRE E X X X X X X POP 102 FT 59 Potău (SM) RE R X X X POP 103 FU 41 Porumbeşti (SM) RE R X X - - X X POP 104 FU 41 Porumbeşti (SM) LRE E X X X X X X POP 105 ET 97 Resighea (SM) LRE E X X X X X X POP 106 ET 97 Resighea (SM) RE E X X - - X X POP 107 FT 48 Ruşeni (SM) RE R X X X POP 108 ET97/FT07 Sanislău (SM) LRE E X X X X X X POP 109 FT 38 SătmăLRE (SM) RE E X X - - X X POP 110 FT 39/49 Satu Mare (SM) LRE R X X X X X X POP 111 ET 97 Scărişoara Nouă (SM) LRE L X X X X X X POP 112 ET 97 Scărişoara Nouă (SM) LRE E X X X X X X POP 113 ET 97 Scărişoara Nouă (SM) LRE E X X X X X X POP 114 FT69 Someşeni (SM) RE R X X - - X X POP 115 FU 62/63 Tarna Mare (SM) RE R X X - - X X POP 116 FT 58 Tătăreşti (SM) RE R X X X POP 117 FT 29 Traian (SM) RE R X X - - X X POP 118 FU 61 Turţ (SM) LRE E X X X X X X POP 119 FU 51 Turu Lung (SM) LRE E X X X X X X POP 120 FU 61 Turu Lung Vii (SM) LRE E X X X X X X POP 121 FT 08 Urziceni (SM) LRE E X X X X X X POP 122 FT 08 Urziceni (SM) RE E X X - - X X POP 123 FT 08 Urziceni de Pădure (SM) LRE E X X X X X X POP 124 FU 62 Valea Seacă (SM) RE R X X X POP 125 FU 70/80 Vama (SM) RE R X X - - X X POP 126 FT 39 Vetiş (SM) LRE E X X X X X X POP 127 FT 47/48 Viile Satu Mare (SM) RE R X X X hilly-mountainous areas. P. ridibundus is the only water frog that occurs in thermal habitats and forms non-hibernating populations in north-western Romania (see in Sas et al. 2009b,c). Instead, the P. lessonae species occurs solely in lowlands (below 204m) and the hybrid P. esculentus does not exceed either the altitudinal limit of 300m. In Romanian Moldavia the P. lessonae species reaches higher altitudes, primarily because of the particular landscape of this region (see in Sas 2009). Populations of P. lessonae at altitudes higher than m have been identified only in the central area of Romania (inside the Carpathian Basin at Reci 546m Csata & Csata 1996; outside the Carpathian Basin at Râul Doamnei 683m Covaciu- Marcov et al. 2010a). Analyzing Fig.1, one can observe that in

7 300 Sas, I. north-western Romania towards the southern areas there are R-E system populations, in the northern regions being already present all the three forms of the hybridogenetic complex (L- R-E). The only exception is represented by an isolated area in the Teuz River Valley (see in Covaciu-Marcov et al. 2006b) where the presence of P. lessonae species has also been recently recorded, in an L-R-E system. It is obvious that the establishment of hybridogenetic populations depends exclusively on the distribution features of P. lessonae species as the other two forms have a much wider distribution in north-western Romania. In the study area P. lessonae occurs with glacial relict species (such as Rana arvalis, Zootoca vivipara, Vipera berus) and with low altitude populations of some hilly-mountainous species. Most of the P. lessonae populations and also the largest ones (implicitly the L-R-E system) are found in Carei Plain and Livada Plain (the Tur Valley) where they are integrated into metapopulations (see in Sas 2009). The long-term persistence of these populations is assured also by the integration of the two above mentioned areas in the Natura 2000 network (Carei Plain - ROSCI0020, Tur River ROSCI0214). Beside P. lessonae there are important populations of R. arvalis (Sas et al. 2008) and Z. vivipara (Covaciu-Marcov et al. 2008d) with which it occurs together. An exception exists in the case of the southern population, from Teuz Valley. The most plausible explanation is that the two species, R. arvalis and Z. vivipara are related to a much colder climate (the 10ºC isotherm, also see in Covaciu-Marcov 2004) compared with P. lessonae species, which is better adapted to drought. In Teuz Valley, but in Livada Plain too, P. lessonae occurs, even in common habitats, along with another glacial relict species, V. berus (Covaciu-Marcov et al. 2006b, 2008a). In the Livada Plain there are found low altitude populations of Bombina variegata ( m - Covaciu-Marcov et al. 2009e), Rana temporaria (160m - Covaciu- Marcov & Ferenti 2008), Salamandra salamandra ( m - Covaciu-Marcov et al. 2007b), also. Similar situations are encountered in Teuz Valley as well, where at an altitude of 135m reside species like S. salamandra and R. temporaria (Covaciu-Marcov et al. 2008e). It should also be mentioned the fact that around Turţ locality, although they do not occur together with P. lessonae (located at a distance of about 10 km), there are several low altitude populations of Lissotriton montandoni (see in: Covaciu-Marcov et al. 2007c, 2010c). In Carei Plain, beside the two relict elements, P. lessonae is also found along with the lizard Podarcis tauricus, a Balkan steppe species with completely opposite ecological requirements and postglacial history which reaches here the northern limit of its range (see discussion in Covaciu-Marcov et al. 2009d). A similar situation is found in southwestern Romania also, where P. lessonae occurs with southern species such as Testudo hermanni, Podarcis muralis or Vipera ammodytes (see in: Covaciu-Marcov et al. 2009b). Population systems Beside the biometric and bioacoustic confirmations it is very important that we identified in every population of P. ridibundus both females and males. Matings between hybrids (ExE matings) can lead to offspring of P. ridibundus (eg. Hotz et al. 1992, Pagano et al. 1997), but these usually die during metamorphosis (Christiansen et al. 2005, Arioli 2007 cited in Arioli et al. 2010) due to the deleterious alleles accumulated on the clonally transmitted R genome (e.g. Berger 1977, 1983, Graf & Muller 1979, Uzzel et al. 1980), excluding the chances of forming populations of Pelophylax ridibundus. Exception can occur only when the parents possess and transmit different clonal R genomes (Vorburger 2001, Guex et al. 2002, also see in Som & Reyer 2006), but in such cases result all female offspring (e.g. Hotz et al. 1992). Only matings between LLR-triploid hybrids can produce male offspring, but these have

8 The Pelophylax esculentus complex in North-Western Romania 301 morphological and biometric characters typical to hybrids, primarily due to the double lessonae chromosomes (LL) (Tunner 2000). Although RRL-triploids exhibit a more ridibundus-like phenotype, these are females and they can be easily defined morphologically (Günther 1975, Berger et al. 1978). Hence, we can exclude the possibility that in any R-R, R-E or L-R-E system populations from north-western Romania, the individuals of P. ridibundus proceed from matings between hybrids. It has to be noted that in many aquatic habitats P. lessonae seems to occur exclusively with P. kl. esculentus making up L-E system population. However, we consider inaccurate to speak about L-E populations because close to each aquatic habitat with L-E there are aquatic habitats with P. ridibundus species. Thus, although P. ridibundus seems to be missing from a habitat, during the breeding period it migrates toward ponds with P. lessonae (see in Rybacki & Berger 1994) and P. kl. esculentus converting the apparently L-E system into a L- R-E hybridogenetic system. The assessment of population systems is properly made if it is done solely during the reproductive periods and not after breeding (when water frogs have already occupied other environments, frequently not being linked anymore). Nevertheless, it has to be mentioned that in most populations of water frogs from north-western Romania, the three forms occur together in the post-reproductive period also, the only condition being the persistence of some aquatic habitats (because P. ridibundus is more aquatic). During the study, mixed pairs in amplexus were identified exclusively between males of P. lessonae and females of P. kl. esculentus (Fig.2), and between males of P. kl. esculentus and females of P. ridibundus, being also identified several spawns (Fig.3). We did not record pairs in amplexus between lessonae and ridibundus. In the study area mixed pairs in amplexus can already be seen in April, while pairs of malesfemales P. lessonae only from May. This seems to be related to the sexual activity of these Figure 1. Distribution draft of the population systems of Pelophylax esculentus complex in Arad (AR), Bihor (BH) and Satu-Mare (SM) counties [R- P. ridibundus; E- P. esculentus; L- P. lessonae]

9 302 Sas, I. forms also, which begins earlier in P. kl. esculentus than in P. lessonae (Heym 1974), thus the rep-roductive period has two stages (also see in: Gubányi 1996). Lessonae males have higher sexual activity than esculentus males (Blankenhorn 1977). Esculentus males do not account for the proportion of heterospecific pairs as they are always under-represented and mostly esculentus females are found in amplexus with lessonae males than vice versa (Lengagne et al. 2006). In addition, P. esculentus is a superior larval competitor, and adult females are about three times more fecund (Berger & Uzzell 1980), and has higher survival rate than P. lessonae (also see in Anholt et al. 2003). On the other hand, P. lessonae males using the biggeris-better strategy (Blankenhorn 1977) would reproduce almost exclusively with females of P. esculentus. Thus we can consider that without the reproduction in two stages, esculentus would rapidly displace its sexual host (P. lessonae) and lacking a viable sexual partner would then go extinct from these populations. Identifying R-E and E-E system populations is of great theoretical importance. In the common hybridogenesis model of the P. esculentus complex (e.g. Schultz 1969, Uzzel & Berger 1975) the hybrid can produce viable offspring through sexual parasitism. Because in hybridogenesis P. esculentus prior to meiosis exclude the L parental genome, only the R genome being replicated and transmitted clonally (R-hybridogenesis sensu Polls-Pelaz 1994), it needs mating with its sexual host, represented by P. lessonae. But, in the R-E system the hybrid coexists with P. ridibundus and in the E-E system appears alone without the parental species. Sometimes the hybrids exclude their ridibundus genome and produce sperm with a lessonae genome (Anti-R-hybridogenesis, sensu Polls-Pelaz 1994) (or a mixture of both kinds of sperm Vinogradov et al. 1991, and also see the discussion in Ragghianti et al. 2007). After Ragghianti et al. (2007), a particular combination of R-E system lessonae and R-E system ridibundus genomes is necessary to lead to the R-E system type of hybridogenetic gametogenesis. Another possibility for maintaining hybrids in these populations would be the presence of triploid individuals (LRR or LLR) beside diploid ones (LR) in the R-E and E-E system populations (see fig.1 with gametogenesis and mating combination, in Arioli et al or in Christiansen et al. 2010). In the northern part of the study area, in the vicinity of some R-E or E-E system populations there are important P. lessonae populations too. Hence, gene flow between hybrids and their sexual host (P. lessonae) cannot be excluded. But in the southern area (see Fig.1) the absence of P. lessonae excludes this possibility (excepting the Teuz River population). It is very important that in north-western Romania there were identified five cases of reproductive populations consisting solely of the hybrid P. kl. esculentus (E-E system). Although P. kl. esculentus is a hybrid, many times appears alone as well, in the absence of parental species in all-hybrid populations (e.g. Graf & Polls-Pellaz 1989, Günther 1997a, Plötner 2005, and also see in Aroli 2007, Jacob 2007 cited in Christiansen et al. 2010), because it has become reproductively independent of the parental forms (Graf & Polls-Pelaz 1989). Practically the all-hybrid populations secondarily acquired sexual reproduction, have transformed from clonal to sexual hybrids, having a great evolutionary potential (Christiansen & Reyer 2009). All-hybrid populations (E-E system) mainly occur in the northern area of their distribution range as a consequence of polyploidization (RRL or LLR triploids) (Günther et al. 1979, Christiansen & Reyer 2009, Christiansen et al. 2010, and see in Arioli et al and the references cited therein). In the case of two populations of P. kl. esculentus we have not identified males (all-females E system). One of these all-females E system populations (POP063 Table 1) has been recently described (Sas et al. 2009a). The second

10 The Pelophylax esculentus complex in North-Western Romania 303 Figure 2. Amplex between P. lessonae male and P. esculentus female (April 2009, POP111 see Table 1) Figure 3. P. lessonae male and several lessonae x esculentus spawn (April 2009, the Vermes marsh at POP111 see Table 1)

11 304 Sas, I. population is located in northern Livada Plain (POP081 Table 1), inhabiting a habitat made by a water accumulation in an abandoned quarry. Although in the case of these two E system populations there would be possible an influx of males of parental species in the breeding period, during the study we have encountered only female individuals of P. esculentus. In 1993, Schmidt worked out a pattern which considers that water frogs can reproduce both sexually and asexually (asexuality characterizes hybridogenesis - see in: Schmidt 1993). Hotz and collaborators (1992) consider that P. kl. esculentus has a reproductive system analogous to the parthenogenetic cycles. It is possible that these populations are included in a parthenogenetic cycle, but in order to prove this, beside further field observations, experimental laboratory studies are needed in the future. Concerning the population from Livada Plain, although repeatedly there were captured exclusively female hybrids, taking account of the large surface of the habitat and its unapproachable sections we cannot assert for certain a parthenogenetic status of this population. It is possible that these populations had in the past male individuals also. But following the isolation of these populations from those of the parental species, reproduction could have been achieved only by matings between hybrids. Thus it is quite possible that after males disappeared from the population, the frogs have entered into a parthenogenetic cycle to preserve the population over time. It remains to be seen whether males will appear in the future in these populations which could indicate a population consisting of triploid individuals or of triploid individuals also. Perspectives By clarifying the distribution of water frogs in north-western Romania, this area becomes the only one from the country for which detailed information on distribution of the three forms and the integration of these in various population systems are available. Identification of numerous L-R-E (L-E) system populations is very important with regard to the hybridogenetic complex. Conservation in time of these populations is also ensured by their placement in Natura 2000 Habitats Directive sites: Carei Plain - ROSCI0020, Tur River - ROSCI0214 (the importance of N2K sites see reviewed in Gagyi-Pallfy 2007, Badea 2007). Many R-E and E-E system populations are also found in these areas. The southern populations from the study area (R-E, E-E and L-R-E systems from Teuz Valley) are almost entirely located outside of any protected areas. The only exceptions are some R-E populations that occur in Natura 2000 sites (Drocea - ROSCI0070, Cermei Plain ROSPA0014). Although P. ridibundus species and the hybrid P. esculentus are not protected (OUG 57/2007), R-E, E-E system populations (all-female E as well) have a remarkable theoretical importance, particularly in terms of evolutionary biology. All these bring into question by what mechanisms these populations are maintaining over time (clonal or/and sexual reproduction) and what is the ploidy of hybrids from these populations. References Anholt, B.R., Hotz, H., Guex, G.D., Semlitsch, R.D. (2003): Overwinter survival of Rana lessonae and its hemiclonal associate Rana esculenta. Ecology 84(2): Arioli, M. (2007): Reproductive patterns and population genetics in pure hybridogenetic water frog populations of Rana esculenta. PhD Thesis 2007, University of Zurich, Switzerland. Arioli, M., Jakob, C., Reyer, H.U. (2010): Genetic diversity in water frog hybrids (Pelophylax esculentus) varies with population structure and geographic location. Molecular Ecology 19: Badea, A.B. (2008): Protected areas as instrument for nature protection. AES Bioflux 2008 (pilot b): [In Romanian].

12 The Pelophylax esculentus complex in North-Western Romania 305 Berger, L. (1966): Biometrical studies on the population of water frog from the environs of Poznan. Annales Zoologici (Warsaw) 23: Berger, L. (1977): Systemathics and hybridization in the Rana esculenta complex. pp In: Taylor, D.H., Guttman, S.I. (eds.), The Reproductive Biology of Amphibians. New York, Plenum. Berger, L. (1983): Western Palearctic water frogs (Amphibia, Ranidae): systematichs, genetics and population compozitions. Experientia 39: Berger, L., Uzzell, T. (1980) The eggs of European water frogs (Rana esculenta complex) and their hybrids. Folia Biologica (Kracow) 28: Berger, L., Roguski, H., Uzzell, T. (1978): Triploid F2 progeny of water forgs (Rana esculenta complex). Folia Biologica (Kracow) 26: Blankenhorn, H.J. (1977): Reproduction and mating behavior in Rana lessonae-rana esculenta mixed populations. pp In: Taylor, D.H., Guttman, S.I. (eds.), The Reproductive Biology of Amphibians. New-York, Plenum. Borkin, L.J., Caune, I.A., Pikulik, M.M., Sokolova, M. (1986): Distribution and structure of the green frog complex in the USSR. pp In: Roczek, Z. (eds.), Studies in herpetology. Charles University, Prague. Campbell, H.W., Christman, S.P. (1982): Field techniques for herpetofaunal community analysis. pp In: Scott, N.J. Jr. (ed), Herpetological Communities, U.S.D.I. Fish and Wildlife Service, Wildlife Research Report 13, Washington D.C. Christiansen, D.G., Reyer, H.U. (2009): From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution 63(7): Christiansen, D, Fog, K, Pedersen, B.V., Boomsma, J.J. (2005): Reproduction and hybrid load in all-hybrid populations of Rana esculenta water frogs in Denmark. Evolution 59: Christiansen, D.G., Jakob, C., Arioli, M., Roethlisberger, S., Reyer, H.U. (2010): Coexistence of diploid and triploid hybrid water frogs: population differences persist in the apparent absence of differential survival. BMC Ecology 10: art.no.14. Cogălniceanu, D., Hartel, T., Plăiaşu, R. (2006): Establishing an amphibian monitoring program in two protected area of Romania. pp In: Vences, M., Köhler, J., Ziegler, T., Böhme, W. (eds), Herpetologia Bonnensis II. Proceedings of the 13th Congress of the Societas Europaea Herpetologica 27 September 2 October 2005 Bonn, Germany. Covaciu-Marcov, S.D. (2004): Studiul herpetofaunei din Câmpia de Vest şi de pe versantul vestic al Munţilor Apuseni. Doctoral thesis, Babeş-Bolyai University, Cluj- Napoca, Romania. [in Romanian] Covaciu-Marcov, S.D., Ferenţi, S. (2008): About the presence of Rana temporaria species (Amphibia) at 150 m altitude in the Livada forest (North-Western Romania). Oltenia, Studii şi Comunicări, Ştiinţele Naturii 24: Covaciu-Marcov, S.D., Ghira, I., Cicort-Lucaciu, A.Ş., Sas, I., Strugariu, A., Bogdan, H.V. (2006a): Contributions to knowledge regarding the geographical distribution of the herpetofauna of Dobrudja, Romania. North-Western Journal of Zoology 2: Covaciu-Marcov, S.D., Sas, I., Kiss, A., Bogdan, H., Cicort- Lucaciu, A.Ş. (2006b): The herpetofauna from the Teuz River hydrographic basin (Arad County, Romania). North-Western Journal of Zoology 2: Covaciu-Marcov, S.D., Cicort-Lucaciu, A.S., Sas, I., Groza, M.I., Bordaş, I. (2007a): Contributions to the knowledge regarding the herpetofauna from the Maramureş county areas of Măgura Codrului, Romania. Biharean Biologist 1: Covaciu-Marcov, S.D., Cicort-Lucaciu, A.S., Ferenţi, S. (2007b): Salamandra salamandra (Amphibia, Salamandridae) at 150m height in the forest from Livada, Satu-Mare County, Romania. Analele Universităţii din Craiova, seria Biologie, Horticultură, Tehnologia Prelucrării Produselor Agricole, Ingineria Mediului 12 (48): Covaciu-Marcov, S.D., Cicort-Lucaciu, A.S., Ferenţi, S. (2007c): Some low altitude Triturus montandoni (Boulenger 1880) population records from the Oaş region, North-Western Romania. North-Western Journal of Zoology 3: Covaciu-Marcov, S.D., Sas, I., Cicort-Lucaciu, A.S., Bogdan, H.V., Kovacs, E.H., Maghiar, C. (2008a): The herpetofauna of the Natural Reservation from the Inferior Course of the Tur River and its surrounding areas. In: Sike, T., Mark-Nagy, J. (eds), Flora şi Fauna Rezervaţiei Naturale Râul Tur / The Flora and Fauna of the Tur River Natural Reserve. Biharean Biologist (Suppl. 1): Covaciu-Marcov, S.D., Cicort-Lucaciu, A.Ş., Sas, I., Strugariu, A., Cacuci, P., Gherghel, I. (2008b): Contributions to the knowledge regarding the composition and geographical distribution of the herpetofauna from Northern Moldavia (Suceava and Botoşani Counties, Romania). North-Western Journal of Zoology 4: S25-S47. Covaciu-Marcov, S.D., Bogdan, H.V., Paina, C., Toader, S., Condure, N. (2008c): The herpetofauna of the northwestern region of Bihor County, Romania. Biharean Biologist 2: Covaciu-Marcov, S.D., Cicort-Lucaciu, A.S., Ferenţi, S., David, A. (2008d): The distribution of lowland Zootoca vivipara populations in North-Western Romania. North-Western Journal of Zoology 4: Covaciu-Marcov, S.D., Cicort-Lucaciu, A.S., Balint (Szeibel), N., Szabo, A.L., Lazăr, O. (2008e): About some low altitude populations of Salamandra salamandra and Rana temporaria from the Prunisor-Ignesti area, Arad County, Romania. Analele Universităţii din Craiova, seria Biologie, Horticultură, Tehnologia Prelucrării Produselor Agricole, Ingineria Mediului 13(49): Covaciu-Marcov, S.D., Cicort-Lucaciu, A.S., Ferenţi, S., Dobre, F., Birceanu, M., Mihut, R., Strugariu, A. (2009a): The herpetofauna of the" Jiului Gorge" National Park, Romania. North-Western Journal of Zoology 5: S01-S78. Covaciu-Marcov, S.D., Cicort-Lucaciu, A.Ş., Gaceu, O., Sas, I., Bogdan, H.V., Ferenţi, S. (2009b): The herpetofauna of

13 306 Sas, I. the south-western part of Mehedinţi County, Romania. North-Western Journal of Zoology 5: Covaciu-Marcov, S.D. Dincă, I., Dimancea, N. (2009c): The herpetofauna of the hydrographical basin of the Moca stream from Valea lui Mihai town, Bihor County, Romania. Biharean Biologist 3(2): Covaciu-Marcov, S.D., Sas, I., Cicort-Lucaciu, A.S., Kovacs, E.H., Pintea, C. (2009d): Herpetofauna of the Natural Reserves from Carei Plain: zoogeographical significance, ecology, statute and conservation. Carpathian Journal of Earth and Environmental Sciences 4: Covaciu-Marcov, S.D., Ferenţi, S., Bogdan, H.V., Groza, M.I., Bata, Zs.S. (2009e): On the hybrid zone between Bombina bombina and Bombina variegata in Livada Forest, northwestern Romania. Biharean Biologist 3: Covaciu-Marcov, S.D., Sas, I., Ilieş, A. (2010a): Pelophylax lessonae (Amphibia) in Râul Doamnei, Argeş County, Romania. How have we arrived here? Biharean Biologist 4: Covaciu-Marcov, S.D., Cicort-Lucaciu, A.S., Dimancea, N. (2010b): Triturus dobrogicus (Kiritzescu, 1903) in Caraş Severin county: status and conservation implications. Carpathian Journal of Earth and Environmental Sciences 5(1): Covaciu-Marcov, S.D., Cicort-Lucaciu, A.Ş., Sas, I., Cupşa, D., Kovacs, E.H., Ferenţi, S. (2010c): Food composition of some low altitude Lissotrion montandoni (Amphibia, Caudata) populations from North-Western Romania. Archives of Biological Sciences (Belgrade) 62(2): Crump, M.L., Scott, N.J. (1994): Visual encounter surveys. pp In: Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.C., Foster, M.S. (eds), Measuring and Monitoring Biological Diversity. Standard Methods for Amphibians. Smithsonian Institution Press, Washington, DC. Csata, Z., Csata, E. (1996[1997]): Răspândirea amfibienilor din partea centrală şi estică a Depresiunii Braşov. Muzeul Naţional Secuiesc (Muzeul Secuiesc al Ciucului - Sf. Gheorghe), Acta Hargitensia 3 (Aluta 20 / Acta 1996): Demeter, L., Hartel, T., Cogălniceanu, D. (2006): Distribution and conservation status of amphibians in the Ciuc-basin, Eastern Carpathians, Romania. Zeitschrift für Feldherpetologie, Supplement 10: Dubois, A., Ohler, A. (1996[1994]): Frogs of the subgenus Pelophylax (Amphibia, Anura, genus Rana): a catalogue of available and valid scientific names, with comments on the name-bearing types, complete synonymies, proposed common names, and maps showing all type localities. In: Ogielska, M. (ed), II International Symposium on Ecology and Genetics of European water frogs, September 1994, Wroclaw, Poland. Zoologica Poloniae 39: Gagyi-Palffy, A. (2007): Natura 2000 network. AES Bioflux 2008 (pilot a): [In Romanian] Gherghel, I., Strugariu, A., Ghiurcă, D., Cicort-Lucaciu, A.Ş. (2008): The herpetofauna from the Bistriţa river basin (Romania): geographical distribution. North-Western Journal of Zoology 4: S71-S103. Ghiurca, D., Gherghel, I., Rosu, G. (2009): Contribution to knowledge of the distribution of herpetofauna in Tarcau Mountains (Romania). AES Bioflux 1(2): Graf, J.D., Müller, W.P. (1979): Experimental gynogenesis provides evidence of hybridogenetic reproduction in the Rana esculenta complex. Experientia 35: Graf, J.D., Polls-Pellaz, M. (1989): Evolutionary genetics of the Rana esculenta complex. pp In: Dawley, R.M., Bogart, J.P. (eds), Evolution and Ecology of Unisexual Vertebrates. New York State Museum Publications (Bulletin) 466. Albany, New York. Gubányi, A. (1996): Adatok a szigetközi vízibéka populációk (Rana esculenta complex) ismeretéhez. Állattani Közlemények 81: Gubányi, A., Korsós, Z. (1992): Morphological analysis of two Hungarian water frog (Rana lessonae-esculenta) populations. Amphibia-Reptilia 13: Guex, G.D., Hotz, H., Semlitsch, R.D. (2002): Deleterious alleles and differential viability in progeny of natural hemiclonal frogs. Evolution 56: Günther, R. (1975): Zum natürlichen Vorkommen und zur Morphologie Triploider teichfrösche, Rana esculenta L., in der DDR (Anura, Ranidae). Mitteilungen aus dem Zoologischen Museum in Berlin 51: Günther, R. (1983): Zur Populationsgenetik der mitteleuropäischen Wasserfrüsche des Rana esculenta synkleptons (Anura, Ranidae). Zoologischer Anzeiger 211: Günther, R. (1997a): Rana kl. esculenta Linnaeus, pp In: Gasc, J.P. et al. (ed), Atlas of Amphibians and Reptiles in Europe. Museum National D Histoire Naturelle, Paris. Günther, R. (1997b): Rana lessonae Camerano, pp In: Gasc, J.P. et al. (ed), Atlas of Amphibians and Reptiles in Europe. Museum National D Histoire Naturelle, Paris. Günther, R. (1997c): Rana ridibunda Pallas, pp In: Gasc, J.P. et al. (ed), Atlas of Amphibians and Reptiles in Europe. Museum National D Histoire Naturelle, Paris. Günther, R., Uzzell, T., Berger, L. (1979): Inheritance patterns in triploid Rana esculenta (Amphibia, Salientia). Mitteilungen aus dem Zoologischen Museum in Berlin 55: Günther, R., Plötner, J., Tetzlaff, I. (1991): Zu einigen Merkmalen der Wasserfrösche (Rana synkl. esculenta) des Donau Deltas. Salamandra 27(4): Hartel, H., Demeter, L., Cogălniceanu, D., Tulbure, M. (2006): The influence of habitat characteristics on amphibian species richness in two river basins of Romania. pp In: Vences, M., Köhler, J., Ziegler, T., Böhme, W. (eds), Herpetologia Bonnensis II. Proceedings of the 13th Congress of the Societas Europaea Herpetologica, 27 September 2 October 2005 Bonn, Germany. Hartel, T., Öllerer, K., Cogălniceanu, D., Nemes, Sz., Moga, C.I., Demeter, L. (2010): Pond-based survey of amphibians in a Saxon cultural landscape from Transylvania (Romania). Italian Journal of Zoology 77: Heym, W.D. (1974): Studien zur Verbreitung, Ökologie und Ethologie der Grünfrösche in der mittleren und

14 The Pelophylax esculentus complex in North-Western Romania 307 nördlichen Niederlausitz. Mitteilungen aus dem Zoologischen Museum in Berlin 50: Hotz, H., Beerli, P., Spolsky, C. (1992): Mitochondrial DNA reveals formation of nonhybrid frogs by natural matings between hemiclonal hybrids. Molecular Biology Evolution 9: Jakob, C. (2007): Structure and dynamics of pure hybridogenetic water frog populations of Rana esculenta in Southern Sweden. PhD thesis 2007 [ University of Zurich, Switzerland. Krizmanić, I.I. (2008a): Water frogs (Rana esculenta complex) in Serbia - morphological data. Archives of Biological Sciences (Belgrade) 60(3): Krizmanić, I.I. (2008b): Basic morphological characteristics of the Rana (Pelophylax) synklepton esculenta complex in relation to legal regulations in Serbia. Archives of Biological Sciences (Belgrade) 60(4): Lengagne, T., Grolet, O., Joly, P. (2006): Male mating speed promote hybridization in the Rana lessonae-rana esculenta waterfrog system. Behavioral Ecology and Sociobiology 60(2): Marracci, S., Ragghianti, M. (2008): The hybridogenetic Rana (Pelophylax) esculenta complex studied in a molecular context. Italian Journal of Zoology 75(2): Neveu, A. (2009): Suitability of European green frogs for intensive culture: Comparison between different phenotypes of the esculenta hybridogenetic complex. Aquaculture 295: Pagano, A., Joley, P., Hotz, H. (1997): Taxon composition and genetic variation of water frogs in the mid-rhône floodplain. Comptes Rendus de l Académie Des Sciences de Paris, Sciences de la vie / Life Scienses, Série III, 320: Paunović, A., Bjelić-Čabrilo, O., Šimić, S. (2010): The diet of water frogs (Pelophylax esculentus complex ) from the Petrovaradin Rit marsh (Serbia). Archives of Biological Sciences (Belgrade) 62(3): Plötner, J. (2005): Die westpala arktischen Wasserfrosche. Laurenti-Verlag, Bielefeld, Germany. Plötner, J., Uzzell, T., Beerli, P., Spolsky, C., Ohst, T., Litvinchuk, S.N., Guex, G.D., Reyer, H.U., Hotz, H., (2008): Widespread unidirectional transfer of mitochondrial DNA: case in Western Palearctic water frogs. Journal of Evolutionary Biology 21: Polls-Pelaz, M. (1989): The biological klepton concept (BKC). Alytes 8: Polls-Pelaz, M. (1994): Modes of gametogenesis among kleptons of the hybridogenetic water frog complex: an evolutionary synthesis. Zoologica Poloniae 39: Ragghianti, M., Bucci, S., Marracci, S., Casola, C., Mancino, G., Hotz, H., Guex, G.D., Plötner, J., Uzzell, T., (2007): Gametogenesis of intergroup hybrids of hemiclonal frogs. Genetical Research 89: Reyer, H.U., Bättig, I. (2004): Identification of reproductive status in female frogs A quantitative comparison of nine methods. Herpetologica 60: Rybacki, M., Berger, L. (1994): Distribution and ecology of water frogs in Poland. Zoologica Poloniae 39: Sas, I. (2009): Faunistical, ecological and physiological research on the Rana esculenta complex from northwestern Romania. Doctoral Thesis, Babeş-Bolyai University, Cluj-Napoca, Romania. [in Romanian, with English Title and Summary] Sas, I., Covaciu-Marcov, S.D., Demeter, L., Cicort-Lucaciu, A.S., Strugariu, A. (2008): Distribution and Status of the Moor Frog (Rana arvalis) in Romania. pp in: Glandt, D., Jehle, R. (eds), The Moor Frog. Laurenti Verlag, Germany. Zeitschrift für Feldherpetologie, Suppl. 13: Sas, I., Covaciu-Marcov, S.D., Strugariu, A., David, A., Ilea, C. (2009a): Food habit of Rana (Pelophylax) kl. esculenta females in a new recorded E-system population from a forested habitat in North-Western Romania. Turkish Journal of Zoology 33: 1-5. Sas, I., Kovács, É.H., Covaciu-Marcov, S.D. (2009b): Are the hibernating water frogs from Pelophylax (Rana) esculentus complex (from North-Western Romania) able to adapt to the thermal water conditions? AES Bioflux 1: Sas, I., Covaciu-Marcov, S.D., Dimancea, N., Lukacs, I. (2009c): What have we accomplished in the past years? Monitoring the amphibians from the thermal habitats from western Romania. Herpetological Romanica 3: Sas, I., Kovács, É.H., Covaciu-Marcov, S.D., Szatmari, P.M. (2010): Southern distribution limit of Pelophylax lessonae and the L-R-E population system in Romania. Biharean Biologist 4: Schmeller, D.S. (2004): Tying ecology and genetics of hemiclonally reproducing waterfrogs (Rana, Anura). Annales Zoologici Fennici 41: Schmeller, D.S., O Hara, R., Kokko, H. (2005): Male adaptive stupidity: male mating pattern in hybridogenetic frogs. Evolutionary Ecology Research 7: Schmidt, B.R. (1993): Are hybridogenetic frogs cyclical partenogens? TREE, Ecolology Evolution 8: Schneider, H, Sofianidou, T.S., Kyriakopoulou-Sklavounou, P. (1984): Bioacoustic and morphometric studies in water frogs (genus Rana) of Lake Ioannina in Greece, and description of a new species (Anura, Amphibia). Zeitschrift für Zoologische Systematik und Evolutionsforschung 22: Schultz, R.J. (1969): Unisexuallity and polyploidy in the teleost Poeciliopsis (Poecilidae) and other vertebrates. The American Naturalist 103: Som, C., Reyer, H.U. (2006): Variation in sex ratio and evolutionary rate of hemiclonal Rana esculenta populations. Evolutionary Ecology 20: Strugariu, A., Sos, T., Gherghel, I., Ghira, I., Săhlean, T.C., Puşcaşu, M.C., Huţuleac-Volosciuc, M.V. (2008): Distribution and current status of the herpetofauna from the northern Măcin Mountains area (Tulcea County, Romania). Analele Ştiinţifice ale Universităţii Al.I. Cuza Iaşi, seria Biologie Animală 54: Strugariu, A., Sos, T., Sotek, A., Gherghel, I., Hegyeli, Z. (2009):New locality records for the adder (Vipera berus) in the Carpathian Corner, Romania. AES Bioflux 1(2):

Pelophylax lessonae (Amphibia) in Râul Doamnei, Argeş County, Romania. How have we arrived here?

Pelophylax lessonae (Amphibia) in Râul Doamnei, Argeş County, Romania. How have we arrived here? Biharean Biologist (2010) Vol. 4, No.1, Pp.: 83-87 P-ISSN: 1843-5637, E-ISSN: 2065-1155 Article No.: 041203 Pelophylax lessonae (Amphibia) in Râul Doamnei, Argeş County, Romania. How have we arrived here?

More information

New record on the occurance of Dolichophis caspius (Reptilia: Colubridae) in Romanian Moldavia. Alexandru STRUGARIU 1 & Iulian GHERGHEL²

New record on the occurance of Dolichophis caspius (Reptilia: Colubridae) in Romanian Moldavia. Alexandru STRUGARIU 1 & Iulian GHERGHEL² Short Notes 57 Semlitsch, R. D. (1987): Paedomorphosis in Ambystoma talpoideum: effects of densizy, food and pond drying. Ecology, 68, 994-1002. Semlitsch, R. D. Harris R. N., Wilbur H. M. (1990): Paedomorphosis

More information

AES BIOFLUX Advances in Environmental Sciences - International Journal of the Bioflux Society

AES BIOFLUX Advances in Environmental Sciences - International Journal of the Bioflux Society AES BIOFLUX Advances in Environmental Sciences - International Journal of the Bioflux Society New locality records for the adder (Vipera berus) in the Carpathian Corner, Romania Alexandru Strugariu 1,

More information

Food composition of an Ichthyosaura alpestris (Amphibia) population from the Poiana Rusca Mountains, Romania

Food composition of an Ichthyosaura alpestris (Amphibia) population from the Poiana Rusca Mountains, Romania HERPETOLOGICA ROMANICA Vol. 5, 2011, pp.7-25 ISSN: 1842-9203 Article No. 111102 Food composition of an Ichthyosaura alpestris (Amphibia) population from the Poiana Rusca Mountains, Romania Horia Vlad BOGDAN*,

More information

at some point of their lives (Just et al., 1981). Such a change normally involves the

at some point of their lives (Just et al., 1981). Such a change normally involves the 1 GENERAL INTRODUCTION Amphibians are a class of vertebrates that generally make a change in habitat at some point of their lives (Just et al., 1981). Such a change normally involves the transformation

More information

Composition and age structure of the Pelophylax esculentus complex (Anura; Ranidae) population in inland Croatia

Composition and age structure of the Pelophylax esculentus complex (Anura; Ranidae) population in inland Croatia SALAMANDRA 54(1) Composition 11 20 15 and February age structure 2018 of ISSN the Pelophylax 0036 3375esculentus complex in Croatia Composition and age structure of the Pelophylax esculentus complex (Anura;

More information

First Documented Records of Pelophylax lessonae (Camerano, 1882) (Amphibia: Ranidae) from Bulgaria

First Documented Records of Pelophylax lessonae (Camerano, 1882) (Amphibia: Ranidae) from Bulgaria Zoogeography and Faunistics Research Article ACTA ZOOLOGICA BULGARICA Acta zool. bulg., 69 (4), 2017: 483-488 First Documented Records of Pelophylax lessonae (Camerano, 1882) (Amphibia: Ranidae) from Bulgaria

More information

NOTE ON THE HERPETOFAUNA OF THE VÂLCAN MOUNTAINS AND THEIR FOOTHILLS (SOUTHERN CARPATHIANS, ROMANIA)

NOTE ON THE HERPETOFAUNA OF THE VÂLCAN MOUNTAINS AND THEIR FOOTHILLS (SOUTHERN CARPATHIANS, ROMANIA) Travaux du Muséum National d Histoire Naturelle «Grigore Antipa» DOI: 10.2478/v10191-011-0029-8 Vol. LIV (2) pp. 513 521 30 Décembre 2011 NOTE ON THE HERPETOFAUNA OF THE VÂLCAN MOUNTAINS AND THEIR FOOTHILLS

More information

WHICH AQUATIC HABITAT IS BETTER FOR THE FEEDING OF A PROTECTED NEWT SPECIES (Triturus dobrogicus) IN CAREI PLAIN NATURAL PROTECTED AREA?

WHICH AQUATIC HABITAT IS BETTER FOR THE FEEDING OF A PROTECTED NEWT SPECIES (Triturus dobrogicus) IN CAREI PLAIN NATURAL PROTECTED AREA? Muzeul Olteniei Craiova. Oltenia. Studii i comunic ri. tiin ele Naturii. Tom. 28, No. 1/2012 ISSN 1454-6914 WHICH AQUATIC HABITAT IS BETTER FOR THE FEEDING OF A PROTECTED NEWT SPECIES (Triturus dobrogicus)

More information

Eremias arguta deserti (Reptilia: Lacertidae) is not extinct from Romanian Moldavia

Eremias arguta deserti (Reptilia: Lacertidae) is not extinct from Romanian Moldavia North-Western Journal of Zoology Vol. 3, No. 2, 2007 Short Note Eremias arguta deserti (Reptilia: Lacertidae) is not extinct from Romanian Moldavia Iulian GHERGHEL 1, Alexandru STRUGARIU 2 and Teodor GLAVAN

More information

Biometrical investigation of water frogs in the Szigetköz Landscape Protection Area

Biometrical investigation of water frogs in the Szigetköz Landscape Protection Area MISCELLANEA ZOOLOGICA HUNGARICA Tomus 10. 1995 p. 117-126 Biometrical investigation of water frogs in the Szigetköz Landscape Protection Area by A. Gubányi (Received May 16, 1995) Abstract: An identification

More information

Reproduction and Evolution Practice Exam

Reproduction and Evolution Practice Exam Reproduction and Evolution Practice Exam Topics: Genetic concepts from the lecture notes including; o Mitosis and Meiosis, Homologous Chromosomes, Haploid vs Diploid cells Reproductive Strategies Heaviest

More information

Aspects of breeding activity of Bufo viridis in an urban habitat: a case study in Oradea, Romania

Aspects of breeding activity of Bufo viridis in an urban habitat: a case study in Oradea, Romania Biharean Biologist (2010) Vol. 4, No.1, Pp.: 73-77 P-ISSN: 1843-5637, E-ISSN: 2065-1155 Article No.: 041110 Aspects of breeding activity of Bufo viridis in an urban habitat: a case study in Oradea, Romania

More information

The Origin of Species

The Origin of Species Chapter 24 The Origin of Species PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Modification of anti-predator behaviour in tadpoles by environmental conditioning

Modification of anti-predator behaviour in tadpoles by environmental conditioning Journal of Animal Ecology 1992, 61, 353-36 Modification of anti-predator behaviour in tadpoles by environmental conditioning RAYMOND D. SEMLITSCH and HEINZ-ULRICH REYER Institute of Zoology, University

More information

The Origin of Species

The Origin of Species LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 24 The Origin of Species Lectures

More information

Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine

Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine Accepted on 9 February 2016 J Zool Syst Evol Res 1 V. N. Karazin Kharkiv National University, Kharkiv, Ukraine; 2 Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia; 3 Tambov State

More information

ANIMAL ECOLOGY (A ECL)

ANIMAL ECOLOGY (A ECL) Animal Ecology (A ECL) 1 ANIMAL ECOLOGY (A ECL) Courses primarily for undergraduates: A ECL 312: Ecology (Cross-listed with BIOL, ENSCI). (3-3) Cr. 4. SS. Prereq: BIOL 211, BIOL 211L, BIOL 212, and BIOL

More information

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives.

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives. Genetic diversity and adaptation Specification reference 3.4.3 3.4.4 Learning objectives After completing this worksheet you should be able to: understand how meiosis produces haploid gametes know how

More information

5/31/2012. Speciation and macroevolution - Chapter

5/31/2012. Speciation and macroevolution - Chapter Speciation and macroevolution - Chapter Objectives: - Review meiosis -Species -Repro. Isolating mechanisms - Speciation -Is evolution always slow -Extinction How Are Populations, Genes, And Evolution Related?

More information

Northwestern Garter Snake (Thamnophis. ordinoides)

Northwestern Garter Snake (Thamnophis. ordinoides) Northwestern Garter Snake (Thamnophis ordinoides) Speciation I. What is a species? II. Isolating Mechanisms III. Models of Speciation Aristotle coined the term species. Genus -a group that shares generic

More information

Use of temporary ponds by amphibians in a wooded pasture, Romania

Use of temporary ponds by amphibians in a wooded pasture, Romania Biota 6/1-2, 2005 21 Use of temporary ponds by amphibians in a wooded pasture, Romania Tibor HARTEL 1, Cosmin I. MOGA 2 & Szilárd NEMES 3 1 Institut of Biology - Romanian Academy, Splaiul Independentei

More information

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis Lecture 14 Chapter 11 Biology 5865 Conservation Biology Problems of Small Populations Population Viability Analysis Minimum Viable Population (MVP) Schaffer (1981) MVP- A minimum viable population for

More information

IUCN Red List Process. Cormack Gates Keith Aune

IUCN Red List Process. Cormack Gates Keith Aune IUCN Red List Process Cormack Gates Keith Aune The IUCN Red List Categories and Criteria have several specific aims to provide a system that can be applied consistently by different people; to improve

More information

Georgia Performance Standards for Urban Watch Restoration Field Trips

Georgia Performance Standards for Urban Watch Restoration Field Trips Georgia Performance Standards for Field Trips 6 th grade S6E3. Students will recognize the significant role of water in earth processes. a. Explain that a large portion of the Earth s surface is water,

More information

The food composition of two brown frog populations (Rana dalmatina and Rana temporaria) from S laj County, Romania

The food composition of two brown frog populations (Rana dalmatina and Rana temporaria) from S laj County, Romania Biharean Biologist (2010) Vol. 4, No.1, Pp.: 7-14 P-ISSN: 1843-5637, E-ISSN: 2065-1155 Article No.: 041102 The food composition of two brown frog populations (Rana dalmatina and Rana temporaria) from S

More information

Distribution and conservation status of amphibians in the Ciuc basin, Eastern Carpathians, Romania

Distribution and conservation status of amphibians in the Ciuc basin, Eastern Carpathians, Romania Zeitschrift für Feldherpetologie, Supplement 10: 217 224 April 2006 M. SCHLÜPMANN & H.-K. NETTMANN (Hrsg.): Areale und Verbreitungsmuster: Genese und Analyse Distribution and conservation status of amphibians

More information

Conceptually, we define species as evolutionary units :

Conceptually, we define species as evolutionary units : Bio 1M: Speciation 1 How are species defined? S24.1 (2ndEd S26.1) Conceptually, we define species as evolutionary units : Individuals within a species are evolving together Individuals of different species

More information

The comparative analysis of the trophic spectrum of some populations of Pelophylax ridibundus and Pelophylax kl. esculentus from Arad County, Romania

The comparative analysis of the trophic spectrum of some populations of Pelophylax ridibundus and Pelophylax kl. esculentus from Arad County, Romania Herpetologica Romanica Vol. 3, 2009, pp. 31-39 ISSN: 1842-9203 Article No. 031105 The comparative analysis of the trophic spectrum of some populations of Pelophylax ridibundus and Pelophylax kl. esculentus

More information

These next few slides correspond with 23.4 in your book. Specifically follow along on page Use your book and it will help you!

These next few slides correspond with 23.4 in your book. Specifically follow along on page Use your book and it will help you! These next few slides correspond with 23.4 in your book. Specifically follow along on page 462-468. Use your book and it will help you! How does natural selection actually work? Natural selection acts

More information

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics. Evolutionary Genetics (for Encyclopedia of Biodiversity) Sergey Gavrilets Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996-6 USA Evolutionary

More information

Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS)

Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS) Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS) Objectives: By the end of the lesson you should be able to: Describe the 2 types of evolution Describe the 5 ways

More information

UON, CAS, DBSC, General Biology II (BIOL102) Dr. Mustafa. A. Mansi. The Origin of Species

UON, CAS, DBSC, General Biology II (BIOL102) Dr. Mustafa. A. Mansi. The Origin of Species The Origin of Species Galápagos Islands, landforms newly emerged from the sea, despite their geologic youth, are filled with plants and animals known no-where else in the world, Speciation: The origin

More information

Navigable maritime and river waterways in the seaside - Danube Delta area and the connected rural development

Navigable maritime and river waterways in the seaside - Danube Delta area and the connected rural development SUMMARY OF Ph-D Thesis, with title RESEARCH STUDIES ON MANAGEMENT IMPROVEMENT OF MARITIME AND RIVER TRANSPORT ACTIVITY IN THE COASTAL AND DANUBE DELTA AREA FROM AN ENVIROMENTAL, ECONOMIC AND SOCIAL PERSPECTIVE

More information

Hugues-Alexandre Blain 1,2*, Iván Lózano-Fernández 1,2 and Gottfried Böhme 3

Hugues-Alexandre Blain 1,2*, Iván Lózano-Fernández 1,2 and Gottfried Böhme 3 Blain et al. Zoological Studies (2015) 54:5 DOI 10.1186/s40555-014-0094-3 RESEARCH Open Access Variation in the ilium of central European water frogs Pelophylax (Amphibia, Ranidae) and its implications

More information

Face area (cm 2 ) Brain surface area (cm 2 ) Cranial capacity (cm 3 ) 1, Jaw Angle ( º )

Face area (cm 2 ) Brain surface area (cm 2 ) Cranial capacity (cm 3 ) 1, Jaw Angle ( º ) Honors Biology Test : Evolution GOOD LUCK! You ve learned so much! Multiple Choice: Identify the choice that best completes the statement or answers the question. (2 pts each) 1. As we move through the

More information

Climate Change Vulnerability Assessment for Species

Climate Change Vulnerability Assessment for Species Climate Change Vulnerability Assessment for Species SPECIES: Specify whether you are assessing the entire species or particular populations: This tool assesses the vulnerability or resilience of species

More information

STUDY GUIDE SECTION 16-1 Genetic Equilibrium

STUDY GUIDE SECTION 16-1 Genetic Equilibrium STUDY GUIDE SECTION 16-1 Genetic Equilibrium Name Period Date Multiple Choice-Write the correct letter in the blank. 1. The smallest unit in which evolution occurs is a. an individual organism. c. a species

More information

SPECIATION. REPRODUCTIVE BARRIERS PREZYGOTIC: Barriers that prevent fertilization. Habitat isolation Populations can t get together

SPECIATION. REPRODUCTIVE BARRIERS PREZYGOTIC: Barriers that prevent fertilization. Habitat isolation Populations can t get together SPECIATION Origin of new species=speciation -Process by which one species splits into two or more species, accounts for both the unity and diversity of life SPECIES BIOLOGICAL CONCEPT Population or groups

More information

How did it all begin?

How did it all begin? You Never Know! How did it all begin? Darwin's Theory of Natural Selection. Fact #1 - Without constraints, populations will grow exponentially, producing an ever more rapidly growing number of organisms.

More information

The Origin of Species

The Origin of Species The Origin of Species A. Macroevolution: Up to this point we have discussed changes in alleles or microevolution, with evolution this is the evolution of new. is the origin of a new species. There are

More information

Sexual Reproduction. Page by: OpenStax

Sexual Reproduction. Page by: OpenStax Sexual Reproduction Page by: OpenStax Summary Sexual reproduction was an early evolutionary innovation after the appearance of eukaryotic cells. The fact that most eukaryotes reproduce sexually is evidence

More information

Molecular identification of species and hybrids of water frogs (genus Pelophylax) from Lake Skadar, Southeast Adriatic drainages (Amphibia: Ranidae)

Molecular identification of species and hybrids of water frogs (genus Pelophylax) from Lake Skadar, Southeast Adriatic drainages (Amphibia: Ranidae) SALAMANDRA 54(2) 147 157 Molecular 15 May identification 2018 ISSN of 0036 3375 water frogs from Lake Skadar Molecular identification of species and hybrids of water frogs (genus Pelophylax) from Lake

More information

III Introduction to Populations III Introduction to Populations A. Definitions A population is (Krebs 2001:116) a group of organisms same species

III Introduction to Populations III Introduction to Populations A. Definitions A population is (Krebs 2001:116) a group of organisms same species III Introduction to s III Introduction to s A. Definitions B. characteristics, processes, and environment C. Uses of dynamics D. Limits of a A. Definitions What is a? A is (Krebs 2001:116) a group of organisms

More information

Chapter 11 INTRODUCTION TO GENETICS

Chapter 11 INTRODUCTION TO GENETICS Chapter 11 INTRODUCTION TO GENETICS 11-1 The Work of Gregor Mendel I. Gregor Mendel A. Studied pea plants 1. Reproduce sexually (have two sex cells = gametes) 2. Uniting of male and female gametes = Fertilization

More information

Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved?

Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved? Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved? Critical to determining the limits of a species is understanding if two populations

More information

The Origin of Species

The Origin of Species The Origin of Species Introduction A species can be defined as a group of organisms whose members can breed and produce fertile offspring, but who do not produce fertile offspring with members of other

More information

RELATING HYBRID ADVANTAGE AND GENOME REPLACEMENT IN UNISEXUAL SALAMANDERS

RELATING HYBRID ADVANTAGE AND GENOME REPLACEMENT IN UNISEXUAL SALAMANDERS ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2011.01523.x RELATING HYBRID ADVANTAGE AND GENOME REPLACEMENT IN UNISEXUAL SALAMANDERS Noah D. Charney 1,2 1 Organismic and Evolutionary Biology, University of

More information

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Section 1: Chromosomes and Meiosis KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs

Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs doi: 10.1111/j.1420-9101.2008.01527.x Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs J. PLÖTNER,* T. UZZELL, P. BEERLI,à C. SPOLSKY, T. OHST,* S. N.

More information

Spatial distribution and survival rate of waterfrog tadpoles in relation to biotic and abiotic factors: a eld experiment

Spatial distribution and survival rate of waterfrog tadpoles in relation to biotic and abiotic factors: a eld experiment Spatial distribution and survival rate of waterfrog tadpoles in relation to biotic and abiotic factors: a eld experiment Sylvie Thurnheer, Heinz-Ulrich Reyer 1 Zoological Institute, University of Zurich,

More information

Ch. 24 The Origin of Species

Ch. 24 The Origin of Species Ch. 24 The Origin of Species 2007-2008 So what is a species? Biological species concept defined by Ernst Mayr population whose members can interbreed & produce viable, fertile offspring reproductively

More information

SPECIATION. SPECIATION The process by which once species splits into two or more species

SPECIATION. SPECIATION The process by which once species splits into two or more species SPECIATION SPECIATION The process by which once species splits into two or more species Accounts for the diversity of life on earth If no speciation, there would only be species that was continuously evolving

More information

PRINCIPLES OF MENDELIAN GENETICS APPLICABLE IN FORESTRY. by Erich Steiner 1/

PRINCIPLES OF MENDELIAN GENETICS APPLICABLE IN FORESTRY. by Erich Steiner 1/ PRINCIPLES OF MENDELIAN GENETICS APPLICABLE IN FORESTRY by Erich Steiner 1/ It is well known that the variation exhibited by living things has two components, one hereditary, the other environmental. One

More information

Chapter 17: Population Genetics and Speciation

Chapter 17: Population Genetics and Speciation Chapter 17: Population Genetics and Speciation Section 1: Genetic Variation Population Genetics: Normal Distribution: a line graph showing the general trends in a set of data of which most values are near

More information

IV. Natural Selection

IV. Natural Selection IV. Natural Selection A. Important points (1) Natural selection does not cause genetic changes in individuals (2) Change in allele frequency occurs in populations (3) Fitness!" Reproductive Success = survival

More information

Quantitative Trait Variation

Quantitative Trait Variation Quantitative Trait Variation 1 Variation in phenotype In addition to understanding genetic variation within at-risk systems, phenotype variation is also important. reproductive fitness traits related to

More information

THE MAXIMUM QUANTITIES OF RAIN-FALL IN 24 HOURS IN THE CRIŞUL REPEDE HYDROGRAPHIC AREA

THE MAXIMUM QUANTITIES OF RAIN-FALL IN 24 HOURS IN THE CRIŞUL REPEDE HYDROGRAPHIC AREA Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 8 THE MAXIMUM QUANTITIES OF RAIN-FALL IN 24 HOURS IN THE CRIŞUL REPEDE HYDROGRAPHIC AREA *University of Oradea, Faculty of Environmental

More information

Linking levels of selection with genetic modifiers

Linking levels of selection with genetic modifiers Linking levels of selection with genetic modifiers Sally Otto Department of Zoology & Biodiversity Research Centre University of British Columbia @sarperotto @sse_evolution @sse.evolution Sally Otto Department

More information

WHAT IS BIOLOGICAL DIVERSITY?

WHAT IS BIOLOGICAL DIVERSITY? WHAT IS BIOLOGICAL DIVERSITY? Biological diversity or biodiversity is the variety of life - the wealth of life forms found on earth. 9 WHAT IS BIOLOGICAL DIVERSITY? Wilcox s (1984) definition: Biological

More information

The Mechanisms of Evolution

The Mechanisms of Evolution The Mechanisms of Evolution Figure.1 Darwin and the Voyage of the Beagle (Part 1) 2/8/2006 Dr. Michod Intro Biology 182 (PP 3) 4 The Mechanisms of Evolution Charles Darwin s Theory of Evolution Genetic

More information

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question.

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question. chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If a mutation introduces a new skin color in a lizard population, which factor might determine

More information

Trait-mediated indirect effects and complex life-cycles in two European frogs

Trait-mediated indirect effects and complex life-cycles in two European frogs Evolutionary Ecology Research, 2002, 4: 519 536 Trait-mediated indirect effects and complex life-cycles in two European frogs Res Altwegg* Institute of Zoology, University of Zürich, Winterthurerstrasse

More information

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population The Evolution of Populations What is Evolution? A change over time in the genetic composition of a population Human evolution The gene pool Is the total aggregate of genes for a particular trait in a population

More information

NOTES CH 24: The Origin of Species

NOTES CH 24: The Origin of Species NOTES CH 24: The Origin of Species Species Hummingbirds of Costa Rica SPECIES: a group of individuals that mate with one another and produce fertile offspring; typically members of a species appear similar

More information

The Origin of Species

The Origin of Species LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 24 The Origin of Species Lectures

More information

Thursday, March 21, 13. Evolution

Thursday, March 21, 13. Evolution Evolution What is Evolution? Evolution involves inheritable changes in a population of organisms through time Fundamental to biology and paleontology Paleontology is the study of life history as revealed

More information

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature )

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 2: how traits are passed from the parents

More information

Biology Semester 2 Final Review

Biology Semester 2 Final Review Name Period Due Date: 50 HW Points Biology Semester 2 Final Review LT 15 (Proteins and Traits) Proteins express inherited traits and carry out most cell functions. 1. Give examples of structural and functional

More information

2. What is meiosis? The process of forming gametes (sperm and egg) 4. Where does meiosis take place? Ovaries- eggs and testicles- sperm

2. What is meiosis? The process of forming gametes (sperm and egg) 4. Where does meiosis take place? Ovaries- eggs and testicles- sperm Name KEY Period Biology Review Standard 3 Main Idea Explain the significance of meiosis and fertilization in genetic variation. How I can demonstrate what a smart. Person I am 1. What is fertilization?

More information

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology UNIT V Chapter 11 Evolution of Populations UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations I. Genetic Variation Within Populations (11.1) A. Genetic variation in a population increases the chance

More information

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each)

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each) Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each) 1. Evolution is a. a change in allele frequency in a population b. occurred in the past

More information

THE OHIO JOURNAL OF SCIENCE

THE OHIO JOURNAL OF SCIENCE THE OHIO JOURNAL OF SCIENCE VOL. LV NOVEMBER, 1955 No. 6 AN OUTLINE OF THE PROCESS OF ORGANIC EVOLUTION DONALD J. BORROR Department of Zoology and Entomology, The Ohio State University, Columbus, 10 THE

More information

Sexual Reproduction *

Sexual Reproduction * OpenStax-CNX module: m45465 1 Sexual Reproduction * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract By the end of this section, you

More information

Heredity and Evolution

Heredity and Evolution CHAPTER 9 Heredity and Evolution Multiple Choice Questions 1. Exchange of genetic material takes place in (a) vegetative reproduction (b) asexual reproduction (c) sexual reproduction (d) budding 2. Two

More information

Topic outline: Review: evolution and natural selection. Evolution 1. Geologic processes 2. Climate change 3. Catastrophes. Niche.

Topic outline: Review: evolution and natural selection. Evolution 1. Geologic processes 2. Climate change 3. Catastrophes. Niche. Topic outline: Review: evolution and natural selection Evolution 1. Geologic processes 2. Climate change 3. Catastrophes Niche Speciation Extinction Biodiversity Genetic engineering http://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=m20b&product_isbn_issn=9780495015987&discipline_number=22

More information

WINTER ACTIVITY OF TERRESTRIAL ISOPODS FROM THERMAL HABITATS IN WESTERN ROMANIA

WINTER ACTIVITY OF TERRESTRIAL ISOPODS FROM THERMAL HABITATS IN WESTERN ROMANIA Arch. Biol. Sci., Belgrade, 65 (2), 795-800, 2013 DOI:10.2298/ABS1302795F WINTER ACTIVITY OF TERRESTRIAL ISOPODS FROM THERMAL HABITATS IN WESTERN ROMANIA SÁRA FERENŢI¹ ² ³*, DIANA CUPȘA 2, A.-Ș. CICORT-LUCACIU

More information

The Origin of Species

The Origin of Species The Origin of Species What you need to know The difference between microevolution and macroevolution. The biological concept of species. Prezygotic and postzygotic barriers that maintain reproductive isolation

More information

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results?

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results? CHAPTER 6 3 Meiosis SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a sex cell? How are sex cells made? How does meiosis help explain

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 4.2: Biodiversity Notes Biodiversity is the variety of living organisms, over time the variety of life on Earth has become more extensive but now it is being threatened by

More information

3/24/10. Amphibian community ecology. Lecture goal. Lecture concepts to know

3/24/10. Amphibian community ecology. Lecture goal. Lecture concepts to know Amphibian community ecology Lecture goal To familiarize students with the abiotic and biotic factors that structure amphibian communities, patterns in species richness, and encourage discussion about community

More information

genome a specific characteristic that varies from one individual to another gene the passing of traits from one generation to the next

genome a specific characteristic that varies from one individual to another gene the passing of traits from one generation to the next genetics the study of heredity heredity sequence of DNA that codes for a protein and thus determines a trait genome a specific characteristic that varies from one individual to another gene trait the passing

More information

NOTES CH 17 Evolution of. Populations

NOTES CH 17 Evolution of. Populations NOTES CH 17 Evolution of Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Populations 17.1 Genes & Variation Darwin

More information

Warm-Up Questions. 1. What are the stages of mitosis in order? 2. The diagram represents a cell process.

Warm-Up Questions. 1. What are the stages of mitosis in order? 2. The diagram represents a cell process. Warm-Up Questions 1. What are the stages of mitosis in order? 2. The diagram represents a cell process. Which statement regarding this process is true? A. Cell B contains the same genetic information that

More information

1/30/2012. Review. Speciation and macroevolution - Chapter

1/30/2012. Review. Speciation and macroevolution - Chapter Speciation and macroevolution - Chapter Objectives: - Review meiosis -Species -Repro. Isolating mechanisms - Speciation -Is evolution always slow -Extinction Review Meiosis: division of cells that results

More information

Microevolution Changing Allele Frequencies

Microevolution Changing Allele Frequencies Microevolution Changing Allele Frequencies Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Essential Questions. Meiosis. Copyright McGraw-Hill Education

Essential Questions. Meiosis. Copyright McGraw-Hill Education Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of meiosis? What is the importance of meiosis in providing genetic variation? Meiosis Vocabulary

More information

Runaway. demogenetic model for sexual selection. Louise Chevalier. Jacques Labonne

Runaway. demogenetic model for sexual selection. Louise Chevalier. Jacques Labonne Runaway demogenetic model for sexual selection Louise Chevalier Master 2 thesis UPMC, Specialization Oceanography and Marine Environments Jacques Labonne UMR Ecobiop INRA - National Institute for Agronomic

More information

Biology 1 Spring 2010 Summative Exam

Biology 1 Spring 2010 Summative Exam Biology 1 Spring 2010 Summative Exam Short Answer USING SCIENCE SKILLS The pedigree shows the inheritance of free earlobes and attached earlobes in five generations of a family. Attached earlobes are caused

More information

Speciation and Patterns of Evolution

Speciation and Patterns of Evolution Speciation and Patterns of Evolution What is a species? Biologically, a species is defined as members of a population that can interbreed under natural conditions Different species are considered reproductively

More information

Genetic diversity of beech in Greece

Genetic diversity of beech in Greece Genetic diversity of beech in Greece A.C. Papageorgiou (1), I. Tsiripidis (2), S. Hatziskakis (1) Democritus University of Thrace Forest Genetics Laboratory Orestiada, Greece (2) Aristotle University of

More information

AP Biology Notes Outline Enduring Understanding 1.C. Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Biology Notes Outline Enduring Understanding 1.C. Big Idea 1: The process of evolution drives the diversity and unity of life. AP Biology Notes Outline Enduring Understanding 1.C Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring Understanding 1.C: Life continues to evolve within a changing environment.

More information

Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax?

Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? Doležálková et al. BMC Genetics (2016) 17:100 DOI 10.1186/s12863-016-0408-z RESEARCH ARTICLE Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus

More information

May 11, Aims: Agenda

May 11, Aims: Agenda May 11, 2017 Aims: SWBAT explain how survival of the fittest and natural selection have contributed to the continuation, extinction, and adaptation of species. Agenda 1. Do Now 2. Class Notes 3. Guided

More information

Chapter 14 The Origin of Species

Chapter 14 The Origin of Species Chapter 14 The Origin of Species PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Joan

More information

MODELS OF SPECIATION. Sympatric Speciation: MODEL OF SYMPATRIC SPECIATION. Speciation without restriction to gene flow.

MODELS OF SPECIATION. Sympatric Speciation: MODEL OF SYMPATRIC SPECIATION. Speciation without restriction to gene flow. MODELS OF SPECIATION Sympatric Speciation: Speciation without restriction to gene flow. Development of reproductive isolation without geographic barriers. Requires assortative mating and a stable polymorphism.

More information

Composition of twenty Green Frog populations (Pelophylax) across Bavaria, Germany

Composition of twenty Green Frog populations (Pelophylax) across Bavaria, Germany SALAMANDRA 49(1) 31 44Composition 30 April of 2013 Pelophylax-populations ISSN 0036 3375 across Bavaria, Germany Composition of twenty Green Frog populations (Pelophylax) across Bavaria, Germany Martin

More information

URBAN SPRAWL THE LEGAL CONTEXT AND TERRITORIAL PRACTICES IN ROMANIA

URBAN SPRAWL THE LEGAL CONTEXT AND TERRITORIAL PRACTICES IN ROMANIA thuman GEOGRAPHIES Journal of Studies and Research in Human Geography 6.1 (2012) 73-77. ISSN-print: 1843-6587/$-see back cover; ISSN-online: 2067-2284-open access www.humangeographies.org.ro (c) Human

More information

Which concept would be correctly placed in box X? A) use and disuse B) variation C) changes in nucleic acids D) transmission of acquired traits

Which concept would be correctly placed in box X? A) use and disuse B) variation C) changes in nucleic acids D) transmission of acquired traits 1. Base your answer to the following question on Some of the concepts included in Darwin's theory of natural selection are represented in the diagram below. Which concept would be correctly placed in box

More information

Q2 (4.6) Put the following in order from biggest to smallest: Gene DNA Cell Chromosome Nucleus. Q8 (Biology) (4.6)

Q2 (4.6) Put the following in order from biggest to smallest: Gene DNA Cell Chromosome Nucleus. Q8 (Biology) (4.6) Q1 (4.6) What is variation? Q2 (4.6) Put the following in order from biggest to smallest: Gene DNA Cell Chromosome Nucleus Q3 (4.6) What are genes? Q4 (4.6) What sort of reproduction produces genetically

More information