Neocortical Pyramidal Cells Can Control Signals to Post-Synaptic Cells Without Firing:

Size: px
Start display at page:

Download "Neocortical Pyramidal Cells Can Control Signals to Post-Synaptic Cells Without Firing:"

Transcription

1 Neocortical Pyramidal Cells Can Control Signals to Post-Synaptic Cells Without Firing: a model of the axonal plexus Erin Munro Department of Mathematics Boston University 4/14/2011

2 Gap junctions on pyramidal cell axons Evidence: near somata in 5% of pair recordings in layer 5 of rat neocortex where somata are adjacent (Wang et al. 2010) by immuno-gold labeling in hippocampus (Hamzei-Sichani et al. 2007) by spikelets seen in the hippocampus and neocortex (Draguhn et al. 1998, Steriade et al. 1993) by dye-coupling in the hippocampus and neocortex (Schmitz et al. 2001, Gutnick et al. 1985) Importance: gap junctions are linked with very fast oscillations (VFOs, >80 Hz) epilepsy An axonal plexus is a network of pyramidal cell axons connected by gap junctions.

3 An axonal plexus can produce externally-driven expanding waves

4 An axonal plexus can produce re-entrant/spiral waves

5 Do gap junctions fit in with neocortical processing? Spikes may propagate through the whole network of axons at any time. Somatic voltage seems to control VFOs in experiment. Perhaps somatic voltage controls VFOs by controlling propagation across gap junctions. We show that, in neocortical pyramidal cells: Somatic voltage can control propagation through gap junctions in the initial segment (IS) and main axon (MA). Somatic voltage can t control propagation from gap junctions in collaterals. Number of cells connected by uncontrollable gap junctions is relatively small. Results imply that: Pyramidal cells can control signals to post-synaptic cells by adjusting their somatic voltage. Too many collateral gap junctions may lead to epilepsy.

6 How could the somatic voltage control spike propagation across gap junctions? We hypothesize that: Gap junctions may be on any length of unmyelinated axon initial segment (IS), main axon (MA), axon collaterals So we: Model the effects of somatic voltage on spike propagation across gap junctions in the IS across gap junctions in the main axon from gap junctions on collaterals

7 3D pyramidal cell reconstructions downloaded from neuromorpho.org rat somatosensory cortex (Schubert et al. 2006, Shepherd & Svoboda 2005, Staiger et al 2004, Wang et al. 2002) 156 cells total: cells from layers 2/ cells from layer cells from layer 5. Model neurons: 1. have exact geometry from reconstructions, or 2. have simplified geometry based on reconstructions

8 Equations used in models taken from Traub et al C dv dt = g L (V L V ) + g Na m 3 h(v Na V ) + g K n 4 (V K V ) m, h, n are determined by dz dt = z (V ) z τ z (V ) g Na = g K =0.45 S/cm 2 by default in the IS g Na = g K =0.2 S/cm 2 by default in the main axon only leak current in soma: g L (V s V ) Gap junction at point x in axon A and point y in axon B is modeled by adding the current: g gj (V B,y V A,x ) g gj (V A,x V B,y ) to the equation for A at x, and to the equation for B at y

9 Simplified axon model for IS/MA gap junctions soma IS { { main axon sharp taper shallow taper main axon (MA) fixed diameter d MA 12 electrotonic units (λ) long initial segment (IS) 40 µm long 2 linear tapers diameter between tapers is d IS sharp taper is lc λ long soma fixed diameter d s = d IS s ratio length is same as diameter d Ma, d IS, l c, s ratio based on reconstructions, different values for cortical layers 2/3, 4, and 5

10 Spike propagation across gap junctions in the main axon Stimulate here Gap Junction Test for AP here stimulate one axon twice, test for spikes in other axon vary: gap junction distance from soma somatic voltage (V s ) g Na in main axon find threshold g Na that allows propagation find window of control for g Na where: Spikes propagate when V s = 60 mv Spikes are blocked when V s = 80 mv

11 V s can control gap junctions in the main axon window of control window of control for 2 spikes

12 V s can control gap junctions in the IS Soma Stimulate soma here stimulate axon: IS Gap Junction Main axon Or stimulate axon here Test for AP here stimulate soma: windows of control are similar

13 Model with exact geometry of 3D reconstructions for collateral gap junctions Stimulate here Test for AP here v same conductances as simplified model first 40 µm below soma counts as IS stimulate collaterals from 11 representative cells from all cortical layers find window of control for g Na where: Spikes propagate when V s = 60 mv Spikes are blocked when V s = 80 mv

14 V s can t control spike propagation from collaterals L23 C170797A P1: [6 6] L23 C190898A P2: [1 1] L23 C190898A P2: [7 8] L23 C190898A P2: [11 14] L23 C190898A P2: [32 34] L23 C230797B P4: [1 7] L23 C230797B P4: [23 23] L23 C230797B P4: [34 36] L23 C230797B P4: [26 27] L23 C280199C P1: [1 8] L23 C280199C P1: [13 20] L23 C280199C P1: [23 25] L23 C280199C P1: [27 29] L23 C280199C P1: [33 34] L23 C280199C P1: [43 43] L4 C031097B P3: [3 5] L4 C031097B P3: [9 11] L4 C031097B P3: [13 19] L4 C031097B P3: [35 35] L4 C031097B P3: [28 28] L4 C200897C P3: [36 40] L4 C200897C P3: [33 34] L4 C200897C P3: [27 29] L4 C200897C P3: [26 26] L4 C200897C P3: [22 24] L4 C200897C P3: [20 20] L4 C200897C P3: [17 19] L4 C200897C P3: [16 16] L4 C271097A P2: [1 1] L4 C271097A P2: [3 8] L4 C271097A P2: [36 40] L4 C271097A P2: [18 22] L4 C271097A P2: [35 35] L4 IF4_140201: [82 84] L4 IF4_140201: [53 75] L4 IF4_140201: [36 39] L4 IF4_140201: [36 41] L4 IF4_140201: [22 23] L4 IF4_140201: [15 15] L4 IF4_140201: [14 14] L4 IF4_140201: [13 13] L4 IF4_140201: [12 12] L DS2: [59 59] L DS2: [52 54] L DS2: [43 51] L DS2: [5 15] L DS2: [19 27] L5 C040896A P3: [40 43] L5 C040896A P3: [40 64] L5 C040896A P3: [26 34] L5 C040896A P3: [13 16] L5 C261296A P1: [40 61] L5 C261296A P1: [39 39] L5 C261296A P1: [30 34] L5 C261296A P1: [13 19] L5 C261296A P1: [13 24] L5 C261296A P1: [4 8] g Na in S/cm 2 windows of control do not overlap: between cells between collaterals in the same cell between stimulation sites on the same collateral there is no g Na where V s can control all collaterals simultaneously spikes may propagate from collaterals regardless of somatic voltage

15 How many cells may be hard-wired together? Hard-wired cells: spikes may propagate between them regardless of somatic voltage. Relative amplitude of VFO (RA) vs. pyramidal cell voltage (V s ) Fig. 5 of Grenier et al Data from slow oscillation induced by ketamine-xylazine anesthesia in layer 5 RA is minimal when V s 83 mv How many cells could be firing at VFO frequencies when V s 83 mv? How many cells could be connected together without producing VFOs?

16 Possible number of cells producing VFOs during cell hyperpolarization number of pyramidal cells in layer 5 within 1 mm 2 : 19,550 (Skoglund et al. 1996, Beaulieu 1993) maximum fraction of cells in a large connected cluster: 2/3 (Traub et al. 1999) minimum RA: 0.01 Number of firing cells: /3 19, But there could be groups of cells hard-wired together that are not producing VFOs.

17 How many cells can be connected together without producing VFOs? Network model of collateral connections arrange groups of axons in hexagonal grid weigh axons according to total axon lengths of 3D reconstructions randomly connect axons within 9 units on grid according to p: probability of connecting per µm 2 Need 1 cycle for re-entrant VFOs. As p varies, find: average number of cycles (m cy ) size of largest cluster when m cy = 1

18 Cycles form when there are 70 cells in a cluster Average number of cycles Mean largest cluster size There can be up to 70 cells hard-wired together without producing VFOs. 70<130 maximum number of cells hard-wired together is 130.

19 What we ve learned so far: V s can control spike propagation across gap junctions in the IS in the main axon V s can t control spike propagation from gap junctions on collaterals Maximum number of cells hard-wired together 130 out of 20,000, or 0.65%

20 Implications for neocortical processing IS/MA connection collateral connection If black cells depolarize and 1 cell fires, in effect they all fire cells signal post-synaptic cells by depolarizing, not just by firing depolarized cells form cell assemblies large groups of depolarized cells produce VFOs send high-frequency signals to post-synaptic cells alter synapses

21 Implications for temporal lobe epilepsy Can t control spike propagation from collaterals. Too many connections on collaterals can lead to: many cycles formed by gap junctions on collaterals re-entrant VFOs that cannot be turned off by somatic voltage VFOs kindle post-synaptic cells epilepsy Extra collateral connections may result from lesions in certain directions (Gutnick et al. 1985) axonal sprouting (Salin et al. 1995) Lesions, axonal sprouting, and VFOs are all highly correlated with temporal lobe epilepsy.

22 Conclusion and Thanks! Pyramidal cells can send signals by depolarizing. Axonal sprouting can lead to epilepsy because axon collaterals form cycles. Acknowledgements: Nancy Kopell Roger Traub Yun Wang Thank you for your attention!

A realistic neocortical axonal plexus model has implications for neocortical processing and temporal lobe epilepsy

A realistic neocortical axonal plexus model has implications for neocortical processing and temporal lobe epilepsy A realistic neocortical axonal plexus model has implications for neocortical processing and temporal lobe epilepsy Neocortical Pyramidal Cells Can Send Signals to Post-Synaptic Cells Without Firing Erin

More information

The Axonal Plexus. A description of the behavior of a network of neurons connected by gap junctions. Erin Munro, 4/4/2007

The Axonal Plexus. A description of the behavior of a network of neurons connected by gap junctions. Erin Munro, 4/4/2007 The Axonal Plexus A description of the behavior of a network of neurons connected by gap junctions Erin Munro, 4/4/2007 Why are we interested in studying the axonal plexus? Gap junctions are indicated

More information

Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells

Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells European Journal of Neuroscience European Journal of Neuroscience, Vol. 28, pp. 1603 1616, 2008 doi:10.1111/j.1460-9568.2008.06477.x NEUROSYSTEMS Model of very fast (> 75 Hz) network oscillations generated

More information

Topological target patterns and population oscillations in a network with random gap junctional coupling

Topological target patterns and population oscillations in a network with random gap junctional coupling 0 0 0 0 Neurocomputing }0 (00) } Topological target patterns and population oscillations in a network with random gap junctional coupling Timothy J. Lewis*, John Rinzel Center for Neural Science and Courant

More information

Biological Modeling of Neural Networks

Biological Modeling of Neural Networks Week 4 part 2: More Detail compartmental models Biological Modeling of Neural Networks Week 4 Reducing detail - Adding detail 4.2. Adding detail - apse -cable equat Wulfram Gerstner EPFL, Lausanne, Switzerland

More information

Linearization of F-I Curves by Adaptation

Linearization of F-I Curves by Adaptation LETTER Communicated by Laurence Abbott Linearization of F-I Curves by Adaptation Bard Ermentrout Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. We show that negative

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

Voltage-clamp and Hodgkin-Huxley models

Voltage-clamp and Hodgkin-Huxley models Voltage-clamp and Hodgkin-Huxley models Read: Hille, Chapters 2-5 (best Koch, Chapters 6, 8, 9 See also Hodgkin and Huxley, J. Physiol. 117:500-544 (1952. (the source Clay, J. Neurophysiol. 80:903-913

More information

How to read a burst duration code

How to read a burst duration code Neurocomputing 58 60 (2004) 1 6 www.elsevier.com/locate/neucom How to read a burst duration code Adam Kepecs a;, John Lisman b a Cold Spring Harbor Laboratory, Marks Building, 1 Bungtown Road, Cold Spring

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Voltage-clamp and Hodgkin-Huxley models

Voltage-clamp and Hodgkin-Huxley models Voltage-clamp and Hodgkin-Huxley models Read: Hille, Chapters 2-5 (best) Koch, Chapters 6, 8, 9 See also Clay, J. Neurophysiol. 80:903-913 (1998) (for a recent version of the HH squid axon model) Rothman

More information

Compartmental neural simulations with spatial adaptivity

Compartmental neural simulations with spatial adaptivity J Comput Neurosci (28) 25:465 48 DOI.7/s827-8-89-3 Compartmental neural simulations with spatial ivity Michael J. Rempe & Nelson Spruston & William L. Kath & David L. Chopp Received: 2 June 27 /Revised:

More information

In#uence of dendritic topologyon "ring patterns in model neurons

In#uence of dendritic topologyon ring patterns in model neurons Neurocomputing 38}40 (2001) 183}189 In#uence of dendritic topologyon "ring patterns in model neurons Jacob Duijnhouwer, Michiel W.H. Remme, Arjen van Ooyen*, Jaap van Pelt Netherlands Institute for Brain

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks

Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks The Journal of Neuroscience, December 1, 2001, 21(23):9478 9486 Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks Roger D. Traub, 1,2 Nancy

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES In Physiology Today Ohm s Law I = V/R Ohm s law: the current through a conductor between two points is directly proportional to the voltage across the

More information

How do biological neurons learn? Insights from computational modelling of

How do biological neurons learn? Insights from computational modelling of How do biological neurons learn? Insights from computational modelling of neurobiological experiments Lubica Benuskova Department of Computer Science University of Otago, New Zealand Brain is comprised

More information

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics Synaptic dynamics John D. Murray A dynamical model for synaptic gating variables is presented. We use this to study the saturation of synaptic gating at high firing rate. Shunting inhibition and the voltage

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

Propagation& Integration: Passive electrical properties

Propagation& Integration: Passive electrical properties Fundamentals of Neuroscience (NSCS 730, Spring 2010) Instructor: Art Riegel; email: Riegel@musc.edu; Room EL 113; time: 9 11 am Office: 416C BSB (792.5444) Propagation& Integration: Passive electrical

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

Deconstructing Actual Neurons

Deconstructing Actual Neurons 1 Deconstructing Actual Neurons Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 Reference: The many ionic

More information

Ch. 5. Membrane Potentials and Action Potentials

Ch. 5. Membrane Potentials and Action Potentials Ch. 5. Membrane Potentials and Action Potentials Basic Physics of Membrane Potentials Nerve and muscle cells: Excitable Capable of generating rapidly changing electrochemical impulses at their membranes

More information

Sustained rhythmic activity in gapneurons depends on the diameter of coupled dendrites

Sustained rhythmic activity in gapneurons depends on the diameter of coupled dendrites Sustained rhythmic activity in gapneurons depends on the diameter of coupled dendrites Juliane Gansert Department of Mathematical Sciences, NJIT [Currently at: European Neuroscience Institute Göttingen,

More information

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests J. Benda, M. Bethge, M. Hennig, K. Pawelzik & A.V.M. Herz February, 7 Abstract Spike-frequency adaptation is a common feature of

More information

Resting Distribution of Ions in Mammalian Neurons. Outside Inside (mm) E ion Permab. K Na Cl

Resting Distribution of Ions in Mammalian Neurons. Outside Inside (mm) E ion Permab. K Na Cl Resting Distribution of Ions in Mammalian Neurons Outside Inside (mm) E ion Permab. K + 5 100-81 1.0 150 15 +62 0.04 Cl - 100 10-62 0.045 V m = -60 mv V m approaches the Equilibrium Potential of the most

More information

Modeling of Retinal Ganglion Cell Responses to Electrical Stimulation with Multiple Electrodes L.A. Hruby Salk Institute for Biological Studies

Modeling of Retinal Ganglion Cell Responses to Electrical Stimulation with Multiple Electrodes L.A. Hruby Salk Institute for Biological Studies Modeling of Retinal Ganglion Cell Responses to Electrical Stimulation with Multiple Electrodes L.A. Hruby Salk Institute for Biological Studies Introduction Since work on epiretinal electrical stimulation

More information

Action Potential (AP) NEUROEXCITABILITY II-III. Na + and K + Voltage-Gated Channels. Voltage-Gated Channels. Voltage-Gated Channels

Action Potential (AP) NEUROEXCITABILITY II-III. Na + and K + Voltage-Gated Channels. Voltage-Gated Channels. Voltage-Gated Channels NEUROEXCITABILITY IIIII Action Potential (AP) enables longdistance signaling woohoo! shows threshold activation allornone in amplitude conducted without decrement caused by increase in conductance PNS

More information

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling Lecture Outline Electrical Signaling Using ions as messengers Potentials in electrical signaling Action Graded Other electrical signaling Gap junctions The neuron Using Ions as Messengers Important things

More information

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

More information

9 Generation of Action Potential Hodgkin-Huxley Model

9 Generation of Action Potential Hodgkin-Huxley Model 9 Generation of Action Potential Hodgkin-Huxley Model (based on chapter 12, W.W. Lytton, Hodgkin-Huxley Model) 9.1 Passive and active membrane models In the previous lecture we have considered a passive

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 Neurochemistry 1 Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 How Many Neurons Do We Have? The human brain contains ~86 billion neurons and

More information

Computational Explorations in Cognitive Neuroscience Chapter 2

Computational Explorations in Cognitive Neuroscience Chapter 2 Computational Explorations in Cognitive Neuroscience Chapter 2 2.4 The Electrophysiology of the Neuron Some basic principles of electricity are useful for understanding the function of neurons. This is

More information

Model of a Biological Neuron as a Temporal Neural Network

Model of a Biological Neuron as a Temporal Neural Network Model of a Biological Neuron as a Temporal Neural Network Sean D. Murphy and Edward W. Kairiss Interdepartmental Neuroscience Program, Department of Psychology, and The Center for Theoretical and Applied

More information

Marr's Theory of the Hippocampus: Part I

Marr's Theory of the Hippocampus: Part I Marr's Theory of the Hippocampus: Part I Computational Models of Neural Systems Lecture 3.3 David S. Touretzky October, 2015 David Marr: 1945-1980 10/05/15 Computational Models of Neural Systems 2 Marr

More information

Math in systems neuroscience. Quan Wen

Math in systems neuroscience. Quan Wen Math in systems neuroscience Quan Wen Human brain is perhaps the most complex subject in the universe 1 kg brain 10 11 neurons 180,000 km nerve fiber 10 15 synapses 10 18 synaptic proteins Multiscale

More information

LESSON 2.2 WORKBOOK How do our axons transmit electrical signals?

LESSON 2.2 WORKBOOK How do our axons transmit electrical signals? LESSON 2.2 WORKBOOK How do our axons transmit electrical signals? This lesson introduces you to the action potential, which is the process by which axons signal electrically. In this lesson you will learn

More information

Rhythms in the gamma range (30 80 Hz) and the beta range

Rhythms in the gamma range (30 80 Hz) and the beta range Gamma rhythms and beta rhythms have different synchronization properties N. Kopell, G. B. Ermentrout, M. A. Whittington, and R. D. Traub Department of Mathematics and Center for BioDynamics, Boston University,

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Hodgkin-Huxley Model for Nerve Cell Action Potential Part 1 Dr. Zvi Roth (FAU) 1 References Hoppensteadt-Peskin Ch. 3 for all the mathematics. Cooper s The Cell

More information

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross Action Potentials & Nervous System Bio 219 Napa Valley College Dr. Adam Ross Review: Membrane potentials exist due to unequal distribution of charge across the membrane Concentration gradients drive ion

More information

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995)

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995) Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten Lecture 2a The Neuron - overview of structure From Anderson (1995) 2 Lect_2a_Mathematica.nb Basic Structure Information flow:

More information

Resting Membrane Potential

Resting Membrane Potential Resting Membrane Potential Fig. 12.09a,b Recording of Resting and It is recorded by cathode ray oscilloscope action potentials -70 0 mv + it is negative in polarized (resting, the membrane can be excited)

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

ACTION POTENTIAL. Dr. Ayisha Qureshi Professor MBBS, MPhil

ACTION POTENTIAL. Dr. Ayisha Qureshi Professor MBBS, MPhil ACTION POTENTIAL Dr. Ayisha Qureshi Professor MBBS, MPhil DEFINITIONS: Stimulus: A stimulus is an external force or event which when applied to an excitable tissue produces a characteristic response. Subthreshold

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Fundamentals of the Nervous System and Nervous Tissue

Fundamentals of the Nervous System and Nervous Tissue Chapter 11 Part B Fundamentals of the Nervous System and Nervous Tissue Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College 11.4 Membrane

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #4 Wednesday, October 4, 2006 7. CHEMICAL SYNAPSES AND GAP JUNCTIONS We will look at: Chemical synapses in the nervous system Gap junctions in

More information

MATH 3104: THE HODGKIN-HUXLEY EQUATIONS

MATH 3104: THE HODGKIN-HUXLEY EQUATIONS MATH 3104: THE HODGKIN-HUXLEY EQUATIONS Parallel conductance model A/Prof Geoffrey Goodhill, Semester 1, 2009 So far we have modelled neuronal membranes by just one resistance (conductance) variable. We

More information

Spike Frequency Adaptation Affects the Synchronization Properties of Networks of Cortical Oscillators

Spike Frequency Adaptation Affects the Synchronization Properties of Networks of Cortical Oscillators LETTER Communicated by John Rinzel Spike Frequency Adaptation Affects the Synchronization Properties of Networks of Cortical Oscillators Sharon M. Crook Center for Computational Biology, Montana State

More information

Annales UMCS Informatica AI 1 (2003) UMCS. Liquid state machine built of Hodgkin-Huxley neurons pattern recognition and informational entropy

Annales UMCS Informatica AI 1 (2003) UMCS. Liquid state machine built of Hodgkin-Huxley neurons pattern recognition and informational entropy Annales UMC Informatica AI 1 (2003) 107-113 Annales UMC Informatica Lublin-Polonia ectio AI http://www.annales.umcs.lublin.pl/ Liquid state machine built of Hodgkin-Huxley neurons pattern recognition and

More information

The Neuron - F. Fig. 45.3

The Neuron - F. Fig. 45.3 excite.org(anism): Electrical Signaling The Neuron - F. Fig. 45.3 Today s lecture we ll use clickers Review today 11:30-1:00 in 2242 HJ Patterson Electrical signals Dendrites: graded post-synaptic potentials

More information

9 Generation of Action Potential Hodgkin-Huxley Model

9 Generation of Action Potential Hodgkin-Huxley Model 9 Generation of Action Potential Hodgkin-Huxley Model (based on chapter 2, W.W. Lytton, Hodgkin-Huxley Model) 9. Passive and active membrane models In the previous lecture we have considered a passive

More information

Neurophysiology of a VLSI spiking neural network: LANN21

Neurophysiology of a VLSI spiking neural network: LANN21 Neurophysiology of a VLSI spiking neural network: LANN21 Stefano Fusi INFN, Sezione Roma I Università di Roma La Sapienza Pza Aldo Moro 2, I-185, Roma fusi@jupiter.roma1.infn.it Paolo Del Giudice Physics

More information

Decoding. How well can we learn what the stimulus is by looking at the neural responses?

Decoding. How well can we learn what the stimulus is by looking at the neural responses? Decoding How well can we learn what the stimulus is by looking at the neural responses? Two approaches: devise explicit algorithms for extracting a stimulus estimate directly quantify the relationship

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wiring neurons together -- synapses

More information

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms.

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms. 9.16 Problem Set #4 In the final problem set you will combine the pieces of knowledge gained in the previous assignments to build a full-blown model of a plastic synapse. You will investigate the effects

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Systems Neuroscience How the nervous system performs computations How groups of neurons work together to achieve intelligence Professor Daniel Leeds dleeds@fordham.edu JMH

More information

Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits

Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits Wolfgang Maass, Robert Legenstein, Nils Bertschinger Institute for Theoretical Computer Science Technische

More information

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor Nervous system 3 Basic functions of the nervous system 1-Sensory 2-Integration 3-Motor I. Central Nervous System (CNS) Brain Spinal Cord I. Peripheral Nervous System (PNS) 2) Afferent towards afferent

More information

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch.

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch. 1. Describe the basic structure of an ion channel. Name 3 ways a channel can be "activated," and describe what occurs upon activation. What are some ways a channel can decide what is allowed to pass through?

More information

Neural Networks 1 Synchronization in Spiking Neural Networks

Neural Networks 1 Synchronization in Spiking Neural Networks CS 790R Seminar Modeling & Simulation Neural Networks 1 Synchronization in Spiking Neural Networks René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2006 Synchronization

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

Balance of Electric and Diffusion Forces

Balance of Electric and Diffusion Forces Balance of Electric and Diffusion Forces Ions flow into and out of the neuron under the forces of electricity and concentration gradients (diffusion). The net result is a electric potential difference

More information

THE DETERMINANTS OF THE ONSET DYNAMICS OF ACTION POTENTIALS IN A COMPUTATIONAL MODEL

THE DETERMINANTS OF THE ONSET DYNAMICS OF ACTION POTENTIALS IN A COMPUTATIONAL MODEL Neuroscience 167 (2010) 1070 1090 THE DETERMINANTS OF THE ONSET DYNAMICS OF ACTION POTENTIALS IN A COMPUTATIONAL MODEL G. BARANAUSKAS, a A. MUKOVSKIY, b1 F. WOLF c AND M. VOLGUSHEV b,d * a Department of

More information

We observe the model neuron s response to constant input current, studying the dependence of:

We observe the model neuron s response to constant input current, studying the dependence of: BioE332A Lab 2, 21 1 Lab 2 December 23, 29 A Spiking Neuron Like biological neurons, the model neuron we characterize in this lab has a repertoire of (model) ion-channel populations. Here we focus on the

More information

Dendritic computation

Dendritic computation Dendritic computation Dendrites as computational elements: Passive contributions to computation Active contributions to computation Examples Geometry matters: the isopotential cell Injecting current I

More information

BIOELECTRIC PHENOMENA

BIOELECTRIC PHENOMENA Chapter 11 BIOELECTRIC PHENOMENA 11.3 NEURONS 11.3.1 Membrane Potentials Resting Potential by separation of charge due to the selective permeability of the membrane to ions From C v= Q, where v=60mv and

More information

Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity

Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity The Journal of Neuroscience, September 20, 2006 26(38):9673 9682 9673 Behavioral/Systems/Cognitive Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity Jean-Pascal Pfister and Wulfram Gerstner

More information

Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron

Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron Journal of Computational Neuroscience 10, 25 45, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron

More information

Nervous System AP Biology

Nervous System AP Biology Nervous System 2007-2008 Why do animals need a nervous system? What characteristics do animals need in a nervous system? fast accurate reset quickly Remember Poor think bunny! about the bunny signal direction

More information

Lecture 14 Population dynamics and associative memory; stable learning

Lecture 14 Population dynamics and associative memory; stable learning Lecture 14 Population dynamics and associative memory; stable learning -Introduction -Associative Memory -Dense networks (mean-ield) -Population dynamics and Associative Memory -Discussion Systems or computing

More information

Announcements: Test4: Wednesday on: week4 material CH5 CH6 & NIA CAPE Evaluations please do them for me!! ask questions...discuss listen learn.

Announcements: Test4: Wednesday on: week4 material CH5 CH6 & NIA CAPE Evaluations please do them for me!! ask questions...discuss listen learn. Announcements: Test4: Wednesday on: week4 material CH5 CH6 & NIA CAPE Evaluations please do them for me!! ask questions...discuss listen learn. The Chemical Senses: Olfaction Mary ET Boyle, Ph.D. Department

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

Single Neuron Dynamics for Retaining and Destroying Network Information?

Single Neuron Dynamics for Retaining and Destroying Network Information? Single Neuron Dynamics for Retaining and Destroying Network Information? Michael Monteforte, Tatjana Tchumatchenko, Wei Wei & F. Wolf Bernstein Center for Computational Neuroscience and Faculty of Physics

More information

Modelling stochastic neural learning

Modelling stochastic neural learning Modelling stochastic neural learning Computational Neuroscience András Telcs telcs.andras@wigner.mta.hu www.cs.bme.hu/~telcs http://pattern.wigner.mta.hu/participants/andras-telcs Compiled from lectures

More information

Synchronization in Electrically Coupled Neural Networks

Synchronization in Electrically Coupled Neural Networks Synchronization in Electrically Coupled Neural Networks Rajesh G. Kavasseri Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 5815 Radhakrishnan Nagarajan Department

More information

Theory of action potentials. Romain Brette

Theory of action potentials. Romain Brette Theory of action potentials Romain Brette March 14, 2017 ii Contents 4 Excitability of an isopotential membrane 1 4.1 Elements of dynamical systems................... 1 4.1.1 What is a dynamical system?................

More information

Cortical neural networks: light-microscopy-based anatomical reconstruction, numerical simulation and analysis

Cortical neural networks: light-microscopy-based anatomical reconstruction, numerical simulation and analysis Cortical neural networks: light-microscopy-based anatomical reconstruction, numerical simulation and analysis Hans-Christian Hege Berlin Workshop on Statistics and Neuroimaging 2011, Weierstrass Institute,

More information

synapses.bu.edu About Anatomy Atlas Publications Software

synapses.bu.edu About Anatomy Atlas Publications Software synapses.bu.edu About Anatomy Atlas Publications Software Modeling neuron organization: a case of rod packing ( PDF version) Sten Andersson Sandviks Forskningsanstalt S-38074 Löttorp, Sweden Kåre Larsson

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

Structure and Measurement of the brain lecture notes

Structure and Measurement of the brain lecture notes Structure and Measurement of the brain lecture notes Marty Sereno 2009/2010!"#$%&'(&#)*%$#&+,'-&.)"/*"&.*)*-'(0&1223 Neurons and Models Lecture 1 Topics Membrane (Nernst) Potential Action potential/voltage-gated

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wires -- signal propagation -- processing

More information

Introduction and the Hodgkin-Huxley Model

Introduction and the Hodgkin-Huxley Model 1 Introduction and the Hodgkin-Huxley Model Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 Reference:

More information

Synaptic Plasticity. Introduction. Biophysics of Synaptic Plasticity. Functional Modes of Synaptic Plasticity. Activity-dependent synaptic plasticity:

Synaptic Plasticity. Introduction. Biophysics of Synaptic Plasticity. Functional Modes of Synaptic Plasticity. Activity-dependent synaptic plasticity: Synaptic Plasticity Introduction Dayan and Abbott (2001) Chapter 8 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Activity-dependent synaptic plasticity: underlies learning and memory, and plays

More information

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000 Synaptic Input Professor David Heeger September 5, 2000 The purpose of this handout is to go a bit beyond the discussion in Ch. 6 of The Book of Genesis on synaptic input, and give some examples of how

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

A MODEL OF A NEURONAL STRUCTURE ABLE TO GENERATE COLLECTIVE OSCILLATIONS SIMILAR TO HUMAN PARIETAL ALPHA RHYTHM

A MODEL OF A NEURONAL STRUCTURE ABLE TO GENERATE COLLECTIVE OSCILLATIONS SIMILAR TO HUMAN PARIETAL ALPHA RHYTHM MODEL OF NEURONL STRUCTURE LE TO GENERTE COLLECTIVE OSCILLTIONS SIMILR TO HUMN PRIETL LPH RHYTHM Otilia Păduraru *, Hariton Costin *+ * Institute for Theoretical Computer Science, Romanian cademy, Iaşi

More information

COGNITIVE SCIENCE 107A

COGNITIVE SCIENCE 107A COGNITIVE SCIENCE 107A Electrophysiology: Electrotonic Properties 2 Jaime A. Pineda, Ph.D. The Model Neuron Lab Your PC/CSB115 http://cogsci.ucsd.edu/~pineda/cogs107a/index.html Labs - Electrophysiology

More information

Action Potential Initiation in the Hodgkin-Huxley Model

Action Potential Initiation in the Hodgkin-Huxley Model Action Potential Initiation in the Hodgkin-Huxley Model The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Published Version

More information

Synchronization in Spiking Neural Networks

Synchronization in Spiking Neural Networks CS 790R Seminar Modeling & Simulation Synchronization in Spiking Neural Networks ~ Lecture 8 ~ René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2005 Synchronization

More information

Synchrony in Neural Systems: a very brief, biased, basic view

Synchrony in Neural Systems: a very brief, biased, basic view Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011 components of neuronal networks neurons synapses connectivity cell type - intrinsic

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Neural Conduction. biologyaspoetry.com

Neural Conduction. biologyaspoetry.com Neural Conduction biologyaspoetry.com Resting Membrane Potential -70mV A cell s membrane potential is the difference in the electrical potential ( charge) between the inside and outside of the cell. The

More information

The Spike Response Model: A Framework to Predict Neuronal Spike Trains

The Spike Response Model: A Framework to Predict Neuronal Spike Trains The Spike Response Model: A Framework to Predict Neuronal Spike Trains Renaud Jolivet, Timothy J. Lewis 2, and Wulfram Gerstner Laboratory of Computational Neuroscience, Swiss Federal Institute of Technology

More information

Dynamical Constraints on Computing with Spike Timing in the Cortex

Dynamical Constraints on Computing with Spike Timing in the Cortex Appears in Advances in Neural Information Processing Systems, 15 (NIPS 00) Dynamical Constraints on Computing with Spike Timing in the Cortex Arunava Banerjee and Alexandre Pouget Department of Brain and

More information