bi lecture 17 integration of genetic interaction data

Size: px
Start display at page:

Download "bi lecture 17 integration of genetic interaction data"

Transcription

1 bi lecture 17 integration of genetic interaction data

2 Genes interact to specify phenotype 20,000 genes 200,000,000 potential binary interactions (2 locus physiological epistasis)

3 How will we efficiently understand the interactions of ~20,000 genes, with ~200 million potential pairwise interactions? We first to need to use the information that exists

4 We can prioritize high resolution genetic interaction tests by knowledge mining 1 Full text information retrieval Hans-Michael Müller, Yuling Li, James Done, Kimberly Van Auken, Juancarlos Chan, Eimear Kenny,... 2 Predicting and Measuring Gene Interactions Weiwei Zhong

5 June 1979: 2 relevant papers S. Brenner (Genetics 1974) The genetics of Caenorhabditis elegans J. Sulston & R. Horvitz (Developmental Biology 1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans June 2013: 13,000 C. elegans papers >400,000 relevant papers cancer: 2 million papers

6 Textpresso Literature Search Engine Scientists spend more time skimming for information than reading papers. Much information are details hidden in the full text, and are neither in the abstract nor captured in MeSH terms. We designed Textpresso to do automated skimming for researchers and database curators. The output can be used for more sophisticated Natural Language Processing.

7 Categories are bags of words FOXO HOXA1 pax2 PKD1 GENE PATHWAY precursor upstream cascade descendants Reporter Genes GFP, EGFP, YFP, lacz, CFP, Green Fluorescent Protein, reporter gene, dsred, mcherry wing denticle Drosophila anatomy MP2 neuron Michael Müller

8 Individual sentences in full text are marked up with Categories TEXTPRESSO CATEGORIES gene regulation process life stage gene anatomy egl-38 regulates lin-3 transcription in vulf in L3 larvae ARTICLE TEXT Software automatically marks up the whole corpus of papers with terms of categories, and index for rapid searching Michael Müller

9 What Arabidopsis genes are expressed in the meristem based on reporter genes? A.t. papers keyword: meristem categories: {Arabidopsis Genes} AND {Reporter Genes} Tracy Teal

10 Different than PubMed & Google Scholar: Sentence level analysis AND Ontology Full Text Sentence Ontology PubMed (-) - MeSH Taxonomy Google Scholar Textpresso + + Gene Ontology Customized Neuroscience Information Framework

11 Is a nicotinic receptor associated with Drugs of Abuse other than nicotine? 15,786 papers (now 101,000) keyword: nicotinic receptor NOT nicotine categories: {Prescription Drugs of Abuse}

12 Solving the problem with clever fly names Gene name forager ascute wee Washed eye abbreviation for as we We Very common English words! use italics from PDF ~70% Train system to recognize gene names by context ~85% Michael Müller, Arun Rangarajan

13 What reporter genes have been used with Drosophila genes to study human disease? full-text fly papers keyword: none categories: {Drosophila Gene} AND {Reporter Gene} AND {disease-h. sapiens}

14 Database curation: e.g. Gene-Gene Interactions Find all sentences that contain 2 gene names and 1 association or regulation word: 26,000 sentences out of 4,400 articles simple interface to check off sentences 100 sentences per hour output into database:

15 Prioritizing high resolution genetic interaction tests by knowledge mining 1 Full text information retrieval Hans-Michael Muller, Arun Rangarajan, Ruihua Fang, Tracy Teal, Kimberly Van Auken, Juancarlos Chan 2 Predicting and Measuring Gene Interactions Weiwei Zhong

16 Known information serves as a training set for a statistical model Training set 4775 Positive Interactions Genetic, Literature curation (1909) Yeast two-hybrid screen (2933) 3296 Negative Genetic Interactions cis doubles in genetic mapping Benchmark 5515 Positives: KEGG database 5000 Negatives: Randomly selected

17 Experiments that establish relationships between genes, proteins, cells and functions Zhong, W. et al. Development 2007;134:

18 Information about gene pairs that make gene interactions likely are combined in a score interaction fly orthologs GO expression phenotype microarray GO fly score worm gene pair expression phenotype microarray interaction worm score total score GO yeast orthologs localization phenotype microarray yeast score Ortholog mapping Scoring Score integration

19 Three methods of assigning orthology relationships

20 In Positive Training set In Negative Training set Interact in fly Do not interact in fly L = P(ν pos) 20/25 = = 4 P(ν neg) 10/50

21 Predictor L Sc physical interaction 5.8 Sc genetic interaction 14.5 Dm physical interaction 55 Dm genetic interaction 298

22 C. elegans expression L term usage (% of annotated genes associated with the term)

23 Scoring and score integration likelihood ratio p(v pos): probabilities of the predictor having value v if two genes interact p(v neg): probabilities of the predictor having value v if two genes do not interact L C. elegans expression sum the ln s of the L s score = lnl i n: number of predictors L i : likelihood ratio of each predictor n i= term usage (% of annotated genes associated with the term)

24 Score Integration-another way Logistic regression p: interacting probability n: number of predictors a i, c: constants L i : likelihood ratio of each predictor Performance with training set Performance with benchmark Accuracy: % of correct predictions Sensitivity: predicted positives / total positives

25 40% of predictions forlet-60 RAS are confirmed 87 genes have score >0.9; 17 confirmed from literature Inactivating genes on gain-of-function (gf) let-60 mutant by RNAi Assay vulva precursor cell (VPC) induction N2 let-60(gf) let-60(gf); tax-6(rnai) not Multivulva strong Multivulva weak Multivulva WT% Muv% average N let-60(gf) let-60(gf); tax-6(rnai)

26 let-60(gf) VPC Induction with various RNAi VPC induction index p< 0.01 p< 0.05 score from logistic regression 0 control tax-6 csn-5 qua-1 C01G8.9 pfn-3 nhr-41 C05D10.3 Y48G10A.3 dlg-1 tag-22 grd-11 W03F11.6 mig-15 taf-6.1 taf-1 lin-32 unc-55 Y59A8B.23 Y48G10A.3 wrt-8 sqv-7 wrt-4 evl-20 C07H6.3 glp-1 unc-59 grd-1 wrt-7 hog-1 cdc-25.3 che-1 mom-5 Y53C12C.1 rnt-1 cki-1 let-413 taf-4 tig-2 tag-117 psa-4 T24H10.7 lin-48 src-2 B R05G6.10 T18D3.7 grd-2 ZC84.3 cdc-42 cki-2 F59A2.4 K10H10.1 C04C3.3 F34D6.4 F34D10.2 C25H3.4 H27A23.1 Y54G11A.1 B M03C11.4 C41C4.8 M01F1.5 ZK945.8 ZK643.2 F26E4.12 C16A3.7 C53A3.2 H14N18.4 W02D3.6 F08A8.4 C37H5.3 F28H6.3 R10E11.3 R04B5.5 B C06A8.6 Score > 0.9 Score < hits (p<0.05) in 49 genes; 1 hit in 26 randomly selected genes Combined with literature, 29/66 (44%) predictions confirmed

27 Newly identified let-60 ras interactors (suppressors) tax-6 csn-5 qua-1 C01G8.9 C05D10.3 pfa-3 nhr-4 calcineurin COP-9 signalosome hedgehog-related protein SWI/SNF-related (eyelid) ABC transporter (white) profilin transcription factor Zhong & Sternberg (Science, 2006)

28 Interactions for EGF-receptor -Ras - MAPK Pathway lin-3 let-23 v1.4 worms, fly, yeast Has FALSE NEGATIVES gap-1 ksr-1 lip-1 sem-5 sos-1 let-60 lin-45 mek-2 mpk-1 MORE DATA, ORTHOLOGS v1.6 worms, fly, yeast mouse, human v1.4 & v1.6 v1.6

29

30 30

31 31

32 32

33 33

34 34

35 human genes 35

36 C. elegans Interactions (version 1.6) Input 4,726 known interactions among 2,713 genes Predict additional 18,863 for total of 23,589 interactions among 4,408 genes

37 for Drosophila

38 D. melanogaster interactions (v. 1.6) Input 4,180 known interactions among 1,262 genes, Predict 13,126 for 17,306 interactions among 6,044 genes

39 wormnet 39

40 wormnet 15,000 genes: 112,500,000 potential interactions 100K/100M=0.1% Search reports would be based on WormBase WS

41 CE-CC! Co-citation of worm gene CE-CX! Co-expression among worm genes CE-GN! Gene neighbourhoods of bacterial and archaeal orthologs of worm genes CE-GT! Worm genetic interactions CE-LC! Literature curated worm protein physical interactions CE-PG! Co-inheritance of bacterial and archaeal orthologs of worm genes CE-YH! High-throughput yeast 2-hybrid assays among worm genes DM-PI! Fly protein physical interactions HS-CC! Co-citation of human genes HS-CX! Co-expression among human genes HS-DC! Co-occurrence of domains among human proteins HS-LC! Literature curated human protein physical interactions HS-MS! human protein complexes from affinity purification/mass spectrometry HS-YH! High-throughput yeast 2-hybrid assays among human genes SC-CC! Co-citation of yeast genes SC-CX! Co-expression among yeast genes SC-DC! Co-occurrence of domains among yeast proteins SC-GT! Yeast genetic interactions SC-LC! Literature curated yeast protein physical interactions SC-MS! Yeast protein complexes from affinity purification/mass spectrometry SC-TS! Yeast protein interactions inferred from tertiary structures of complexes

42 Experiments that establish relationships between genes, proteins, cells and functions Zhong, W. et al. Development 2007;134:

Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network

Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network Sohyun Hwang 1, Seung Y Rhee 2, Edward M Marcotte 3,4 & Insuk Lee 1 protocol 1 Department of

More information

Bi Lecture 8 Genetic Pathways and Genetic Screens

Bi Lecture 8 Genetic Pathways and Genetic Screens Bi190-2013 Lecture 8 Genetic Pathways and Genetic Screens WT A 2X:2A her-1 tra-1 1X:2A her-1 tra-1 Female body Male body Female body Male body her-1(lf) B 2X:2A her-1(lf) tra-1 1X:2A her-1(lf) tra-1 Female

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Green Fluorescent Protein (GFP) Today s Nobel Prize in Chemistry

Green Fluorescent Protein (GFP) Today s Nobel Prize in Chemistry In the news: High-throughput sequencing using Solexa/Illumina technology The copy number of each fetal chromosome can be determined by direct sequencing of DNA in cell-free plasma from pregnant women Confession:

More information

Matrix and Steiner-triple-system smart pooling assays for high-performance transcription regulatory network mapping

Matrix and Steiner-triple-system smart pooling assays for high-performance transcription regulatory network mapping Matrix and Steiner-triple-system smart pooling assays for high-performance transcription regulatory network mapping Vanessa Vermeirssen, Bart Deplancke, M Inmaculada Barrasa, John S Reece-Hoyes, H Efsun

More information

Procedure to Create NCBI KOGS

Procedure to Create NCBI KOGS Procedure to Create NCBI KOGS full details in: Tatusov et al (2003) BMC Bioinformatics 4:41. 1. Detect and mask typical repetitive domains Reason: masking prevents spurious lumping of non-orthologs based

More information

with%dr.%van%buskirk%%%

with%dr.%van%buskirk%%% with%dr.%van%buskirk%%% How$to$do$well?$ Before$class:$read$the$corresponding$chapter$ Come$to$class$ready$to$par9cipate$in$Top$Hat$ Don t$miss$an$exam!!!!!!!!!!!!!!!!!!!!!!!!!!$ But$I m$not$good$with$science

More information

Wan-Ju Liu 1,2, John S Reece-Hoyes 3, Albertha JM Walhout 3 and David M Eisenmann 1*

Wan-Ju Liu 1,2, John S Reece-Hoyes 3, Albertha JM Walhout 3 and David M Eisenmann 1* Liu et al. BMC Developmental Biology 2014, 14:17 RESEARCH ARTICLE Open Access Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo

More information

Predictive Modeling of Signaling Crosstalk... Model execution and model checking can be used to test a biological hypothesis

Predictive Modeling of Signaling Crosstalk... Model execution and model checking can be used to test a biological hypothesis Model execution and model checking can be used to test a biological hypothesis The model is an explanation of a biological mechanism and its agreement with experimental results is used to either validate

More information

Graph Alignment and Biological Networks

Graph Alignment and Biological Networks Graph Alignment and Biological Networks Johannes Berg http://www.uni-koeln.de/ berg Institute for Theoretical Physics University of Cologne Germany p.1/12 Networks in molecular biology New large-scale

More information

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics Chapter 18 Lecture Concepts of Genetics Tenth Edition Developmental Genetics Chapter Contents 18.1 Differentiated States Develop from Coordinated Programs of Gene Expression 18.2 Evolutionary Conservation

More information

Supplementary text for the section Interactions conserved across species: can one select the conserved interactions?

Supplementary text for the section Interactions conserved across species: can one select the conserved interactions? 1 Supporting Information: What Evidence is There for the Homology of Protein-Protein Interactions? Anna C. F. Lewis, Nick S. Jones, Mason A. Porter, Charlotte M. Deane Supplementary text for the section

More information

CHAPTER 3. EGF and Wnt signaling during patterning of the C. elegans

CHAPTER 3. EGF and Wnt signaling during patterning of the C. elegans III-1 CHAPTER 3 EGF and Wnt signaling during patterning of the C. elegans Bγ/δ Equivalence Group Adeline Seah and Paul W. Sternberg Abstract III-2 During development, different signaling pathways interact

More information

University of Massachusetts Medical School Wan-Ju Liu University of Maryland

University of Massachusetts Medical School Wan-Ju Liu University of Maryland University of Massachusetts Medical School escholarship@umms Program in Systems Biology Publications and Presentations Program in Systems Biology 5-13-2014 Multiple transcription factors directly regulate

More information

EGF Signal Propagation during C. elegans Vulval Development Mediated by ROM-1 Rhomboid

EGF Signal Propagation during C. elegans Vulval Development Mediated by ROM-1 Rhomboid Open access, freely available online EGF Signal Propagation during C. elegans Vulval Development Mediated by ROM-1 Rhomboid PLoS BIOLOGY Amit Dutt [, Stefano Canevascini [, Erika Froehli-Hoier, Alex Hajnal

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

STRING: Protein association networks. Lars Juhl Jensen

STRING: Protein association networks. Lars Juhl Jensen STRING: Protein association networks Lars Juhl Jensen interaction networks association networks guilt by association protein networks STRING 9.6 million proteins common foundation Exercise 1 Go to http://string-db.org/

More information

Chapter 11. Development: Differentiation and Determination

Chapter 11. Development: Differentiation and Determination KAP Biology Dept Kenyon College Differential gene expression and development Mechanisms of cellular determination Induction Pattern formation Chapter 11. Development: Differentiation and Determination

More information

Introduction to the EMBL-EBI Ontology Lookup Service

Introduction to the EMBL-EBI Ontology Lookup Service Introduction to the EMBL-EBI Ontology Lookup Service Simon Jupp jupp@ebi.ac.uk, @simonjupp Samples, Phenotypes and Ontologies Team European Bioinformatics Institute Cambridge, UK. Ontologies in the life

More information

Advanced Algorithms and Models for Computational Biology

Advanced Algorithms and Models for Computational Biology Advanced Algorithms and Models for Computational Biology Introduction to cell biology genomics development and probability Eric ing Lecture January 3 006 Reading: Chap. DTM book Introduction to cell biology

More information

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it?

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it? Proteomics What is it? Reveal protein interactions Protein profiling in a sample Yeast two hybrid screening High throughput 2D PAGE Automatic analysis of 2D Page Yeast two hybrid Use two mating strains

More information

Systems biology and biological networks

Systems biology and biological networks Systems Biology Workshop Systems biology and biological networks Center for Biological Sequence Analysis Networks in electronics Radio kindly provided by Lazebnik, Cancer Cell, 2002 Systems Biology Workshop,

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

Comparison of Protein-Protein Interaction Confidence Assignment Schemes

Comparison of Protein-Protein Interaction Confidence Assignment Schemes Comparison of Protein-Protein Interaction Confidence Assignment Schemes Silpa Suthram 1, Tomer Shlomi 2, Eytan Ruppin 2, Roded Sharan 2, and Trey Ideker 1 1 Department of Bioengineering, University of

More information

Bio 3411, Fall 2006, Lecture 19-Cell Death.

Bio 3411, Fall 2006, Lecture 19-Cell Death. Types of Cell Death Questions : Apoptosis (Programmed Cell Death) : Cell-Autonomous Stereotypic Rapid Clean (dead cells eaten) Necrosis : Not Self-Initiated Not Stereotypic Can Be Slow Messy (injury can

More information

The Worm, Ceanorhabditis elegans

The Worm, Ceanorhabditis elegans 1 1 Institute of Biology University of Iceland October, 2005 Lecture outline The problem of phenotype Dear Max Sidney Brenner A Nobel Prize in Medicine Genome sequence Some tools Gene structure Genomic

More information

Supplementary online material

Supplementary online material Supplementary online material A probabilistic functional network of yeast genes Insuk Lee, Shailesh V. Date, Alex T. Adai & Edward M. Marcotte DATA SETS Saccharomyces cerevisiae genome This study is based

More information

Correspondence: Peter J Roy. Joshua M Stuart.

Correspondence: Peter J Roy.   Joshua M Stuart. BioMed Central Open Access Research article A global analysis of genetic interactions in Caenorhabditis elegans Alexandra B Byrne*, Matthew T Weirauch, Victoria Wong*, Martina Koeva, Scott J Dixon*, Joshua

More information

Hereditary Hemochromatosis

Hereditary Hemochromatosis Hereditary Hemochromatosis The HFE gene Becky Reese What is hereditary hemochromatosis? Recessively inherited Iron overload disorder Inability to regulate iron absorption No cure http://www.consultant360.com/article/genetics-gastroenterology-what-you-need-know-part-1

More information

Cytokines regulate interactions between cells of the hemapoietic system

Cytokines regulate interactions between cells of the hemapoietic system Cytokines regulate interactions between cells of the hemapoietic system Some well-known cytokines: Erythropoietin (Epo) G-CSF Thrombopoietin IL-2 INF thrombopoietin Abbas et al. Cellular & Molecular Immunology

More information

Caenorhabditis elegans Development

Caenorhabditis elegans Development MOLECULAR REPRODUCTION AND DEVELOPMENT 42523528 (1995) LET-23-Mediated Signal Transduction During Caenorhabditis elegans Development PAUL W. STERNBERG, GIOVANNI LESA, JUNHO LEE, WENDY S. KATZ, CHARLES

More information

Caenorhabditis elegans

Caenorhabditis elegans Caenorhabditis elegans Why C. elegans? Sea urchins have told us much about embryogenesis. They are suited well for study in the lab; however, they do not tell us much about the genetics involved in embryogenesis.

More information

Types of biological networks. I. Intra-cellurar networks

Types of biological networks. I. Intra-cellurar networks Types of biological networks I. Intra-cellurar networks 1 Some intra-cellular networks: 1. Metabolic networks 2. Transcriptional regulation networks 3. Cell signalling networks 4. Protein-protein interaction

More information

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr Introduction to Bioinformatics Shifra Ben-Dor Irit Orr Lecture Outline: Technical Course Items Introduction to Bioinformatics Introduction to Databases This week and next week What is bioinformatics? A

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

Networks & pathways. Hedi Peterson MTAT Bioinformatics

Networks & pathways. Hedi Peterson MTAT Bioinformatics Networks & pathways Hedi Peterson (peterson@quretec.com) MTAT.03.239 Bioinformatics 03.11.2010 Networks are graphs Nodes Edges Edges Directed, undirected, weighted Nodes Genes Proteins Metabolites Enzymes

More information

Synthesis of Biological Models from Mutation Experiments

Synthesis of Biological Models from Mutation Experiments Synthesis of Biological Models from Mutation Experiments Ali Sinan Köksal, Saurabh Srivastava, Rastislav Bodík, UC Berkeley Evan Pu, MIT Jasmin Fisher, Microsoft Research Cambridge Nir Piterman, University

More information

Gene mention normalization in full texts using GNAT and LINNAEUS

Gene mention normalization in full texts using GNAT and LINNAEUS Gene mention normalization in full texts using GNAT and LINNAEUS Illés Solt 1,2, Martin Gerner 3, Philippe Thomas 2, Goran Nenadic 4, Casey M. Bergman 3, Ulf Leser 2, Jörg Hakenberg 5 1 Department of Telecommunications

More information

OSM-11 Facilitates LIN-12 Notch Signaling during Caenorhabditis elegans Vulval Development

OSM-11 Facilitates LIN-12 Notch Signaling during Caenorhabditis elegans Vulval Development OSM-11 Facilitates LIN-12 Notch Signaling during Caenorhabditis elegans Vulval Development Hidetoshi Komatsu 1,2[ a, Michael Y. Chao 3[, Jonah Larkins-Ford 1 b, Mark E. Corkins 1, Gerard A. Somers 1, Tim

More information

The geneticist s questions

The geneticist s questions The geneticist s questions a) What is consequence of reduced gene function? 1) gene knockout (deletion, RNAi) b) What is the consequence of increased gene function? 2) gene overexpression c) What does

More information

Computational methods for the analysis of bacterial gene regulation Brouwer, Rutger Wubbe Willem

Computational methods for the analysis of bacterial gene regulation Brouwer, Rutger Wubbe Willem University of Groningen Computational methods for the analysis of bacterial gene regulation Brouwer, Rutger Wubbe Willem IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Bypass and interaction suppressors; pathway analysis

Bypass and interaction suppressors; pathway analysis Bypass and interaction suppressors; pathway analysis The isolation of extragenic suppressors is a powerful tool for identifying genes that encode proteins that function in the same process as a gene of

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Evaluation. Course Homepage.

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Evaluation. Course Homepage. CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools Giri Narasimhan ECS 389; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs06.html 1/12/06 CAP5510/CGS5166 1 Evaluation

More information

Comparative Network Analysis

Comparative Network Analysis Comparative Network Analysis BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by

More information

The two steps of vulval induction in Oscheius tipulae CEW1 recruit common regulators including a MEK kinase

The two steps of vulval induction in Oscheius tipulae CEW1 recruit common regulators including a MEK kinase Developmental Biology 265 (2004) 113 126 www.elsevier.com/locate/ydbio The two steps of vulval induction in Oscheius tipulae CEW1 recruit common regulators including a MEK kinase Marie-Laure Dichtel-Danjoy

More information

Adam J. Schindler, L. Ryan Baugh, David R. Sherwood* Abstract. Introduction

Adam J. Schindler, L. Ryan Baugh, David R. Sherwood* Abstract. Introduction Identification of Late Larval Stage Developmental Checkpoints in Caenorhabditis elegans Regulated by Insulin/IGF and Steroid Hormone Signaling Pathways Adam J. Schindler, L. Ryan Baugh, David R. Sherwood*

More information

Genetics: Early Online, published on December 29, 2015 as /genetics

Genetics: Early Online, published on December 29, 2015 as /genetics Genetics: Early Online, published on December, 01 as.1/genetics..10 1 The Mediator kinase module restrains epidermal growth factor receptor signaling and represses vulval cell fate specification in Caenorhabditis

More information

Gene Ontology and overrepresentation analysis

Gene Ontology and overrepresentation analysis Gene Ontology and overrepresentation analysis Kjell Petersen J Express Microarray analysis course Oslo December 2009 Presentation adapted from Endre Anderssen and Vidar Beisvåg NMC Trondheim Overview How

More information

Gabriella Rustici EMBL-EBI

Gabriella Rustici EMBL-EBI Towards a cellular phenotype ontology Gabriella Rustici EMBL-EBI gabry@ebi.ac.uk Systems Microscopy NoE at a glance The Systems Microscopy NoE (2011 2015) is a FP7 funded project, involving 15 research

More information

Cell fate specification by Ras-mediated cell signalling in C. elegans. Teresa Tiensuu

Cell fate specification by Ras-mediated cell signalling in C. elegans. Teresa Tiensuu Cell fate specification by Ras-mediated cell signalling in C. elegans Teresa Tiensuu Umeå Centre for Molecular Pathogenesis Umeå University Umeå Sweden 2003 Copyright Teresa Tiensuu 2003 ISBN 91-7305-525-5

More information

MBios 401/501: Lecture 14.2 Cell Differentiation I. Slide #1. Cell Differentiation

MBios 401/501: Lecture 14.2 Cell Differentiation I. Slide #1. Cell Differentiation MBios 401/501: Lecture 14.2 Cell Differentiation I Slide #1 Cell Differentiation Cell Differentiation I -Basic principles of differentiation (p1305-1320) -C-elegans (p1321-1327) Cell Differentiation II

More information

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA.

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Systems Biology-Models and Approaches Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Taxonomy Study external

More information

Evolution of the Complex Eye and Pax6 Gene

Evolution of the Complex Eye and Pax6 Gene Evolution of the Complex Eye and Pax6 Gene Rachel Thomsen Sarah Kim Jenia Ostrovskaya Key Points Definition of an Eye o Types of Eyes Origin of Species: Difficulties on Theory Pax family Pax6 gene why

More information

elegans vulva precursor cells

elegans vulva precursor cells Development 126, 1947-1956 (1999) Printed in Great Britain The Company of Biologists Limited 1999 DEV5288 1947 Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor

More information

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference CS 229 Project Report (TR# MSB2010) Submitted 12/10/2010 hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference Muhammad Shoaib Sehgal Computer Science

More information

Computational Structural Bioinformatics

Computational Structural Bioinformatics Computational Structural Bioinformatics ECS129 Instructor: Patrice Koehl http://koehllab.genomecenter.ucdavis.edu/teaching/ecs129 koehl@cs.ucdavis.edu Learning curve Math / CS Biology/ Chemistry Pre-requisite

More information

Genes, Development, and Evolution

Genes, Development, and Evolution 14 Genes, Development, and Evolution Chapter 14 Genes, Development, and Evolution Key Concepts 14.1 Development Involves Distinct but Overlapping Processes 14.2 Changes in Gene Expression Underlie Cell

More information

Measuring TF-DNA interactions

Measuring TF-DNA interactions Measuring TF-DNA interactions How is Biological Complexity Achieved? Mediated by Transcription Factors (TFs) 2 Regulation of Gene Expression by Transcription Factors TF trans-acting factors TF TF TF TF

More information

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007 Understanding Science Through the Lens of Computation Richard M. Karp Nov. 3, 2007 The Computational Lens Exposes the computational nature of natural processes and provides a language for their description.

More information

ToxiCat: Hybrid Named Entity Recognition services to support curation of the Comparative Toxicogenomic Database

ToxiCat: Hybrid Named Entity Recognition services to support curation of the Comparative Toxicogenomic Database ToxiCat: Hybrid Named Entity Recognition services to support curation of the Comparative Toxicogenomic Database Dina Vishnyakova 1,2, 4, *, Julien Gobeill 1,3,4, Emilie Pasche 1,2,3,4 and Patrick Ruch

More information

Welcome to BIOL 572: Recombinant DNA techniques

Welcome to BIOL 572: Recombinant DNA techniques Lecture 1: 1 Welcome to BIOL 572: Recombinant DNA techniques Agenda 1: Introduce yourselves Agenda 2: Course introduction Agenda 3: Some logistics for BIOL 572 Agenda 4: Q&A section Agenda 1: Introduce

More information

Homolog. Orthologue. Comparative Genomics. Paralog. What is Comparative Genomics. What is Comparative Genomics

Homolog. Orthologue. Comparative Genomics. Paralog. What is Comparative Genomics. What is Comparative Genomics Orthologue Orthologs are genes in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same function in the course of evolution. Identification of orthologs

More information

lecture 10. Genetic Interactions synthetic lethality high copy suppression suppression and enhancement mechanisms of suppression

lecture 10. Genetic Interactions synthetic lethality high copy suppression suppression and enhancement mechanisms of suppression lecture 10. Genetic Interactions synthetic lethality high copy suppression suppression and enhancement mechanisms of suppression actin act1-1 act1-4 actin non- complementer anc4 anc1 anc3 anc2 actin-binding

More information

Upstream Elements Regulating mir-241 and mir-48 Abstract Introduction

Upstream Elements Regulating mir-241 and mir-48 Abstract Introduction Upstream Elements Regulating mir-241 and mir-48 Hanna Vollbrecht, Tamar Resnick, and Ann Rougvie University of Minnesota: Twin Cities Undergraduate Research Scholarship 2012-2013 Abstract Caenorhabditis

More information

A complementation test would be done by crossing the haploid strains and scoring the phenotype in the diploids.

A complementation test would be done by crossing the haploid strains and scoring the phenotype in the diploids. Problem set H answers 1. To study DNA repair mechanisms, geneticists isolated yeast mutants that were sensitive to various types of radiation; for example, mutants that were more sensitive to UV light.

More information

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting.

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting. Genome Annotation Bioinformatics and Computational Biology Genome Annotation Frank Oliver Glöckner 1 Genome Analysis Roadmap Genome sequencing Assembly Gene prediction Protein targeting trna prediction

More information

Information Extraction from Biomedical Text. BMI/CS 776 Mark Craven

Information Extraction from Biomedical Text. BMI/CS 776  Mark Craven Information Extraction from Biomedical Text BMI/CS 776 www.biostat.wisc.edu/bmi776/ Mark Craven craven@biostat.wisc.edu Spring 2012 Goals for Lecture the key concepts to understand are the following! named-entity

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Signalogs: Orthology-Based Identification of Novel Signaling Pathway Components in Three Metazoans

Signalogs: Orthology-Based Identification of Novel Signaling Pathway Components in Three Metazoans Signalogs: Orthology-Based Identification of Novel Signaling Pathway Components in Three Metazoans Tamás Korcsmáros 1,2.,Máté S. Szalay 2., Petra Rovó 1, Robin Palotai 2,Dávid Fazekas 1, Katalin Lenti

More information

Developmental switches and gene regulatory networks in the most completely described animal, the nematode C. elegans

Developmental switches and gene regulatory networks in the most completely described animal, the nematode C. elegans Developmental switches and gene regulatory networks in the most completely described animal, the nematode. elegans Joel Rothman U Santa Barbara Generating developmental diversity: Symmetry breaking Dr.

More information

Bio-Medical Text Mining with Machine Learning

Bio-Medical Text Mining with Machine Learning Sumit Madan Department of Bioinformatics - Fraunhofer SCAI Textual Knowledge PubMed Journals, Books Patents EHRs What is Bio-Medical Text Mining? Phosphorylation of glycogen synthase kinase 3 beta at Threonine,

More information

Lecture Notes for Fall Network Modeling. Ernest Fraenkel

Lecture Notes for Fall Network Modeling. Ernest Fraenkel Lecture Notes for 20.320 Fall 2012 Network Modeling Ernest Fraenkel In this lecture we will explore ways in which network models can help us to understand better biological data. We will explore how networks

More information

Dissection of Genetic Pathways in C. elegans

Dissection of Genetic Pathways in C. elegans CHAPTER 5 Dissection of Genetic Pathways in C. elegans Zheng Wang and David R. Sherwood Department of Biology, Duke University, Durham, North Carolina, USA Abstract I. Introduction II. Strategies for Identifying

More information

10/2/2015. Chapter 4. Determination and Differentiation. Neuroanatomical Diversity

10/2/2015. Chapter 4. Determination and Differentiation. Neuroanatomical Diversity Chapter 4 Determination and Differentiation Neuroanatomical Diversity 1 Neurochemical diversity: another important aspect of neuronal fate Neurotransmitters and their receptors Excitatory Glutamate Acetylcholine

More information

The EGF Signaling Pathway! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 3. EGF promotes cell growth

The EGF Signaling Pathway! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 3. EGF promotes cell growth Chem 452 - Lecture 10 Signal Transduction & Sensory Systems Part 3 Question of the Day: Who is the son of Sevenless? Introduction! Signal transduction involves the changing of a cell s metabolism or gene

More information

Information Extraction from Biomedical Text

Information Extraction from Biomedical Text Information Extraction from Biomedical Text BMI/CS 776 www.biostat.wisc.edu/bmi776/ Mark Craven craven@biostat.wisc.edu February 2008 Some Important Text-Mining Problems hypothesis generation Given: biomedical

More information

Molecular Developmental Physiology and Signal Transduction

Molecular Developmental Physiology and Signal Transduction Prof. Dr. J. Vanden Broeck (Animal Physiology and Neurobiology - Dept. of Biology - KU Leuven) Molecular Developmental Physiology and Signal Transduction My Research Team Insect species under study +

More information

"Small Brains, Big Ideas: The value of model organisms to science. Dr. Yuly Fuentes-Medel Executive Director Descience

Small Brains, Big Ideas: The value of model organisms to science. Dr. Yuly Fuentes-Medel Executive Director Descience "Small Brains, Big Ideas: The value of model organisms to science Dr. Yuly Fuentes-Medel Executive Director Descience Outline 1. What is a model organism? 2. Big questions solved by small-brained organisms

More information

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR Grade Requirement: All courses required for the Biochemistry major (CH, MATH, PHYS, BI courses) must be graded and passed with a grade of C- or better. Core Chemistry

More information

USING RELATIVE IMPORTANCE METHODS TO MODEL HIGH-THROUGHPUT GENE PERTURBATION SCREENS

USING RELATIVE IMPORTANCE METHODS TO MODEL HIGH-THROUGHPUT GENE PERTURBATION SCREENS 1 USING RELATIVE IMPORTANCE METHODS TO MODEL HIGH-THROUGHPUT GENE PERTURBATION SCREENS Ying Jin, Naren Ramakrishnan, and Lenwood S. Heath Department of Computer Science, Virginia Tech, Blacksburg, VA 24061,

More information

CSCE555 Bioinformatics. Protein Function Annotation

CSCE555 Bioinformatics. Protein Function Annotation CSCE555 Bioinformatics Protein Function Annotation Why we need to do function annotation? Fig from: Network-based prediction of protein function. Molecular Systems Biology 3:88. 2007 What s function? The

More information

Warm Up. What are some examples of living things? Describe the characteristics of living things

Warm Up. What are some examples of living things? Describe the characteristics of living things Warm Up What are some examples of living things? Describe the characteristics of living things Objectives Identify the levels of biological organization and explain their relationships Describe cell structure

More information

The β-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development

The β-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development Development 125, 3667-3680 (1998) Printed in Great Britain The Company of Biologists Limited 1998 DEV5223 3667 The β-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during

More information

Correspondence of D. melanogaster and C. elegans developmental stages revealed by alternative splicing characteristics of conserved exons

Correspondence of D. melanogaster and C. elegans developmental stages revealed by alternative splicing characteristics of conserved exons Gao and Li BMC Genomics (2017) 18:234 DOI 10.1186/s12864-017-3600-2 RESEARCH ARTICLE Open Access Correspondence of D. melanogaster and C. elegans developmental stages revealed by alternative splicing characteristics

More information

What Evidence Is There for the Homology of Protein- Protein Interactions?

What Evidence Is There for the Homology of Protein- Protein Interactions? What Evidence Is There for the Homology of Protein- Protein Interactions? Anna C. F. Lewis 1,2, Nick S. Jones 3,4,5,6, Mason A. Porter 5,7, Charlotte M. Deane 1,6 * 1 Department of Statistics, University

More information

Example of Function Prediction

Example of Function Prediction Find similar genes Example of Function Prediction Suggesting functions of newly identified genes It was known that mutations of NF1 are associated with inherited disease neurofibromatosis 1; but little

More information

Computational Biology Course Descriptions 12-14

Computational Biology Course Descriptions 12-14 Computational Biology Course Descriptions 12-14 Course Number and Title INTRODUCTORY COURSES BIO 311C: Introductory Biology I BIO 311D: Introductory Biology II BIO 325: Genetics CH 301: Principles of Chemistry

More information

Identifying Signaling Pathways

Identifying Signaling Pathways These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Anthony Gitter, Mark Craven, Colin Dewey Identifying Signaling Pathways BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2018

More information

How much non-coding DNA do eukaryotes require?

How much non-coding DNA do eukaryotes require? How much non-coding DNA do eukaryotes require? Andrei Zinovyev UMR U900 Computational Systems Biology of Cancer Institute Curie/INSERM/Ecole de Mine Paritech Dr. Sebastian Ahnert Dr. Thomas Fink Bioinformatics

More information

Chem Lecture 10 Signal Transduction

Chem Lecture 10 Signal Transduction Chem 452 - Lecture 10 Signal Transduction 111202 Here we look at the movement of a signal from the outside of a cell to its inside, where it elicits changes within the cell. These changes are usually mediated

More information

Lecture 4: Yeast as a model organism for functional and evolutionary genomics. Part II

Lecture 4: Yeast as a model organism for functional and evolutionary genomics. Part II Lecture 4: Yeast as a model organism for functional and evolutionary genomics Part II A brief review What have we discussed: Yeast genome in a glance Gene expression can tell us about yeast functions Transcriptional

More information

Comparative genomics: Overview & Tools + MUMmer algorithm

Comparative genomics: Overview & Tools + MUMmer algorithm Comparative genomics: Overview & Tools + MUMmer algorithm Urmila Kulkarni-Kale Bioinformatics Centre University of Pune, Pune 411 007. urmila@bioinfo.ernet.in Genome sequence: Fact file 1995: The first

More information

V- 1. Chapter 5. Summary

V- 1. Chapter 5. Summary V- 1 Chapter 5 Summary V- 2 This body of work combines molecular and genetic techniques to analyze IP 3 signaling downstream of the Caenorhabditis elegans LET-23 epidermal growth factor receptor homolog.

More information

Clustering and Network

Clustering and Network Clustering and Network Jing-Dong Jackie Han jdhan@picb.ac.cn http://www.picb.ac.cn/~jdhan Copy Right: Jing-Dong Jackie Han What is clustering? A way of grouping together data samples that are similar in

More information

PNmerger: a Cytoscape plugin to merge biological pathways and protein interaction networks

PNmerger: a Cytoscape plugin to merge biological pathways and protein interaction networks PNmerger: a Cytoscape plugin to merge biological pathways and protein interaction networks http://www.hupo.org.cn/pnmerger Fuchu He E-mail: hefc@nic.bmi.ac.cn Tel: 86-10-68171208 FAX: 86-10-68214653 Yunping

More information

Developmental genetics: finding the genes that regulate development

Developmental genetics: finding the genes that regulate development Developmental Biology BY1101 P. Murphy Lecture 9 Developmental genetics: finding the genes that regulate development Introduction The application of genetic analysis and DNA technology to the study of

More information

In Search of the Biological Significance of Modular Structures in Protein Networks

In Search of the Biological Significance of Modular Structures in Protein Networks In Search of the Biological Significance of Modular Structures in Protein Networks Zhi Wang, Jianzhi Zhang * Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan,

More information

Massive loss of neurons in embryos occurs during normal development (!)

Massive loss of neurons in embryos occurs during normal development (!) Types of Cell Death Apoptosis (Programmed Cell Death) : Cell-Autonomous Stereotypic Rapid Clean (dead cells eaten) Necrosis : Not Self-Initiated Not Stereotypic Can Be Slow Messy (injury can spread) Apoptosis

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information