Competition. Different kinds of competition Modeling competition Examples of competition-case studies Understanding the role of competition

Size: px
Start display at page:

Download "Competition. Different kinds of competition Modeling competition Examples of competition-case studies Understanding the role of competition"

Transcription

1 Competition Different kinds of competition Modeling competition Examples of competition-case studies Understanding the role of competition

2 Competition The outcome of competition is that an individual suffers a reduction in fecundity (ability to reproduce), growth or survivorship Competition is for a limiting resource Intraspecific competition (between members of own species) Bald Eagles with disagreement over life mate Olympic short track skaters disagree on potential podium position Olympic ski cross Snails in deathmatch over habitat

3 Interspecific competition (between members of different species) Eagle vs fox - fight for control of deer carcass Yoda vs Darth Vader -fight for control of coffee shop aboard the Death Star Types of competition Resource exploitation - indirect White pine roots are better able to take up moisture and nutrients compared to other plants. This prevents other plants from accessing the limited resources. White pine indirectly suppresses the other plants. fig 13.2 Molles and Cahill Humans have become super efficient at taking up fish from oceans and suppress other animals that depend on fish resources. Interference competition-direct competition Damsel Fish aggressively maintain territories. fig 13.1 Molles and Cahill Humans aggressively maintain territories.

4 Interference competition Exploitative competition Competition is NOT always the most important type of interaction between or amongst members of species

5 Abiotic (environmental) stress Predation Parasites May individually or in combination play a greater role in limiting fitness, population dynamics and community structure Mathematical Modeling of Competition Why??

6 What is a model? Simplification of a system (nature) It is NOT a working facsimile! Used to gain insight into how things work Should be testable and modifiable A model should be as simple as possible but not simpler! Albert Einstein What does this mean?

7 Make the irreducible basic elements of your model as simple and as few as possible without having to give up the adequate representation of what you are modeling From last class... Molles 2008 (page 261) cf. Molles & Cahill, 2008, p. 316

8 dn dt =rmax N ( ) K-N K dn dt =rmaxn1 K1-N1 ( ) dn K1 dt =rmaxn2 K2-N2 ( ) K2 Logistic model for population growth Change in population growth of Species 1 Change in population growth of Species 2 In these models population growth slows as N increases since resource supplies decrease with as population increases N1 K1 = Relative level of intraspecific competition

9 But resource levels can also be reduced by interspecific competition Lotka Volterra Models of Interspecific Interations Lotka Volterra Models dn1 dt =r K1 - N1 - α12n2 max1 N1 ( ) dn2 K1 dt =r K2 - N2 - α21n1 max2n2 ( ) K2 These equations are same as before but now include the effect of interspecific competition (in red). We now can simultaneously model the effect of individuals of the same species and individuals of competing species on the rate of growth of a population

10 Lotka Volterra Models a12 and a21 are competition coefficients that modify the effect of N2 and N1 (remember N1 and N2 are population sizes) dn1 dt =r K1 - N1 - α12n2 max1 N1 ( ) K1 α12 = effect of an individual of species 2 on the rate of population growth of species 1 dn2 dt =rmax2 K2 - N2 - α21n1 N2 ( ) K2 α21= effect of an individual of species 1 on the rate of population growth of species 2 a12 < 1 means that the individuals of species 2 have less effect on individuals of species 1 than individuals of species 1 have on others of their own species. a12 >1 means that the individuals of species 2 have more effect on individuals of species 1 than individuals of species 1 have on others of their own species.

11 Lotka Volterra Models Predicts: i) coexistence of two species when for both species interspecific competition is weaker than intraspecific competition ii)if the above condition is NOT met than one species will eventually exclude the other Lotka Volterra Models Can we determine under what conditions these species are predicted to coexist and under what conditions one species will exclude the other? To do this we determine equilibria: population sizes for species 1 and 2 for which population growth of both species will be zero.! If population growth is zero, then the population sizes do not change over time, and we have an equilibrium (a situation in which conditions remain the same over time.) dn1 K1 - N1 - α12n2 dt =rmax1 N1 ( ) K1 = 0 dn2 dt K2 - N2 - α21n1 =rmax2 N2 ( ) K2 = 0

12 Populations stop growing when: dn1 K1 - N1 - =rmax1 α12n2 dt N1 ( ) dn2 dt =rmax2 K1 K2 - N2 - α21n1 N2 ( ) K2 = 0 = 0 This occurs when 0 = (K1 - N1 - α12n2) 0 =(K2 - N2 - α21n1) Populations stop growing when: 0 = (K1 - N1 - α12n2) 0 =(K2 - N2 - α21n1) On further rearranging... N1 = K1-α12N2 N2 = K2-α21N1

13 N1 = K1-α12N2 and N2 = K2-α21N1 are really simple equations to describe straight lines! You may recall from high school... y=slope(x)+ b N1 is y Effects of species 2 on species 1 (a12) is slope N2 is the x value K1 is y intercept (when x = 0) At every point along these lines growth is stopped Arrow up means growth of species 1 Arrow down means decrease of species 1 The line is called the zero growth isocline for species 1: it represents all combinations of N1 and N2 for which growth of N1 is zero. Any combination of species 1 and 2 below the line means that species 1 will increase Any combination of species 1 and 2 above the line means that species 1 will decrease

14 Similarly.... Arrow right means growth of species 2 Arrow left means decrease of species 2 There are four ways to plot these two species together Species 1 increasing while species 2 is decreasing Each red arrow is a vector of the combined direction of both species.

15 Example a:! The species 1 isocline is above the species 2 isocline. Below both isoclines, species 1 and 2 both increase.! In the range of the graph between the two isoclines, we are above the species 2 isocline so it (sp2) decreases, but we are also below the species 1 isocline so it (sp1) continues to increase.! The result is that species 2 declines to zero and species 1 increases to its carrying capacity.! In this case species 1 has competitively excluded species 2. K1>K2/α21 so! K1α21>K2 This means that when species 1 is at its carrying capacity, its impact on species 2 (measured by K1 times a21) is greater than the impact of K2 individuals of species 2.! Thus, species 1 is affecting species 2 more negatively than species 2 affects itself.! Interspecific competition regulates species 2 more than species 2 is regulated by intraspecific competition.

16 Example b:! The species 2 isocline is above the species 1 isocline. From the N2 axis: K2>K1/α12 and so K2α12>K1 K1>K2/α21 so! K1α21>K2 Thus, species 2 is affecting species 1 more negatively than species 1 affects itself.! Example c): Isoclines for the two species cross; the K values on each axis are higher than the K/a values In this situation, from the N1 axis: K1>K2/α21 thus K1α21>K2 Indicating higher impact of interspecific competition than intraspecific competition on species 2 BUT From the N2 axis: K2>K1/α12 so K2α12>K1 Indicating higher impact of interspecific competition than intraspecific competition on species 1. Thus, either species could exclude the other species. Here interspecific competition is stronger than is intraspecific competition.

17 Example d: Isoclines for the two species cross; the K values on each axis are lower than the K/a values From N1 axis: K2/a21>K1 thus K2>K1a21 Indicating that species 2 is regulated more by intraspecific competition than by interspecific competition From the N2 axis: K2<K1/α12 so K2α12<K1 Indicating that species 1 is regulated more by intraspecific competition than by interspecific competition So we can see that when each species is regulated more by intraspecific competition rather than by competition with the other species, the two species can coexist.

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences D. POPULATION & COMMUNITY DYNAMICS Week 10. Population models 1: Lecture summary: Distribution and abundance

More information

Interspecific Competition

Interspecific Competition Interspecific Competition Intraspecific competition Classic logistic model Interspecific extension of densitydependence Individuals of other species may also have an effect on per capita birth & death

More information

Effect of Species 2 on Species 1 Competition - - Predator-Prey + - Parasite-Host + -

Effect of Species 2 on Species 1 Competition - - Predator-Prey + - Parasite-Host + - Community Ecology Community - a group of organisms, of different species, living in the same area Community ecology is the study of the interactions between species The presence of one species may affect

More information

Community Ecology. Classification of types of interspecific interactions: Effect of Species 1 on Species 2

Community Ecology. Classification of types of interspecific interactions: Effect of Species 1 on Species 2 Community Ecology Community - a group of organisms, of different species, living in the same area Community ecology is the study of the interactions between species The presence of one species may affect

More information

Interspecific Patterns. Interference vs. exploitative

Interspecific Patterns. Interference vs. exploitative Types of Competition Interference vs. exploitative Intraspecific vs. Interspeific Asymmetric vs. Symmetric Interspecific Patterns When two similar species coexist, there are three outcomes: Competitive

More information

Chapter 16: Competition. It s all mine, stay away!

Chapter 16: Competition. It s all mine, stay away! Chapter 16: Competition It s all mine, stay away! Species Interactions +/+ +/- -/- Basic interaction -/- Pop growth rate of species 1 (dn 1 /dt) is decreased by interaction Pop growth rate of species 2

More information

Field experiments on competition. Field experiments on competition. Field experiments on competition

Field experiments on competition. Field experiments on competition. Field experiments on competition INTERACTIONS BETWEEN SPECIES Type of interaction species 1 species 2 competition consumer-resource (pred, herb, para) mutualism detritivore-detritus (food is dead) Field experiments on competition Example

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 5: Interspecific Competition: Lecture summary: Definition. Examples. Outcomes. Lotka-Volterra model. Semibalanus balanoides

More information

BIO S380T Page 1 Summer 2005: Exam 2

BIO S380T Page 1 Summer 2005: Exam 2 BIO S380T Page 1 Part I: Definitions. [5 points for each term] For each term, provide a brief definition that also indicates why the term is important in ecology or evolutionary biology. Where I ve provided

More information

Case Studies in Ecology and Evolution

Case Studies in Ecology and Evolution 7 Competition (this chapter is still unfinished) Species compete in many ways. Sometimes there are dramatic contests, such as when male bighorns compete for access to mates. Territoriality. That kind of

More information

Competition. Not until we reach the extreme confines of life, in the arctic regions or on the borders of an utter desert, will competition cease

Competition. Not until we reach the extreme confines of life, in the arctic regions or on the borders of an utter desert, will competition cease Competition Not until we reach the extreme confines of life, in the arctic regions or on the borders of an utter desert, will competition cease Darwin 1859 Origin of Species Competition A mutually negative

More information

Interspecific Competition

Interspecific Competition Use Interspecific Competition 0.8 0.6 0.4 0. 0 0 0.5.5.5 3 Resource The niche and interspecific competition Species A Use Use 0.8 0.6 0.4 0. Species B 0 0 0.5.5.5 3 0.8 0.6 0.4 0. 0 0 0.5.5.5 3 Resource

More information

BIOL 410 Population and Community Ecology. Predation

BIOL 410 Population and Community Ecology. Predation BIOL 410 Population and Community Ecology Predation Intraguild Predation Occurs when one species not only competes with its heterospecific guild member, but also occasionally preys upon it Species 1 Competitor

More information

Assume closed population (no I or E). NB: why? Because it makes it easier.

Assume closed population (no I or E). NB: why? Because it makes it easier. What makes populations get larger? Birth and Immigration. What makes populations get smaller? Death and Emigration. B: The answer to the above?s are never things like "lots of resources" or "detrimental

More information

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book 14.1 HABITAT AND NICHE KEY CONCEPT Every organism has a habitat and a niche. A habitat is all of the living and nonliving factors in the area where an organism lives. For example, the habitat of a frog

More information

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points P 1 Biology 217: Ecology Second Exam Fall 2004 There should be 7 ps in this exam - take a moment and count them now. Put your name on the first p of the exam, and on each of the ps with short answer questions.

More information

Age (x) nx lx. Population dynamics Population size through time should be predictable N t+1 = N t + B + I - D - E

Age (x) nx lx. Population dynamics Population size through time should be predictable N t+1 = N t + B + I - D - E Population dynamics Population size through time should be predictable N t+1 = N t + B + I - D - E Time 1 N = 100 20 births 25 deaths 10 immigrants 15 emmigrants Time 2 100 + 20 +10 25 15 = 90 Life History

More information

3.5 Competition Models: Principle of Competitive Exclusion

3.5 Competition Models: Principle of Competitive Exclusion 94 3. Models for Interacting Populations different dimensional parameter changes. For example, doubling the carrying capacity K is exactly equivalent to halving the predator response parameter D. The dimensionless

More information

D. Correct! Allelopathy is a form of interference competition in plants. Therefore this answer is correct.

D. Correct! Allelopathy is a form of interference competition in plants. Therefore this answer is correct. Ecology Problem Drill 18: Competition in Ecology Question No. 1 of 10 Question 1. The concept of allelopathy focuses on which of the following: (A) Carrying capacity (B) Limiting resource (C) Law of the

More information

MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, Exam Scores. Question Score Total

MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, Exam Scores. Question Score Total MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, 2016 Exam Scores Question Score Total 1 10 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all

More information

14.1. Every organism has a habitat and a niche. A habitat differs from a niche. Interactions in Ecosystems CHAPTER 14.

14.1. Every organism has a habitat and a niche. A habitat differs from a niche. Interactions in Ecosystems CHAPTER 14. SECTION 14.1 HABITAT AND NICHE Study Guide KEY CONCEPT Every organism has a habitat and a niche. VOCABULARY habitat ecological niche competitive exclusion ecological equivalent A habitat differs from a

More information

Name: Page 1 Biology 217: Ecology Second Exam Spring 2009

Name: Page 1 Biology 217: Ecology Second Exam Spring 2009 Page 1 Biology 217: Ecology Second Exam Spring 2009 There should be 10 pages in this exam - take a moment and count them now. Put your name on the first page of the exam, and on each of the pages with

More information

Population Ecology. Text Readings. Questions to Answer in the Chapter. Chapter Reading:

Population Ecology. Text Readings. Questions to Answer in the Chapter. Chapter Reading: Population Ecology Text Readings Chapter Reading: Chapter # 26 in Audesirk, Audesirk and Byers: Population Growth and Regulation Pg. # 513-534. Questions to Answer in the Chapter How Does Population Size

More information

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e)

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Population Ecology and the Distribution of Organisms Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Ecology The scientific study of the interactions between organisms and the environment

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 6: Population dynamics Ilya Potapov Mathematics Department, TUT Room TD325 Living things are dynamical systems Dynamical systems theory

More information

x 2 F 1 = 0 K 2 v 2 E 1 E 2 F 2 = 0 v 1 K 1 x 1

x 2 F 1 = 0 K 2 v 2 E 1 E 2 F 2 = 0 v 1 K 1 x 1 ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 4, Fall 1990 ON THE STABILITY OF ONE-PREDATOR TWO-PREY SYSTEMS M. FARKAS 1. Introduction. The MacArthur-Rosenzweig graphical criterion" of stability

More information

Ecosystems. 2. Ecosystem

Ecosystems. 2. Ecosystem 1. Studying our living Planet The biosphere consist of all life on Earth and all parts of the Earth in which life exists, including land, water, and the atmosphere. Ecology is the scientific study of interactions

More information

Answer Key Niche and Carrying Capacity Review Questions 1. A 2. A 3. B 4. A 5. B 6. A 7. D 8. C 9. A 10. B 11. A 12. D 13. B 14. D 15.

Answer Key Niche and Carrying Capacity Review Questions 1. A 2. A 3. B 4. A 5. B 6. A 7. D 8. C 9. A 10. B 11. A 12. D 13. B 14. D 15. Answer Key Niche and Carrying Capacity Review Questions 1. A 2. A 3. B 4. A 5. B 6. A 7. D 8. C 9. A 10. B 11. A 12. D 13. B 14. D 15. D 1. The diagram below represents a remora fish attached to a shark.

More information

THETA-LOGISTIC PREDATOR PREY

THETA-LOGISTIC PREDATOR PREY THETA-LOGISTIC PREDATOR PREY What are the assumptions of this model? 1.) Functional responses are non-linear. Functional response refers to a change in the rate of exploitation of prey by an individual

More information

Tolerance. Tolerance. Tolerance 10/22/2010

Tolerance. Tolerance. Tolerance 10/22/2010 Section 4.2 Mrs. Michaelsen Tolerance Every species has its own range of tolerance: The ability to survive and reproduce under a range of environmental circumstances. Tolerance Stress can result when an

More information

Grand-daughters, Great Granddaughters, Daughters. : Σ lx m x e r (Tmax - x )

Grand-daughters, Great Granddaughters, Daughters. : Σ lx m x e r (Tmax - x ) Basic reproductive rate, R o = Σ l x m x umber of offspring produced by an individual female in her lifetime, can be used as multiplier to compute population growth rate if generations don t overlap. If

More information

Populations Study Guide (KEY) All the members of a species living in the same place at the same time.

Populations Study Guide (KEY) All the members of a species living in the same place at the same time. Populations Study Guide (KEY) 1. Define Population. All the members of a species living in the same place at the same time. 2. List and explain the three terms that describe population. a. Size. How large

More information

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live History and meaning of the word Ecology. Definition 1. Oikos, ology - the study of the house - the place we live. Etymology - origin and development of the the word 1. Earliest - Haeckel (1869) - comprehensive

More information

Populations. ! Population: a group of organisms of the same species that are living within a certain area

Populations. ! Population: a group of organisms of the same species that are living within a certain area Population Dynamics Populations! Population: a group of organisms of the same species that are living within a certain area Species: a group of organisms that are able to reproduce and produce fertile

More information

Ch. 4 - Population Ecology

Ch. 4 - Population Ecology Ch. 4 - Population Ecology Ecosystem all of the living organisms and nonliving components of the environment in an area together with their physical environment How are the following things related? mice,

More information

Levels of Ecological Organization. Biotic and Abiotic Factors. Studying Ecology. Chapter 4 Population Ecology

Levels of Ecological Organization. Biotic and Abiotic Factors. Studying Ecology. Chapter 4 Population Ecology Chapter 4 Population Ecology Lesson 4.1 Studying Ecology Levels of Ecological Organization Biotic and Abiotic Factors The study of how organisms interact with each other and with their environments Scientists

More information

Chapter 4 Population Ecology

Chapter 4 Population Ecology Chapter 4 Population Ecology Lesson 4.1 Studying Ecology Levels of Ecological Organization The study of how organisms interact with each other and with their environments Scientists study ecology at various

More information

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale BIOS 3010: ECOLOGY Dr Stephen Malcolm Laboratory 6: Lotka-Volterra, the logistic equation & Isle Royale This is a computer-based activity using Populus software (P), followed by EcoBeaker analyses of moose

More information

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

More information

Community Structure. Community An assemblage of all the populations interacting in an area

Community Structure. Community An assemblage of all the populations interacting in an area Community Structure Community An assemblage of all the populations interacting in an area Community Ecology The ecological community is the set of plant and animal species that occupy an area Questions

More information

The Living World Continued: Populations and Communities

The Living World Continued: Populations and Communities The Living World Continued: Populations and Communities Ecosystem Communities Populations Review: Parts of an Ecosystem 1) An individual in a species: One organism of a species. a species must be genetically

More information

Math 2930 Worksheet Introduction to Differential Equations

Math 2930 Worksheet Introduction to Differential Equations Math 2930 Worksheet Introduction to Differential Equations Week 1 August 24, 2017 Question 1. Is the function y = 1 + t a solution to the differential equation How about the function y = 1 + 2t? How about

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 7: Dynamics of Predation. Lecture summary: Categories of predation. Linked prey-predator cycles. Lotka-Volterra model. Density-dependence.

More information

Chapter Niches and Community Interactions

Chapter Niches and Community Interactions Chapter 4 4.2 Niches and Community Interactions Key Questions: 1) What is a niche? 2) How does competition shape communities? 3) How do predation and herbivory shape communites? 4) What are three primary

More information

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology Biology 11 Unit 1: Fundamentals Lesson 1: Ecology Objectives In this section you will be learning about: ecosystem structure energy flow through an ecosystem photosynthesis and cellular respiration factors

More information

Lesson Overview 4.2 Niches and Community Interactions

Lesson Overview 4.2 Niches and Community Interactions THINK ABOUT IT If you ask someone where an organism lives, that person might answer on a coral reef or in the desert. Lesson Overview 4.2 Niches and Community Interactions These answers give the environment

More information

Ch. 14 Interactions in Ecosystems

Ch. 14 Interactions in Ecosystems Ch. 14 Interactions in Ecosystems 1 14.1 Habitat vs. Niche Habitat all biotic and abiotic factors where an organism lives WHERE a species lives 2 Ecological Niche All physical, chemical, and biological

More information

A population is a group of individuals of the same species, living in a shared space at a specific point in time.

A population is a group of individuals of the same species, living in a shared space at a specific point in time. A population is a group of individuals of the same species, living in a shared space at a specific point in time. A population size refers to the number of individuals in a population. Increase Decrease

More information

Gary G. Mittelbach Michigan State University

Gary G. Mittelbach Michigan State University Community Ecology Gary G. Mittelbach Michigan State University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Table of Contents 1 Community Ecology s Roots 1 PART I The Big

More information

Community Interactions. Community An assemblage of all the populations interacting in an area

Community Interactions. Community An assemblage of all the populations interacting in an area Community Interactions Community An assemblage of all the populations interacting in an area Populations are affected by: Available living space habitat Resource Availability niche Species interactions

More information

Ecology. Science Matters Chapter 16

Ecology. Science Matters Chapter 16 Ecology Science Matters Chapter 16 Learning outcomes Understand what the term ecology means. Be able to name different habitats. Be able to give examples of producers, consumers and decomposers in the

More information

The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor

The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor , pp. 35-46 http://dx.doi.org/10.14257/ijbsbt.2017.9.3.04 The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor Alemu Geleta Wedajo

More information

POPULATION GROWTH MODELING

POPULATION GROWTH MODELING POPULATION GROWTH MODELING INTRODUCTION All organisms tend to show the capability of unlimited exponential growth. Consequently, mathematical models have been developed to try to simulate this phenomenon.

More information

BIOLOGY WORKSHEET GRADE: Two robins eating worms on the same lawn is an example of

BIOLOGY WORKSHEET GRADE: Two robins eating worms on the same lawn is an example of BIOLOGY WORKSHEET GRADE: 11 Q.1: Choose the letter of the best answer. 1. Two robins eating worms on the same lawn is an example of a. mutualism. b. commensalism. c. competition. d. parasitism. 2. Predation

More information

POPULATIONS and COMMUNITIES

POPULATIONS and COMMUNITIES POPULATIONS and COMMUNITIES Ecology is the study of organisms and the nonliving world they inhabit. Central to ecology is the complex set of interactions between organisms, both intraspecific (between

More information

Chapter 2 Lecture. Density dependent growth and intraspecific competition ~ The Good, The Bad and The Ugly. Spring 2013

Chapter 2 Lecture. Density dependent growth and intraspecific competition ~ The Good, The Bad and The Ugly. Spring 2013 Chapter 2 Lecture Density dependent growth and intraspecific competition ~ The Good, The Bad and The Ugly Spring 2013 2.1 Density dependence, logistic equation and carrying capacity dn = rn K-N Dt K Where

More information

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts!

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts! Page 1 BIOLOGY 150 Final Exam Winter Quarter 2000 Before starting be sure to put your name and student number on the top of each page. MINUS 3 POINTS IF YOU DO NOT WRITE YOUR NAME ON EACH PAGE! You have

More information

BIOS 5445: Human Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5445: Human Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5445: Human Ecology Dr. Stephen Malcolm, Department of Biological Sciences Lecture 4. Population ecology: Lecture summary: Population growth: Growth curves. Rates of increase. Mortality & survivorship.

More information

HOMEWORK ASSIGNMENTS FOR: Grade

HOMEWORK ASSIGNMENTS FOR: Grade HOMEWORK ASSIGNMENTS FOR: Date 4/25/18 Wednesday Teacher Ms. Weger Subject/Grade Science 7 th Grade In-Class: REVIEW FOR CH. 22 TEST Go over the 22-3 Think Questions Look at the data from the Oh Deer!

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 3: Intraspecific Competition. Lecture summary: Definition. Characteristics. Scramble & contest. Density dependence k-values

More information

FW662 Lecture 11 Competition 1

FW662 Lecture 11 Competition 1 FW662 Lecture 11 Competition 1 Lecture 11. Competition. Reading: Gotelli, 2001, A Primer of Ecology, Chapter 5, pages 99-124. Renshaw (1991) Chapter 5 Competition processes, Pages 128-165. Optional: Schoener,

More information

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere)

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) WLHS / AP Bio / Monson Name CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) 52.1: Earth s climate varies by latitude and season and is changing rapidly (p. 1144-1150) 1) Distinguish

More information

Name: Date: ID: 3. What are some limitations to scientific models? - Most models include simplifications, approximations, and/or lack details

Name: Date: ID: 3. What are some limitations to scientific models? - Most models include simplifications, approximations, and/or lack details Name: Date: ID: 2 ND 9-WEEKS STUDY GUIDE Shared Answers Communication Skills 1. Define the term Scientific Model in your own terms. - A description of a system, theory, or phenomenon 2. List 5 things we

More information

BELL RINGER QUICK REVIEW. What is the difference between an autotroph and heterotroph? List 4 abiotic factors in plant growth.

BELL RINGER QUICK REVIEW. What is the difference between an autotroph and heterotroph? List 4 abiotic factors in plant growth. BELL RINGER QUICK REVIEW What is the difference between an autotroph and heterotroph? List 4 abiotic factors in plant growth. Chapter 2-1 Principles of Ecology THE STUDENT WILL: SWBAT Distinguish between

More information

Principles of Ecology

Principles of Ecology Principles of Ecology What is Ecology? Ecology is the study of interactions that occur between organisms and their environment Biosphere Recall that the biosphere includes all living things In order to

More information

Principles of Ecology Interspecific population Interactions: Competition

Principles of Ecology Interspecific population Interactions: Competition Paper No. : 12 Module : 13 Development Team Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer: Content Reviewer: Prof. Neeta Sehgal Head, Department of Zoology, University

More information

Ecology is studied at several levels

Ecology is studied at several levels Ecology is studied at several levels Ecology and evolution are tightly intertwined Biosphere = the total living things on Earth and the areas they inhabit Ecosystem = communities and the nonliving material

More information

Population Ecology. Study of populations in relation to the environment. Increase population size= endangered species

Population Ecology. Study of populations in relation to the environment. Increase population size= endangered species Population Basics Population Ecology Study of populations in relation to the environment Purpose: Increase population size= endangered species Decrease population size = pests, invasive species Maintain

More information

UNIT 5. ECOSYSTEMS. Biocenosis Biotope Biotic factors Abiotic factors

UNIT 5. ECOSYSTEMS. Biocenosis Biotope Biotic factors Abiotic factors UNIT 5. ECOSYSTEMS 1. Define: ecosystem, biocenosis, biotope, abiotic factor, biotic factor 2. Complete using this word: ecosphere, biosphere, ecology, ecosystem a) The is all of the living thing on Earth.

More information

Organism Interactions in Ecosystems

Organism Interactions in Ecosystems Organism Interactions in Ecosystems Have you ever grown a plant or taken care of a pet? If so, you know they have certain needs such as water or warmth. Plants need sunlight to grow. Animals need food

More information

Math 2930 Worksheet Introduction to Differential Equations. What is a Differential Equation and what are Solutions?

Math 2930 Worksheet Introduction to Differential Equations. What is a Differential Equation and what are Solutions? Math 2930 Worksheet Introduction to Differential Equations Week 1 January 25, 2019 What is a Differential Equation and what are Solutions? A differential equation is an equation that relates an unknown

More information

Unit 6 Populations Dynamics

Unit 6 Populations Dynamics Unit 6 Populations Dynamics Define these 26 terms: Commensalism Habitat Herbivory Mutualism Niche Parasitism Predator Prey Resource Partitioning Symbiosis Age structure Population density Population distribution

More information

Ecology Symbiotic Relationships

Ecology Symbiotic Relationships Ecology Symbiotic Relationships Overview of the Co-evolution and Relationships Exhibited Among Community Members What does Symbiosis mean? How do we define Symbiosis? Symbiosis in the broadest sense is

More information

1. Population dynamics of rabbits and foxes

1. Population dynamics of rabbits and foxes 1. Population dynamics of rabbits and foxes (a) A simple Lotka Volterra Model We have discussed in detail the Lotka Volterra model for predator-prey relationships dn prey dt = +R prey,o N prey (t) γn prey

More information

The Problem of Where to Live

The Problem of Where to Live April 5: Habitat Selection: Intro The Problem of Where to Live Physical and biotic environment critically affects fitness An animal's needs may be met only in certain habitats, which should select for

More information

Ch20_Ecology, community & ecosystems

Ch20_Ecology, community & ecosystems Community Ecology Populations of different species living in the same place NICHE The sum of all the different use of abiotic resources in the habitat by s given species what the organism does what is

More information

5 Lotka Volterra Interspecific Competition

5 Lotka Volterra Interspecific Competition 5 Lotka Volterra Interspecific Competition Different species frequently compete for limiting resources, and as a result have negative impacts on each other. For example, change in species composition during

More information

Species 1 isocline. Species 2 isocline

Species 1 isocline. Species 2 isocline 1 Name BIOLOGY 150 Final Exam Winter Quarter 2002 Before starting please write your name on each page! Last name, then first name. You have tons of time. Take your time and read each question carefully

More information

Human Carrying Capacity. Dangers of overshooting

Human Carrying Capacity. Dangers of overshooting How to calculate carrying capacity 1. Sum estimates of regional K. 2. Curve Fitting 3. Assume Single Resource Constraint 4. Reduce Multiple Requirements to one factor 5. Assume Multiple Independent Constraints

More information

CHAPTER 14. Interactions in Ecosystems: Day One

CHAPTER 14. Interactions in Ecosystems: Day One CHAPTER 14 Interactions in Ecosystems: Day One Habitat versus Niche Review! What is a habitat? All of the biotic and abiotic factors in the area where an organism lives. Examples: grass, trees, and watering

More information

Interactions of Living Things

Interactions of Living Things CHAPTER 14 LESSON 2 Interactions of Living Things Populations and Communities Key Concepts How do individuals and groups of organisms interact? What are some examples of symbiotic relationships? What do

More information

7. E C. 5 B. 1 D E V E L O P A N D U S E M O D E L S T O E X P L A I N H O W O R G A N I S M S I N T E R A C T I N A C O M P E T I T I V E O R M U T

7. E C. 5 B. 1 D E V E L O P A N D U S E M O D E L S T O E X P L A I N H O W O R G A N I S M S I N T E R A C T I N A C O M P E T I T I V E O R M U T 7. E C. 5 B. 1 D E V E L O P A N D U S E M O D E L S T O E X P L A I N H O W O R G A N I S M S I N T E R A C T I N A C O M P E T I T I V E O R M U T U A L L Y B E N E F I C I A L R E L A T I O N S H I

More information

dv dt Predator-Prey Models

dv dt Predator-Prey Models Predator-Prey Models This is a diverse area that includes general models of consumption: Granivores eating seeds Parasitoids Parasite-host interactions Lotka-Voterra model prey and predator: V = victim

More information

Population Ecology NRM

Population Ecology NRM Population Ecology NRM What do we need? MAKING DECISIONS Consensus working through views until agreement among all CONSENSUS Informed analyze options through respectful discussion INFORMED DECISION Majority

More information

All living organisms are limited by factors in the environment

All living organisms are limited by factors in the environment All living organisms are limited by factors in the environment Monday, October 30 POPULATION ECOLOGY Monday, October 30 POPULATION ECOLOGY Population Definition Root of the word: The word in another language

More information

Spring /30/2013

Spring /30/2013 MA 138 - Calculus 2 for the Life Sciences FINAL EXAM Spring 2013 4/30/2013 Name: Sect. #: Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes

More information

Predation. Vine snake eating a young iguana, Panama. Vertebrate predators: lions and jaguars

Predation. Vine snake eating a young iguana, Panama. Vertebrate predators: lions and jaguars Predation Vine snake eating a young iguana, Panama Vertebrate predators: lions and jaguars 1 Most predators are insects Parasitoids lay eggs in their hosts, and the larvae consume the host from the inside,

More information

MA 138: Calculus II for the Life Sciences

MA 138: Calculus II for the Life Sciences MA 138: Calculus II for the Life Sciences David Murrugarra Department of Mathematics, University of Kentucky. Spring 2016 David Murrugarra (University of Kentucky) MA 138: Section 11.4.2 Spring 2016 1

More information

Chapter 4 AND 5 Practice

Chapter 4 AND 5 Practice Name: Chapter 4 AND 5 Practice 1. Events that occur in four different ecosystems are shown in the chart below. Which ecosystem would most likely require the most time for ecological succession to restore

More information

Interactions between predators and prey

Interactions between predators and prey Interactions between predators and prey What is a predator? Predator An organism that consumes other organisms and inevitably kills them. Predators attack and kill many different prey individuals over

More information

ENVE203 Environmental Engineering Ecology (Nov 05, 2012)

ENVE203 Environmental Engineering Ecology (Nov 05, 2012) ENVE203 Environmental Engineering Ecology (Nov 05, 2012) Elif Soyer Ecosystems and Living Organisms Population Density How Do Populations Change in Size? Maximum Population Growth Environmental Resistance

More information

A population is a group of individuals of the same species occupying a particular area at the same time

A population is a group of individuals of the same species occupying a particular area at the same time A population is a group of individuals of the same species occupying a particular area at the same time Population Growth As long as the birth rate exceeds the death rate a population will grow Immigration

More information

REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013

REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013 REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013 Lesson Description In this lesson we: Revise population ecology by working through some exam questions. Key Concepts Definition of Population A population

More information

Population and Community Dynamics

Population and Community Dynamics Population and Community Dynamics Part 1. Genetic Diversity in Populations Pages 676 to 701 Part 2. Population Growth and Interactions Pages 702 to 745 I) Introduction I) Introduction to understand how

More information

BIO 2 GO! Abiotic / Biotic Factors and Relationships in an Ecosystem

BIO 2 GO! Abiotic / Biotic Factors and Relationships in an Ecosystem BIO 2 GO! Abiotic / Biotic Factors and Relationships in an Ecosystem 3511 3512 All things are either abiotic or biotic. Ecosystems are determined by which of these factors are found in them. Interactions

More information

Biomes, Populations, Communities and Ecosystems Review

Biomes, Populations, Communities and Ecosystems Review Multiple Choice Biomes, Populations, Communities and Ecosystems Review 1. The picture below is a school (group) of Jack fish. What type of distribution does this represent? A) Random B) Even C) Uniform

More information

CHAPTER. Population Ecology

CHAPTER. Population Ecology CHAPTER 4 Population Ecology Lesson 4.1 Studying Ecology Ernst Haeckel defined ecology in 1866 as the body of knowledge concerning the economy of nature the total relations of the animal to both its inorganic

More information

Principles of Ecology BL / ENVS 402 Exam II Name:

Principles of Ecology BL / ENVS 402 Exam II Name: Principles of Ecology BL / ENVS 402 Exam II 10-26-2011 Name: There are three parts to this exam. Use your time wisely as you only have 50 minutes. Part One: Circle the BEST answer. Each question is worth

More information

Lesson Overview. Niches and Community Interactions. Lesson Overview. 4.2 Niches and Community Interactions

Lesson Overview. Niches and Community Interactions. Lesson Overview. 4.2 Niches and Community Interactions Lesson Overview 4.2 Niches and Community Interactions The Niche What is a niche? A niche is the range of physical and biological conditions in which a species lives and the way the species obtains what

More information