Introduction to Biological Modeling

Size: px
Start display at page:

Download "Introduction to Biological Modeling"

Transcription

1 Introduction to Biological odeling Lecture : odeling dynamics Sept. 9, 010 Steve Andrews Brent lab, Basic Sciences Division, FHCRC Last week Why model biology? Example: E. coli chemotaxis Typical modeling progression Think about What aspects of your research are ready for modeling? What might you learn from it? Reading Tyson, Chen, and Novak Sniffers, buzzers, toggles, and blinkers: dynamics of regulatory and signaling pathways in the cell Current Opinion in Cell Biology 15:1-31, Dynamic cells Tyson, 1991 initial good model of eukaryotic cell cycle All cell systems are dynamic cell cycle circadian rhythms signaling development cell motility apoptosis metabolism* 3 4 Credit: Shaffer et al., ethods in olecular Biology, Systems Biology, (aly, ed.) 500:81, Credit: Shaffer et al., ethods in olecular Biology, Systems Biology, (aly, ed.) 500:81,

2 Eukaryotic cell cycle Cell cycle checkpoints mitosis Cycle times gap gap 1 8 min. in fly embryo 30 min. in Xenopus early embryo 1 hours in fast growing mammalian tissues year or longer in mammalian liver stopped in human neurons and skeletal muscles DNA synthesis 7 Cell cycle checkpoints 8 Cyclins and Cdk Cdk = cyclin dependent kinase p34, from mol. weight Cdc8 in budding yeast Cdk1 in human cdc in fission yeast Question How does the controller work? cyclin lots of different cyclins Cdk + cyclin = Start kinase 9 Xenopus life cycle 1st round of meiosis stops at G checkpoint cycling stopped egg travels down oviduct rapid cell divisions and is laid without growth nd round of meiosis stops at metaphase arrest fertilization 10 and cyclin in early embryo cell divisions depend on growth midblastula transition 11 1

3 Cell cycle network Step Credit: Shaffer et al., ethods in olecular Biology, Systems Biology, (aly, ed.) 500:81, Credit: which says it s from Tyson and Novak. 14 Tyson s model (1991) Tyson s model (1991) P P includes core cdc-cyclin interactions P P aa = amino acids ignores cdc phosphorylation at T167 attributes cyclin degradation to phosphate, not ubiquitin enhancement of cyclin degradation cell size control, wee1, and cdc5 downstream effects assumptions total amount of cdc is fixed phosphorylation in rxn 3 is much faster than dimerization several parameter relations... Credit: Alberts, et al. olecular Biology of the Cell, 3rd ed., 1994; Tyson, Proc. Natl. Acad. Sci. USA 88:738, Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, Tyson s model (1991) Step Step 3 * [CT] = total cdc Note any parameters don t matter, and so are set to 0, or >>k? Fewer parameters are needed by grouping multiple unknowns together, e.g. k 1 [aa]/[ct] The model is explored with respect to the adjustable parameters. Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, Credit: Shaffer et al., ethods in olecular Biology, Systems Biology, (aly, ed.) 500:81,

4 From reactions to equations From reactions to equations YP ass action kinetics: reaction ~ reactant concentrations C YP ass action kinetics: reaction ~ reactant concentrations C p Y CP p Y CP All straight-forward, except reaction 4 Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, p Reaction 4: positive feedback F With feedback = [ p ]F([ ]) d No feedback d ([ ]) =! = k 4 [ p ] " % k 4 + k 4 CT & ' production positive feedback no feedback limited by p p Positive feedback can cause bistability Add in reaction 5 d production " " % % = [ p ] k 4! + k 4 [ CT ]& ' & ' ( k ~ P 5 loss [ ] * [CT] = total cdc, which is constant in this model Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, p Positive feedback can cause bistability Add in reaction 5 d production " " % % = [ p ] k 4! + k 4 [ CT ]& ' & ' ( k ~ P 5 loss [ ] fixed points production = loss d[]/ = 0 p Positive feedback can cause bistability Add in reaction 5 d production " " % % = [ p ] k 4! + k 4 [ CT ]& ' & ' ( k ~ P 5 loss [ ] fixed points production = loss d[]/ = 0 stable points, 1 unstable point Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738,

5 The mathematical model Step YP C Step 4 Step 3 p Y CP Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, Credit: Shaffer et al., ethods in olecular Biology, Systems Biology, (aly, ed.) 500:81, Simulation tools Excel - surprisingly good for very simple models, Getting the Tyson 1991 model Cell Cycle Database: Lots of good cell cycle information atlab - excellent multi-purpose tool, lots of extensions, athematica - also excellent; better for analytical work, Copasi - designed for cell biology simulations, has GUI SBW - Systems Biology Workbench, front end to lots of simulators. lots of others odels section has 6 cell cycle models 14 in SBL 1 simulable modules Cell cycle database models SBL Systems Biology arkup Language XL language A computer-readable standard language that many simulators use. <reaction metaid="_000011" id="reaction" name="cdck phosphorylation" reversible="false"> <listofreactants> <speciesreference species="c"/> </listofreactants> <listofproducts> <speciesreference species="cp"/> </listofproducts> <kineticlaw> <math xmlns=" <apply> <times/> <ci> cell </ci> <ci> C </ci> <ci> k8notp </ci> </apply> </math> <listofparameters> <parameter metaid="_84013" id="k8notp" value=" "/> </listofparameters> </kineticlaw> </reaction> Bioodels database lots of published models, all written in SBL 9 30

6 Simulation results stable oscillations k4 = 180 min-1, k6 = 1 min-1 similar to early embryo oscillations total cyclin Get the model from either Cell Cycle Database and simulate its simulable module, or get it from Bioodels and simulate it with Copasi Credit: Alberts, et al. olecular Biology of the Cell, 3rd ed., 1994; Tyson, Proc. Natl. Acad. Sci. USA 88:738, Simulation results Simulation results Phase diagram for system behaviors stable steady-state, but excitable k4 = 180 min-1, k6 = min-1 metaphase arrest similar to late embryo growth-limited cell cycle; sustained cycles excitable A a large enough perturbation triggers excitation Credit: Alberts, et al. olecular Biology of the Cell, 3rd ed., 1994; Tyson, Proc. Natl. Acad. Sci. USA 88:738, B C 34 Credit: Alberts, et al. olecular Biology of the Cell, 3rd ed., 1994; Tyson, Proc. Natl. Acad. Sci. USA 88:738, Simulation results Growth-limited cycles Phase diagram for system behaviors metaphase arrest cell volume increase lowers k6 lower k6 triggers mitosis DNA replication doubles k6 sustained cycles Step excitable Step 3 Step 4 Step 5 A B C Credit: Alberts, et al. olecular Biology of the Cell, 3rd ed., 1994; Tyson, Proc. Natl. Acad. Sci. USA 88:738, Credit: Shaffer et al., ethods in olecular Biology, Systems Biology, (aly, ed.) 500:81,

7 Summary of model results Good aspects biology is basically correct represents all 3 Xenopus cell cycle stages: metaphase arrest, early embryo, and growthlimited cycling and cyclin curves qualitatively agree with experiment Bad aspects roles of cdc5 and wee1 are not clear positive feedback F([]) is ad hoc k 6 oscillation in growth-limited cycling is speculative Step 5 Step 4 Step Step 3 Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, Credit: Shaffer et al., ethods in olecular Biology, Systems Biology, (aly, ed.) 500:81, Step 6 A subst-depletion oscillator Sniffers, buzzers, toggles, and blinkers interpretation A subst-depletion oscillator Sniffers, buzzers, toggles, and blinkers interpretation Cdc5 inactive inactive Cdc5p Cdc5 Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, 1991; Tyson et al. Current Opinion in Cell Biology 15:1, Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738, 1991; Tyson et al. Current Opinion in Cell Biology 15:1, A subst-depletion oscillator Summary cyclin degraded cyclin Cell cycle overview odel development odel equations from reactions mass action kinetics Positive feedback can cause bistability Parameter choices few matter, group as possible, explore some Databases Cell cycle database, Bioodels Simulation tools Copasi Tyson s model results metaphase arrest, early embryo, growth-limited Generalizing results Credit: Tyson, Proc. Natl. Acad. Sci. USA 88:738,

8 Homework Copasi Download Copasi (Google for copasi download and explore some of the examples that come with it. Read Covert, Schilling, Famili, Edwards, Goryanin, Palsson, etabolic modeling of microbial strains in silico TRENDS in Biochemical Sciences 6:179,

nutrients growth & division repellants movement

nutrients growth & division repellants movement Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute Outline 1. Cell Signaling: Physiology 2. Cell Signaling: Molecular Biology 3. Chemical

More information

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016 Bioinformatics 3 V18 Kinetic Motifs Fri, Jan 8, 2016 Modelling of Signalling Pathways Curr. Op. Cell Biol. 15 (2003) 221 1) How do the magnitudes of signal output and signal duration depend on the kinetic

More information

Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014"

Bioinformatics 3! V20 Kinetic Motifs Mon, Jan 13, 2014 Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014" Modelling of Signalling Pathways" Curr. Op. Cell Biol. 15 (2003) 221" 1) How do the magnitudes of signal output and signal duration depend on the

More information

A simple model for the eukaryotic cell cycle. Andrea Ciliberto

A simple model for the eukaryotic cell cycle. Andrea Ciliberto A simple model for the eukaryotic cell cycle Andrea Ciliberto The cell division cycle G1 cell division Start S (DNA Replication) Finish M (mitosis) G2/M G2 Kohn, Mol. Biol. Cell., 1999 How did we get to

More information

Analysis and Simulation of Biological Systems

Analysis and Simulation of Biological Systems Analysis and Simulation of Biological Systems Dr. Carlo Cosentino School of Computer and Biomedical Engineering Department of Experimental and Clinical Medicine Università degli Studi Magna Graecia Catanzaro,

More information

Cell cycle regulation in the budding yeast

Cell cycle regulation in the budding yeast Cell cycle regulation in the budding yeast Bởi: TS. Nguyen Cuong Introduction The cell cycle is the sequence of events by which a growing cell duplicates all its components and then divides into two daughter

More information

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization The Cell Cycle 16 The Cell Cycle Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization Introduction Self-reproduction is perhaps

More information

Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells

Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells Understand how a simple biochemical oscillator can drive the

More information

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter 9/10/2008 1 Learning Objectives Explain why a cell cycle was selected for during evolution

More information

Three different fusions led to three basic ideas: 1) If one fuses a cell in mitosis with a cell in any other stage of the cell cycle, the chromosomes

Three different fusions led to three basic ideas: 1) If one fuses a cell in mitosis with a cell in any other stage of the cell cycle, the chromosomes Section Notes The cell division cycle presents an interesting system to study because growth and division must be carefully coordinated. For many cells it is important that it reaches the correct size

More information

Network Dynamics and Cell Physiology. John J. Tyson Dept. Biological Sciences Virginia Tech

Network Dynamics and Cell Physiology. John J. Tyson Dept. Biological Sciences Virginia Tech Network Dynamics and Cell hysiology John J. Tyson Dept. Biological Sciences Virginia Tech Collaborators Budapest Univ. Techn.. & Econ. Bela Novak Attila Csikasz-Nagy Andrea Ciliberto Virginia Tech Kathy

More information

Lecture 10: Cyclins, cyclin kinases and cell division

Lecture 10: Cyclins, cyclin kinases and cell division Chem*3560 Lecture 10: Cyclins, cyclin kinases and cell division The eukaryotic cell cycle Actively growing mammalian cells divide roughly every 24 hours, and follow a precise sequence of events know as

More information

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY Nael H El-Farra, Adiwinata Gani & Panagiotis D Christofides Department of Chemical Engineering University of California, Los Angeles 2003 AIChE

More information

Network Dynamics and Cell Physiology. John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute

Network Dynamics and Cell Physiology. John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute Signal Transduction Network Hanahan & Weinberg (2000) Gene Expression Signal-Response

More information

Biology: Life on Earth

Biology: Life on Earth Biology: Life on Earth Eighth Edition Lecture for Chapter 11 The Continuity of Life: Cellular Reproduction Cellular Reproduction Intracellular activity between one cell division to the next is the cell

More information

DNA replication. M (mitosis)

DNA replication. M (mitosis) Introduction to cell cycle modeling Attila Csikász-Nagy G1 The cell cycle is the sequence of events whereby a growing cell replicates all its components and divides them more-or-less evenly between two

More information

CELL CYCLE AND DIFFERENTIATION

CELL CYCLE AND DIFFERENTIATION CELL CYCLE AND DIFFERENTIATION Dewajani Purnomosari Department of Histology and Cell Biology Faculty of Medicine Universitas Gadjah Mada d.purnomosari@ugm.ac.id WHAT IS CELL CYCLE? 09/12/14 d.purnomosari@ugm.ac.id

More information

Modelling Biochemical Reaction Networks. Lecture 17: Modeling the cell cycle, Part I

Modelling Biochemical Reaction Networks. Lecture 17: Modeling the cell cycle, Part I Modelling Biochemical Reaction Networks Lecture 17: Modeling the cell cycle, Part I Marc R. Roussel Department of Chemistry and Biochemistry Recommended reading Fall, Marland, Wagner and Tyson, sections

More information

Alternating Oscillations and Chaos in a Model of Two Coupled Biochemical Oscillators Driving Successive Phases of the Cell Cycle

Alternating Oscillations and Chaos in a Model of Two Coupled Biochemical Oscillators Driving Successive Phases of the Cell Cycle Alternating Oscillations and Chaos in a Model of Two Coupled Biochemical Oscillators Driving Successive Phases of the Cell Cycle PIERRE-CHARLES ROMOND, a MAURO RUSTICI, b DIDIER GONZE, AND ALBERT GOLDBETER

More information

Introduction to Mathematical Modeling

Introduction to Mathematical Modeling Introduction to Mathematical Modeling - Systems Theory in the Toolbox for Systems Biology The 5 th International Course in Yeast Systems Biology 2011 June 6, 2011, PhD, Assoc Prof Head of Department Systems

More information

12/5/2014. The cell cycle and cell death. The cell cycle: cells duplicate their contents and divide

12/5/2014. The cell cycle and cell death. The cell cycle: cells duplicate their contents and divide The cell cycle and cell death The cell cycle: cells duplicate their contents and divide 1 The cell cycle may be divided into 4 phases Eucaryotic cell division: Mitosis (nuclear division) Cytokinesis (cell

More information

CHAPTER 12 - THE CELL CYCLE (pgs )

CHAPTER 12 - THE CELL CYCLE (pgs ) CHAPTER 12 - THE CELL CYCLE (pgs. 228-245) CHAPTER SEVEN TARGETS I. Describe the importance of mitosis in single-celled and multi-cellular organisms. II. Explain the organization of DNA molecules and their

More information

Network Dynamics and Cell Physiology

Network Dynamics and Cell Physiology Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute Outline 1. The cell is an information processing system. 2. Information is processed

More information

Overview of the cell cycle

Overview of the cell cycle Chapter 2 Overview of the cell cycle 2.1 The organisation of cell cycle in eukaryotes During the cell cycle, the typical eukaryotic cell goes through a series of well defined phases, to divide into two

More information

Introduction to Mathematical Physiology I - Biochemical Reactions

Introduction to Mathematical Physiology I - Biochemical Reactions Introduction to Mathematical Physiology I - Biochemical Reactions J. P. Keener Mathematics Department Math Physiology p.1/28 Introduction The Dilemma of Modern Biology The amount of data being collected

More information

LIMIT CYCLE OSCILLATORS

LIMIT CYCLE OSCILLATORS MCB 137 EXCITABLE & OSCILLATORY SYSTEMS WINTER 2008 LIMIT CYCLE OSCILLATORS The Fitzhugh-Nagumo Equations The best example of an excitable phenomenon is the firing of a nerve: according to the Hodgkin

More information

Dr. Fred Cross, Rockefeller (KITP Bio Networks 3/26/2003) 1

Dr. Fred Cross, Rockefeller (KITP Bio Networks 3/26/2003) 1 Outline Cell growth as the driver for cell cycle (in microbes): coordination of growth and division A basic principle organizing cell cycle control: why cyclin-dependent kinase activity must oscillate

More information

Investigation 7 Part 1: CELL DIVISION: MITOSIS

Investigation 7 Part 1: CELL DIVISION: MITOSIS Investigation 7 Part 1: CELL DIVISION: MITOSIS How do eukaryotic cells divide to produce genetically identical cells? BACKGROUND One of the characteristics of living things is the ability to replicate

More information

Cellular Growth & Reproduction. Biology 1B Ms. Morris

Cellular Growth & Reproduction. Biology 1B Ms. Morris Cellular Growth & Reproduction Biology 1B Ms. Morris Friday, February 7, 2014 Warm Up: Look around at the other people in the classroom. What types of variation (differences) do you see? What similarities

More information

Biological Pathways Representation by Petri Nets and extension

Biological Pathways Representation by Petri Nets and extension Biological Pathways Representation by and extensions December 6, 2006 Biological Pathways Representation by and extension 1 The cell Pathways 2 Definitions 3 4 Biological Pathways Representation by and

More information

A model of the checkpoint response of the cell cycle of frog-egg extracts in the presence of unreplicated DNA.

A model of the checkpoint response of the cell cycle of frog-egg extracts in the presence of unreplicated DNA. A model of the checkpoint response of the cell cycle of frog-egg extracts in the presence of unreplicated DNA. Amit Dravid Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State

More information

The Cell Cycle/Le Cycle cellulaire SMC6052/BIM6028 IRCM

The Cell Cycle/Le Cycle cellulaire SMC6052/BIM6028 IRCM The Cell Cycle/Le Cycle cellulaire SMC6052/BIM6028 IRCM 1 février 2018 Benjamin H. Kwok, Ph.D. Chercheur principal, Institut de recherche en immunologie et en cancérologie Professeur sous octroi agrégé,

More information

Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis.

Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis. Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis. The role of kinases and cyclin in the regulation of the cell cycle.

More information

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA)

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Quiz answers Kinase: An enzyme

More information

Transport between cytosol and nucleus

Transport between cytosol and nucleus of 60 3 Gated trans Lectures 9-15 MBLG 2071 The n GATED TRANSPORT transport between cytoplasm and nucleus (bidirectional) controlled by the nuclear pore complex active transport for macro molecules e.g.

More information

Research Article Robust Cell Size Checkpoint from Spatiotemporal Positive Feedback Loop in Fission Yeast

Research Article Robust Cell Size Checkpoint from Spatiotemporal Positive Feedback Loop in Fission Yeast BioMed Research International Volume 213, Article ID 91941, 9 pages http://dx.doi.org/1.1155/213/91941 Research Article Robust Cell Size Checkpoint from Spatiotemporal Positive Feedback Loop in Fission

More information

Zool 3200: Cell Biology Exam 5 4/27/15

Zool 3200: Cell Biology Exam 5 4/27/15 Name: Trask Zool 3200: Cell Biology Exam 5 4/27/15 Answer each of the following short answer questions in the space provided, giving explanations when asked to do so. Circle the correct answer or answers

More information

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook

More information

Cell Division Unit Objectives

Cell Division Unit Objectives Cell Division Unit Objectives In this second unit of biology, you will be learning how cells divide. Did you know that your body contains over a trillion cells? Where did all of these cells come from?

More information

Chapter 12: The Cell Cycle. 2. What is the meaning of genome? Compare your genome to that of a prokaryotic cell.

Chapter 12: The Cell Cycle. 2. What is the meaning of genome? Compare your genome to that of a prokaryotic cell. Name: AP Bio Chapter 12: The Cell Cycle 12.1 Cell division results in genetically identical daughter cells 1. What is meant by the cell cycle? 2. What is the meaning of genome? Compare your genome to that

More information

V19 Metabolic Networks - Overview

V19 Metabolic Networks - Overview V19 Metabolic Networks - Overview There exist different levels of computational methods for describing metabolic networks: - stoichiometry/kinetics of classical biochemical pathways (glycolysis, TCA cycle,...

More information

Cyclin Dependent Kinases and Cell Cycle Control

Cyclin Dependent Kinases and Cell Cycle Control Bioscience Reports, Vol. 22, Nos. 5 and 6, October and December 2002 ( 2002) NOBEL LECTURE 9 DECEMBER, 2001 Cyclin Dependent Kinases and Cell Cycle Control Paul M. Nurse The discovery of major regulators

More information

Modelling the fission yeast cell cycle Akos Sveiczer, John J. Tyson and Bela Novak Date received (in revised form): 20th October, 2003

Modelling the fission yeast cell cycle Akos Sveiczer, John J. Tyson and Bela Novak Date received (in revised form): 20th October, 2003 Akos Sveiczer is a Reader in the Department of Agricultural Chemical Technology at Budapest University of Technology and Economics. John J. Tyson is a University Distinguished Professor in the Department

More information

Analysis of Mode Transitions in Biological Networks

Analysis of Mode Transitions in Biological Networks Analysis of Mode Transitions in Biological Networks Nael H. El-Farra, Adiwinata Gani, and Panagiotis D. Christofides Dept. of Chemical Engineering, University of California, Los Angeles, CA 90095 DOI 10.1002/aic.10499

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Example 2. What is meant by the cell cycle? Concept 12.1

More information

Biophysical Chemistry 72 (1998)

Biophysical Chemistry 72 (1998) Biophysical Chemistry 72 (1998) 153 167 Link between fertilization-induced Ca 2+ oscillations and relief from metaphase II arrest in mammalian eggs: a model based on calmodulin-dependent kinase II activation

More information

The dynamics of cell cycle regulation

The dynamics of cell cycle regulation The dynamics of cell cycle regulation John J. Tyson, 1 * Attila Csikasz-Nagy, 2,3 and Bela Novak 2 Summary Major events of the cell cycle DNA synthesis, mitosis and cell division are regulated by a complex

More information

MATHEMATICAL MODELING OF MITOSIS

MATHEMATICAL MODELING OF MITOSIS BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY GYÖRGY OLÁH DOCTORAL SCHOOL MATHEMATICAL MODELING OF MITOSIS Summary of the thesis AUTHOR: Attila Tóth SUPERVISOR:

More information

Answer Key. Cell Growth and Division

Answer Key. Cell Growth and Division Cell Growth and Division Answer Key SECTION 1. THE CELL CYCLE Cell Cycle: (1) Gap1 (G 1): cells grow, carry out normal functions, and copy their organelles. (2) Synthesis (S): cells replicate DNA. (3)

More information

Dynamics of the Cell Cycle: Checkpoints, Sizers, and Timers

Dynamics of the Cell Cycle: Checkpoints, Sizers, and Timers 3600 Biophysical Journal Volume 85 December 2003 3600 3611 Dynamics of the Cell Cycle: Checkpoints, Sizers, and Timers Zhilin Qu, W. Robb MacLellan, and James N. Weiss Cardiovascular Research Laboratory,

More information

5.1. Cells have distinct phases of growth, reproduction, and normal functions. G 1. Cell Growth and Division CHAPTER 5 THE CELL CYCLE KEY CONCEPT

5.1. Cells have distinct phases of growth, reproduction, and normal functions. G 1. Cell Growth and Division CHAPTER 5 THE CELL CYCLE KEY CONCEPT SECTION 5.1 THE CELL CYCLE Study Guide KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. VOCABULARY cell cycle mitosis cytokinesis The cell cycle has four main stages.

More information

SPATIO-TEMPORAL MODELLING IN BIOLOGY

SPATIO-TEMPORAL MODELLING IN BIOLOGY SPATIO-TEMPORAL MODELLING IN BIOLOGY Prof Dagmar Iber, PhD DPhil ((Vorname Nachname)) 04/10/16 1 Challenge: Integration across scales Butcher et al (2004) Nat Biotech, 22, 1253-1259 INTERDISCIPLINARY WORK

More information

Chapter 9 Active Reading Guide The Cell Cycle

Chapter 9 Active Reading Guide The Cell Cycle Name: AP Biology Mr. Croft Chapter 9 Active Reading Guide The Cell Cycle 1. Give an example of the three key roles of cell division. Key Role Reproduction Example Growth and Development Tissue Renewal

More information

Regulation of the mammalian cell cycle: a model of the G 1 -to-s transition

Regulation of the mammalian cell cycle: a model of the G 1 -to-s transition Am J Physiol Cell Physiol 284: C349 C364, 2003. First published October 9, 2002; 10.1152/ajpcell.00066.2002. Regulation of the mammalian cell cycle: a model of the G 1 -to-s transition ZHILIN QU, JAMES

More information

7.06 Problem Set #4, Spring 2005

7.06 Problem Set #4, Spring 2005 7.06 Problem Set #4, Spring 2005 1. You re doing a mutant hunt in S. cerevisiae (budding yeast), looking for temperaturesensitive mutants that are defective in the cell cycle. You discover a mutant strain

More information

Gene Network Science Diagrammatic Cell Language and Visual Cell

Gene Network Science Diagrammatic Cell Language and Visual Cell Gene Network Science Diagrammatic Cell Language and Visual Cell Mr. Tan Chee Meng Scientific Programmer, System Biology Group, Bioinformatics Institute Overview Introduction Why? Challenges Diagrammatic

More information

ACCELERATE ITS BIOCHEMICAL PROCESSES WHICH WERE SLOWED DOWN BY MITOSIS. THE LENGTH OF THE G1 PHASE CREATES THE DIFFERENCE BETWEEN FAST DIVIDING

ACCELERATE ITS BIOCHEMICAL PROCESSES WHICH WERE SLOWED DOWN BY MITOSIS. THE LENGTH OF THE G1 PHASE CREATES THE DIFFERENCE BETWEEN FAST DIVIDING CHAPTER 1: OVERVIEW OF THE CELL CYCLE THE THREE STAGES OF INTERPHASE: INTERPHASE BEFORE A CELL CAN ENTER CELL DIVISION, IT NEEDS TO PREPARE ITSELF BY REPLICATING ITS GENETIC INFORMATION AND ALL OF THE

More information

Meiosis. What is meiosis? How is it different from mitosis? Stages Genetic Variation

Meiosis. What is meiosis? How is it different from mitosis? Stages Genetic Variation Meiosis What is meiosis? How is it different from mitosis? Stages Genetic Variation Reproduction Asexual reproduction resulting from mitosis (or a similar process) that involves only one parent; the offspring

More information

5.1 Cell Division and the Cell Cycle

5.1 Cell Division and the Cell Cycle 5.1 Cell Division and the Cell Cycle Lesson Objectives Contrast cell division in prokaryotes and eukaryotes. Identify the phases of the eukaryotic cell cycle. Explain how the cell cycle is controlled.

More information

Module B Unit 5 Cell Growth and Reproduction. Mr. Mitcheltree

Module B Unit 5 Cell Growth and Reproduction. Mr. Mitcheltree Module B Unit 5 Cell Growth and Reproduction Mr. Mitcheltree DNA and Genetics - The Cell and Inheritance Gene = group of codons that code for a specific protein Allele = alternate form of a gene A dominant,

More information

LESSON 2.2 WORKBOOK. How is a cell born? Workbook Lesson 2.2

LESSON 2.2 WORKBOOK. How is a cell born? Workbook Lesson 2.2 For a complete list of defined terms, see the Glossary. Cell cycle the progression of events that prepares a cell to replicate, and then leads to division into two daughter cells. Mitosis the phase of

More information

EUKARYOTIC CELL CYCLE AS A TEST CASE FOR MODELING CELLULAR REGULATION IN A COLLABORATIVE PROBLEM-SOLVING ENVIRONMENT

EUKARYOTIC CELL CYCLE AS A TEST CASE FOR MODELING CELLULAR REGULATION IN A COLLABORATIVE PROBLEM-SOLVING ENVIRONMENT AFRL-IF-RS-TR-2007-69 Final Technical Report March 2007 EUKARYOTIC CELL CYCLE AS A TEST CASE FOR MODELING CELLULAR REGULATION IN A COLLABORATIVE PROBLEM-SOLVING ENVIRONMENT Virginia Polytechnic Institute

More information

Updated: 10/11/2018 Page 1 of 5

Updated: 10/11/2018 Page 1 of 5 A. Academic Division: Health Sciences B. Discipline: Biology C. Course Number and Title: BIOL1230 Biology I MASTER SYLLABUS 2018-2019 D. Course Coordinator: Justin Tickhill Assistant Dean: Melinda Roepke,

More information

Bifurcation Analysis of a Model of Mitotic Control in Frog Eggs

Bifurcation Analysis of a Model of Mitotic Control in Frog Eggs J. theor. Biol. (1998) 195, 69 85 Article No. jt980781 Bifurcation Analysis of a Model of Mitotic Control in Frog Eggs MARK T. BORISUK AND JOHN J. TYSON* Department of Biology, Virginia olytechnic Institute

More information

V5 Cell Cycle. In cells with a nucleus (eukaryotes), the cell cycle can be divided in 2 brief periods:

V5 Cell Cycle. In cells with a nucleus (eukaryotes), the cell cycle can be divided in 2 brief periods: V5 Cell Cycle The cell cycle, or cell-division cycle, is the series of events that takes place in a cell leading to its division and duplication (replication). In cells without a nucleus (prokaryotes),

More information

V14 extreme pathways

V14 extreme pathways V14 extreme pathways A torch is directed at an open door and shines into a dark room... What area is lighted? Instead of marking all lighted points individually, it would be sufficient to characterize

More information

From quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle

From quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle ORIGINAL RESEARCH ARTICLE published: 02 November 2012 doi: 10.3389/fphys.2012.00413 From quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle Claude Gérard and Albert Goldbeter*

More information

CELL CYCLE AND GROWTH REGULATION

CELL CYCLE AND GROWTH REGULATION CELL CYCLE AND GROWTH REGULATION The cell cycle is the set of stages through which a cell progresses from one division to the next. Interphase is the period between mitotic cell divisions; divided into

More information

Plant Molecular and Cellular Biology Lecture 10: Plant Cell Cycle Gary Peter

Plant Molecular and Cellular Biology Lecture 10: Plant Cell Cycle Gary Peter Plant Molecular and Cellular Biology Lecture 10: Plant Cell Cycle Gary Peter 9/10/2008 1 Learning Objectives Explain similarities and differences between fungal, mammalian and plant cell cycles Explain

More information

Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis

Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis No matter the type of cell, all cells come from preexisting cells through the process of cell division. The cell may be the

More information

7.32/7.81J/8.591J. Rm Rm (under construction) Alexander van Oudenaarden Jialing Li. Bernardo Pando. Rm.

7.32/7.81J/8.591J. Rm Rm (under construction) Alexander van Oudenaarden Jialing Li. Bernardo Pando. Rm. Introducing... 7.32/7.81J/8.591J Systems Biology modeling biological networks Lectures: Recitations: ti TR 1:00-2:30 PM W 4:00-5:00 PM Rm. 6-120 Rm. 26-204 (under construction) Alexander van Oudenaarden

More information

Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos

Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos Journal of Cell Science 106, 1153-1168 (1993) Printed in Great Britain The Company of Biologists Limited 1993 1153 Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts

More information

L'horloge circadienne, le cycle cellulaire et leurs interactions. Madalena CHAVES

L'horloge circadienne, le cycle cellulaire et leurs interactions. Madalena CHAVES L'horloge circadienne, le cycle cellulaire et leurs interactions?? Madalena CHAVES What do all these living organisms have in common? Mus musculus Neurospora crassa Drosophila melanogaster Arabidopsis

More information

Unit 5: Cell Division and Development Guided Reading Questions (45 pts total)

Unit 5: Cell Division and Development Guided Reading Questions (45 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 12 The Cell Cycle Unit 5: Cell Division and Development Guided

More information

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016 Bi 8 Lecture 11 Quantitative aspects of transcription factor binding and gene regulatory circuit design Ellen Rothenberg 9 February 2016 Major take-home messages from λ phage system that apply to many

More information

3 RFC1-like clamps (Ctf18, Elg1 and Rad24) have nonessential and overlapping functions as seen by the increased sensitivity to DNA damage or slowed

3 RFC1-like clamps (Ctf18, Elg1 and Rad24) have nonessential and overlapping functions as seen by the increased sensitivity to DNA damage or slowed 3 RFC1-like clamps (Ctf18, Elg1 and Rad24) have nonessential and overlapping functions as seen by the increased sensitivity to DNA damage or slowed replication Initiation of Replication http://www.orst.edu/instruction/bb492/figletters/figh3.gif

More information

Modeling the control of DNA replication in fission yeast

Modeling the control of DNA replication in fission yeast Proc. Natl. Acad. Sci. USA Vol. 94, pp. 9147 9152, August 1997 Cell Biology Modeling the control of DNA replication in fission yeast (cell cycle G 1 -checkpoint Start endoreplication rum1) BELA NOVAK*

More information

Study Guide A. Answer Key. Cell Growth and Division. SECTION 1. THE CELL CYCLE 1. a; d; b; c 2. gaps 3. c and d 4. c 5. b and d 6.

Study Guide A. Answer Key. Cell Growth and Division. SECTION 1. THE CELL CYCLE 1. a; d; b; c 2. gaps 3. c and d 4. c 5. b and d 6. Cell Growth and Division Answer Key SECTION 1. THE CELL CYCLE 1. a; d; b; c 2. gaps 3. c and d 4. c 5. b and d 6. G 1 7. G 0 8. c 9. faster; too large 10. volume 11. a and b 12. repeating pattern or repetition

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

System-level feedbacks control cell cycle progression

System-level feedbacks control cell cycle progression FEBS Letters 583 (2009) 3992 3998 journal homepage: www.febsletters.org Review System-level feedbacks control cell cycle progression Orsolya Kapuy a, Enuo He a, Sandra López-Avilés b, Frank Uhlmann b,

More information

1. In your own words, what is meiosis?

1. In your own words, what is meiosis? Warm Up 1. In your own words, what is meiosis? 1. Complete the blanks in the sentence below: Body cells are and divide through, while gametes are and divide through. (Haploid/Diploid, Mitosis/Meiosis)

More information

Why do we have to cut our hair, nails, and lawn all the time?

Why do we have to cut our hair, nails, and lawn all the time? Chapter 5 Cell Reproduction Mitosis Think about this Why do we have to cut our hair, nails, and lawn all the time? EQ: Why is cell division necessary for the growth & development of living organisms? Section

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16 Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Enduring understanding 3.B: Expression of genetic information involves cellular and molecular

More information

Modelling the cell cycle regulatory network

Modelling the cell cycle regulatory network Chapter 3 Modelling the cell cycle regulatory network 3.1 Dynamical modelling Dynamical properties of a system arise from the interaction of its components. In the case of the cell division cycle, cellular

More information

Analysis of a generic model of eukaryotic cell cycle regulation

Analysis of a generic model of eukaryotic cell cycle regulation This un-edited manuscript has been accepted for publication in Biophysical Journal and is freely available on BioFast at http://www.biophysj.org. The final copyedited version of the paper may be found

More information

Binary fission occurs in prokaryotes. parent cell. DNA duplicates. cell begins to divide. daughter cells

Binary fission occurs in prokaryotes. parent cell. DNA duplicates. cell begins to divide. daughter cells Chapter 11 Chapter 11 Some eukaryotes reproduce through mitosis. Binary fission is similar in function to mitosis. Asexual reproduction is the creation of offspring from a single parent. Binary fission

More information

3.a.2- Cell Cycle and Meiosis

3.a.2- Cell Cycle and Meiosis Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. 3.a.2- Cell Cycle and Meiosis EU 3.A: Heritable information provides for continuity of life.

More information

A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle

A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle K. Sriram, G. Bernot and F. Képès Abstract: A novel topology of regulatory networks abstracted from the

More information

Introduction: The Cell Cycle and Mitosis

Introduction: The Cell Cycle and Mitosis Contents 1 Introduction: The Cell Cycle and Mitosis 2 Mitosis Review Introduction: The Cell Cycle and Mitosis The cell cycle refers to the a series of events that describe the metabolic processes of growth

More information

Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions

Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions Biophysical Chemistry 72 (1998) 185 200 Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions Bela Novak a, *, Attila Csikasz-Nagy

More information

Computational Biology Course Descriptions 12-14

Computational Biology Course Descriptions 12-14 Computational Biology Course Descriptions 12-14 Course Number and Title INTRODUCTORY COURSES BIO 311C: Introductory Biology I BIO 311D: Introductory Biology II BIO 325: Genetics CH 301: Principles of Chemistry

More information

ADVANCED PLACEMENT BIOLOGY

ADVANCED PLACEMENT BIOLOGY ADVANCED PLACEMENT BIOLOGY Description Advanced Placement Biology is designed to be the equivalent of a two-semester college introductory course for Biology majors. The course meets seven periods per week

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

10 CELL DIVISION AND MITOSIS

10 CELL DIVISION AND MITOSIS 10 CELL DIVISION AND MITOSIS Chapter Outline Why It Matters 10.1 THE CYCLE OF CELL GROWTH AND DIVISION: OVERVIEW The products of mitosis are genetic duplicates of the dividing cell Chromosomes are the

More information

1- Below is a list of cell cycle phases matched with specific processes. Choose the correct pairing:

1- Below is a list of cell cycle phases matched with specific processes. Choose the correct pairing: Name: NetID: Exam 4 - Version 2 November 13, 2018 Dr. A. Pimentel Instructions: 1- Select the BEST answer for each question 2- Use pencil to mark your responses in the answer sheet. 3- You can mark your

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Getting In and Out of Mitosis*

Getting In and Out of Mitosis* Open Access NOBEL LAUREATE PERSPECTIVE Rambam Maimonides Medical Journal Getting In and Out of Mitosis* Tim Hunt, Ph.D., F.R.S. Nobel Laureate in Physiology or Medicine, 2001; Cancer Research UK, London

More information

Cell Division (Outline)

Cell Division (Outline) Cell Division (Outline) 1. Overview of purpose and roles. Comparison of prokaryotic and eukaryotic chromosomes and relation between organelles and cell division. 2. Eukaryotic cell reproduction: asexual

More information

Mitosis. Meiosis MP3. Why do cells divide? Why Do Cells Need To Divide? Vocab List Chapter 10 & 11. What has to happen before a cell divides? divides?

Mitosis. Meiosis MP3. Why do cells divide? Why Do Cells Need To Divide? Vocab List Chapter 10 & 11. What has to happen before a cell divides? divides? MP3 Vocab List Chapter 10 & 11 Mitosis Anaphase Mitosis Cell Cycle Telophase Cytokinesis Cell Division Metaphase 4 Daughter Cells Prophase Meiosis Diploid Somatic Cells Interphase Haploid Parent Cell Gametes

More information