Gabriella Rustici EMBL-EBI

Size: px
Start display at page:

Download "Gabriella Rustici EMBL-EBI"

Transcription

1 Towards a cellular phenotype ontology Gabriella Rustici EMBL-EBI gabry@ebi.ac.uk

2 Systems Microscopy NoE at a glance The Systems Microscopy NoE ( ) is a FP7 funded project, involving 15 research groups across Europe The aim of this consortium is to develop tools and strategies to achieve a systems biology understanding of the living cell Done combining automated fluorescence microscopy, cell microarray, RNAi screening, quantitative image analysis and data mining Capture data and build models in four dimensions, three-dimensional space and time, and measure dynamic events in single living cells Focus on two cellular processes that are highly relevant to human cancer: cell division and cell migration

3 Systems Microscopy NoE at a glance WP7 Translational Applications and Outcome of Systems Microscopy WP8 Development of Standards to Enable Systems Microscopy WP9 Development and Application of a Public Database for Systems Microscopy WP1 Systems Biology Analysis of Cell Division WP2 Systems Biology Analysis of Cell Migration WP3 Development of high throughput imaging and screening platforms to enable production of systems biology data WP4 Development of software for automated multi-dimensional quantitative extraction and analysis of live cell image WP6 Development and Application of Modeling Methods for Systems Microscopy WP5 Development of Statistics and Bioinformatics Tools for Multidimensional Image-based Data

4 What is the current state of this field? Systems microscopy has not achieved the degree of standardization of other omics approaches We need reporting standards, to adequately capture experimental information. We need a repository for quantitative data derived from images (and not a collection of raw image datasets!) that will: 1. provide access to data for the broader research community 2. accelerate the development of analytical methods for this field and 3. promote the integration of independent systems microscopy studies

5 What metadata/data do we need to capture? study description including study general information and specific screen information, including protocols sirna library information study results as a list of sirnas, associated phenotypes and scores used to assign phenotypes to each sirna

6 Example of study results GENE SYMBOL ENSEMBL ID sirna ID DEVIATION CELL NUMBER VALID PLATES % INHIBITOR TRANSCRIPTS HIT TRANSCRIPT ID(S) Phenotype ALAS1 ENSG /8 ENST /ENSmild inhibition of secretion TOR1AIP1 ENSG /8 ENST /ENSmild inhibition of secretion TRAPPC5 ENSG /3 ENST /ENSmild inhibition of secretion KCTD10 ENSG /3 ENST /ENSmild inhibition of secretion ZNF252 ENSG /4 ENST /ENSmild inhibition of secretion ANXA5 ENSG /4 ENST /ENSmild inhibition of secretion TRAM1L1 ENSG /1 ENST mild inhibition of secretion RSAD2 ENSG /2 ENST mild inhibition of secretion SMC2 ENSG /5 ENST /ENSmild inhibition of secretion C16orf79 ENSG /1 ENST mild inhibition of secretion OR2T1 ENSG /1 ENST mild inhibition of secretion PCDHB8 ENSG /1 ENST mild inhibition of secretion MYL6B ENSG /2 ENST mild inhibition of secretion POLG2 ENSG /1 ENST mild inhibition of secretion ING1 ENSG /5 ENST /ENSmild inhibition of secretion EMILIN3 ENSG /1 ENST mild inhibition of secretion KCTD12 ENSG /2 ENST /ENSmild inhibition of secretion GABARAPL1 ENSG /2 ENST mild inhibition of secretion SQLE ENSG /4 ENST /ENSmild inhibition of secretion PITRM1 ENSG /11 ENST /ENSmild inhibition of secretion LMF2 ENSG /4 ENST /ENSmild inhibition of secretion CHD3 ENSG /8 ENST /ENSmild inhibition of secretion BAT2L1 ENSG /9 ENST /ENSmild inhibition of secretion SLFN13 ENSG /6 ENST /ENSmild inhibition of secretion DLX6 ENSG /3 ENST /ENSmild inhibition of secretion SHE ENSG /1 ENST mild inhibition of secretion PVALB ENSG /6 ENST /ENSmild inhibition of secretion

7 Search types currently supported The current interface prototype supports 5 basic type of searches: 1. for a gene, by gene symbol or Ensembl IDs; 2. for a reagent or sirna, by manufacturer or internal screen ID; 3. for a gene attribute, using Gene Ontology terms; 4. for a phenotype, or multiple phenotypes, within an individual screen and across screens; and 5. for a study, using keywords.

8 Gene summary view Provides information on a gene and the phenotypes associated with the silencing of the selected gene, across independent screens

9 Reagent summary view Provides information on a sirna reagent and the phenotypes associated with it, across independent studies

10 Phenotype summary view across screens Provides a list of genes, whose silencing with a specific reagents, has given rise to a particular set of phenotypes, across screens

11 Challenges Integrate data derived from independent studies and provide a meaningful representation of the experimental results Two levels of integration: 1. At the quantitative level, through the development of pipelines for data analysis, and 2. At the level of phenotypic descriptions, through the development of an ontology for cellular phenotypes An ontology would help to resolve naming ambiguities (i.e. large nucleus vs large nuclei) as well as group related phenotypes together (i.e. mitotic phenotypes), facilitating the integration of independent datasets at the level of phenotypic description

12 Can we integrate phenotypic descriptions? Fuchs et al, 2010, Molecular Systems Biology 6: 370 Neumann, Walter et al, 2010, Nature 464:721

13 Cellular Phenotype Ontology (CPO) Pre-composed ontology based on terms from GO BP, GO CC, GO extensions and PATO Split into structural (morphological) and physiological (process) abnormalities Mitochondrion (GO: ) Mitochondrion phenotype (CPO:XX ) Mitochondrion normal phenotype Mitochondrion abnormal phenotype Abnormal mitochondrion morphology Abnormal mitochondrion physiology Absence of mitochondrion Hoehndorf R et al. Bioinformatics 2012;28:

14 Cellular Phenotype Ontology (CPO) Physiological abnormalities are split into single and multiple occurrence processes PATO used to refine qualities of each Single occurrence processes Durations (increased or decreased) Participants (increased or decreased) Multiple occurrence processes Abnormal frequency (increased or decreased) Abnormal onset (increased or decreased) Hoehndorf R et al. Bioinformatics 2012;28:

15 Automatic pre-composition Built a beast 140K classes, 220K with imports Good underlying theoretic model Needs extending for Cellular Phenotype Db use case Potential for unrealistic classes EL expressivity Should be scalable with enough computing power Practically a struggle to work with on a modest PC

16 Entities, processes and qualities Cellular component Biological Processes Abnormal Size Cell types Temporal quality Shapes Gene Ontology Biological process Gene Ontology Cellular Component Cell type ontology (CTO) Phenotype and trait ontology (PATO) Absent

17 Composing a phenotype description Entity Quality pattern Entity (a bearer of some quality) Quality (some characteristic of the entity) Phenotype: Large nucleus Entity: nucleus (GO_000xxxx) Quality: large (PATO_000xxxx) Phenotype: Cells stuck in metaphase due to metaphase arrest Entity: mitotic metaphase (GO_ ) Quality: arrested (PATO_ )

18 New strategy for ontology building Annotation tool Ontology Terms Distribute tool to consortium members for phenotype annotation Map the phenotype terms annotated using ontologies to CPO

19 Phenotypes annotation tool Original phenotypic description Ontology based annotations

20 Mapping phenotypes from different biological scales Cellular phenotypes from single cultured mammalian cells Cellular phenotypes from mouse tissues Cellular phenotypes from human tissues Collect terms used to annotate cellular phenotypes in the different domains Map the resulting ontologies onto each other to enable correlative analysis

21 Open questions Sometimes phenotypes are not linked to biological processes because you don t have enough information to make this association We mostly observe cell population phenotypes but the technology is moving towards single cell observations How do we deal with quantitative phenotypes (cell size, nucleus size, actin content, DNA content, )? Existing ontologies might not be granular enough to describe what we want to describe How do we deal with the temporal information?

22 Goal Develop a data driven, generic upper level ontology for cellular phenotypes Open access tool for annotating phenotypes and capture necessary metadata Templates for new terms and ontology extension Pilot study with Systems Microscopy and BioMedBridges scientists to see how they can use a EQ based annotation tool

23 Acknowledgements EMBL-EBI: Catherine Kirsanova, Simon Jupp, James Malone, Alvis Brazma EMBL-Heidelberg: Jean-Karim Heriche, Beate Neumann, Bernd Fisher, Wolfgang Huber, Jan Ellenberg, Christoph Moehl, Mayumi Isokane, Celine Revenu CU: Robert Hoehndorf, George Gkoutos Prototype URL:

Introduction to the EMBL-EBI Ontology Lookup Service

Introduction to the EMBL-EBI Ontology Lookup Service Introduction to the EMBL-EBI Ontology Lookup Service Simon Jupp jupp@ebi.ac.uk, @simonjupp Samples, Phenotypes and Ontologies Team European Bioinformatics Institute Cambridge, UK. Ontologies in the life

More information

Imaging-based high-throughput phenotyping

Imaging-based high-throughput phenotyping Imaging-based high-throughput phenotyping Wolfgang Huber EMBL How do we know which genes do what? Forward genetics from phenotypes to genes genome-wide association studies sporadic/rare mutations cancer

More information

Gene Ontology and overrepresentation analysis

Gene Ontology and overrepresentation analysis Gene Ontology and overrepresentation analysis Kjell Petersen J Express Microarray analysis course Oslo December 2009 Presentation adapted from Endre Anderssen and Vidar Beisvåg NMC Trondheim Overview How

More information

Automated Analysis of the Mitotic Phases of Human Cells in 3D Fluorescence Microscopy Image Sequences

Automated Analysis of the Mitotic Phases of Human Cells in 3D Fluorescence Microscopy Image Sequences Automated Analysis of the Mitotic Phases of Human Cells in 3D Fluorescence Microscopy Image Sequences Nathalie Harder 1, Felipe Mora-Bermúdez 2, William J. Godinez 1, Jan Ellenberg 2, Roland Eils 1, and

More information

Gene Network Science Diagrammatic Cell Language and Visual Cell

Gene Network Science Diagrammatic Cell Language and Visual Cell Gene Network Science Diagrammatic Cell Language and Visual Cell Mr. Tan Chee Meng Scientific Programmer, System Biology Group, Bioinformatics Institute Overview Introduction Why? Challenges Diagrammatic

More information

Machine Learning. Wolfgang Huber Bernd Fischer EMBL

Machine Learning. Wolfgang Huber Bernd Fischer EMBL Machine Learning Wolfgang Huber Bernd Fischer EMBL What you will learn in this lecture Motivating examples Multivariate classification: least squares, support vector Model complexity - overfitting Cross-validation

More information

Supplementary Discussion:

Supplementary Discussion: Supplementary Discussion: I. Controls: Some important considerations for optimizing a high content assay Edge effect: The external rows and columns of a 96 / 384 well plate are the most affected by evaporation

More information

Product Guide. Thermo Scientific Cellomics HCS Solution

Product Guide. Thermo Scientific Cellomics HCS Solution Product Guide Thermo Scientific Cellomics HCS Solution Thermo Scientific Cellomics HCS Solution Your Complete HCS Solution The search for new therapies for human diseases is increasingly driven by the

More information

Clustering and classification with applications to microarrays and cellular phenotypes

Clustering and classification with applications to microarrays and cellular phenotypes Clustering and classification with applications to microarrays and cellular phenotypes Gregoire Pau, EMBL Heidelberg gregoire.pau@embl.de European Molecular Biology Laboratory 1 Microarray data patients

More information

mitoode: Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay

mitoode: Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay mitoode: Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay Gregoire Pau pau.gregoire@gene.com April 30, 2018 Contents 1 Introduction 1 2 Methods 2 2.1 Ordinary differential

More information

NOT FOR CIRCULATION. FEATURE REVIEW IDrugs (11): The Thomson Corporation ISSN

NOT FOR CIRCULATION. FEATURE REVIEW IDrugs (11): The Thomson Corporation ISSN 1 FEATURE REVIEW IDrugs 2008 11(11): The Thomson Corporation ISSN 1369-7056 High-content screening: A new primary screening tool? Marc Bickle Address Max Planck Institute of Molecular Cell Biology and

More information

INTEGRATED REMOTE SENSING AND VISUALIZATION (IRSV) SYSTEM FOR TRANSPORTATION INFRASTRUCTURE. Project Description and Year I Achievement Report

INTEGRATED REMOTE SENSING AND VISUALIZATION (IRSV) SYSTEM FOR TRANSPORTATION INFRASTRUCTURE. Project Description and Year I Achievement Report INTEGRATED REMOTE SENSING AND VISUALIZATION (IRSV) SYSTEM FOR TRANSPORTATION INFRASTRUCTURE OPERATIONS AND MANAGEMENT Project Description and Year I Achievement Report p PROJECT OVERVIEW Project Goals:

More information

The Systems Biology Graphical Notation

The Systems Biology Graphical Notation http://www.sbgn.org/ The Systems Biology Graphical Notation Nicolas Le Novère, EMBL-EBI (on the behalf of SBGN editors, authors and contributors) Different representations of a pathway No temporal sequence

More information

Synteny Portal Documentation

Synteny Portal Documentation Synteny Portal Documentation Synteny Portal is a web application portal for visualizing, browsing, searching and building synteny blocks. Synteny Portal provides four main web applications: SynCircos,

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Gene Ontology. Shifra Ben-Dor. Weizmann Institute of Science

Gene Ontology. Shifra Ben-Dor. Weizmann Institute of Science Gene Ontology Shifra Ben-Dor Weizmann Institute of Science Outline of Session What is GO (Gene Ontology)? What tools do we use to work with it? Combination of GO with other analyses What is Ontology? 1700s

More information

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic Cross Discipline Analysis made possible with Data Pipelining J.R. Tozer SciTegic System Genesis Pipelining tool created to automate data processing in cheminformatics Modular system built with generic

More information

How much non-coding DNA do eukaryotes require?

How much non-coding DNA do eukaryotes require? How much non-coding DNA do eukaryotes require? Andrei Zinovyev UMR U900 Computational Systems Biology of Cancer Institute Curie/INSERM/Ecole de Mine Paritech Dr. Sebastian Ahnert Dr. Thomas Fink Bioinformatics

More information

BMD645. Integration of Omics

BMD645. Integration of Omics BMD645 Integration of Omics Shu-Jen Chen, Chang Gung University Dec. 11, 2009 1 Traditional Biology vs. Systems Biology Traditional biology : Single genes or proteins Systems biology: Simultaneously study

More information

MTopGO: a tool for module identification in PPI Networks

MTopGO: a tool for module identification in PPI Networks MTopGO: a tool for module identification in PPI Networks Danila Vella 1,2, Simone Marini 3,4, Francesca Vitali 5,6,7, Riccardo Bellazzi 1,4 1 Clinical Scientific Institute Maugeri, Pavia, Italy, 2 Department

More information

Analysis and visualization of protein-protein interactions. Olga Vitek Assistant Professor Statistics and Computer Science

Analysis and visualization of protein-protein interactions. Olga Vitek Assistant Professor Statistics and Computer Science 1 Analysis and visualization of protein-protein interactions Olga Vitek Assistant Professor Statistics and Computer Science 2 Outline 1. Protein-protein interactions 2. Using graph structures to study

More information

The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs

The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs The Role of Network Science in Biology and Medicine Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs Network Analysis Working Group 09.28.2017 Network-Enabled Wisdom (NEW) empirically

More information

Cheminformatics Role in Pharmaceutical Industry. Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS

Cheminformatics Role in Pharmaceutical Industry. Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS Cheminformatics Role in Pharmaceutical Industry Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS Agenda The big picture for pharmaceutical industry Current technological/scientific issues Types

More information

Gene Ontology and Functional Enrichment. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein

Gene Ontology and Functional Enrichment. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein Gene Ontology and Functional Enrichment Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein The parsimony principle: A quick review Find the tree that requires the fewest

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Statistical Clustering of Vesicle Patterns Practical Aspects of the Analysis of Large Datasets with R

Statistical Clustering of Vesicle Patterns Practical Aspects of the Analysis of Large Datasets with R Statistical Clustering of Vesicle Patterns Mirko Birbaumer Rmetrics Workshop 3th July 2008 1 / 23 Statistical Clustering of Vesicle Patterns Practical Aspects of the Analysis of Large Datasets with R Mirko

More information

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination.

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination. Module Structure: (15 credits each) Lectures and Assessment: 50% coursework, 50% unseen examination. Module Title Module 1: Bioinformatics and structural biology as applied to drug design MEDC0075 In the

More information

Proteome-wide High Throughput Cell Based Assay for Apoptotic Genes

Proteome-wide High Throughput Cell Based Assay for Apoptotic Genes John Kenten, Doug Woods, Pankaj Oberoi, Laura Schaefer, Jonathan Reeves, Hans A. Biebuyck and Jacob N. Wohlstadter 9238 Gaither Road, Gaithersburg, MD 2877. Phone: 24.631.2522 Fax: 24.632.2219. Website:

More information

EBI web resources II: Ensembl and InterPro

EBI web resources II: Ensembl and InterPro EBI web resources II: Ensembl and InterPro Yanbin Yin http://www.ebi.ac.uk/training/online/course/ 1 Homework 3 Go to http://www.ebi.ac.uk/interpro/training.htmland finish the second online training course

More information

Networks & pathways. Hedi Peterson MTAT Bioinformatics

Networks & pathways. Hedi Peterson MTAT Bioinformatics Networks & pathways Hedi Peterson (peterson@quretec.com) MTAT.03.239 Bioinformatics 03.11.2010 Networks are graphs Nodes Edges Edges Directed, undirected, weighted Nodes Genes Proteins Metabolites Enzymes

More information

Chemical Data Retrieval and Management

Chemical Data Retrieval and Management Chemical Data Retrieval and Management ChEMBL, ChEBI, and the Chemistry Development Kit Stephan A. Beisken What is EMBL-EBI? Part of the European Molecular Biology Laboratory International, non-profit

More information

Variant visualisation and quality control

Variant visualisation and quality control Variant visualisation and quality control You really should be making plots! 25/06/14 Paul Theodor Pyl 1 Classical Sequencing Example DNA.BAM.VCF Aligner Variant Caller A single sample sequencing run 25/06/14

More information

Essential knowledge 1.A.2: Natural selection

Essential knowledge 1.A.2: Natural selection Appendix C AP Biology Concepts at a Glance Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring understanding 1.A: Change in the genetic makeup of a population over time

More information

1 Introduction. Abstract

1 Introduction. Abstract CBS 530 Assignment No 2 SHUBHRA GUPTA shubhg@asu.edu 993755974 Review of the papers: Construction and Analysis of a Human-Chimpanzee Comparative Clone Map and Intra- and Interspecific Variation in Primate

More information

the map Redrawing Donald Hobern takes a look at the challenges of managing biodiversity data [ Feature ]

the map Redrawing Donald Hobern takes a look at the challenges of managing biodiversity data [ Feature ] Redrawing the map Donald Hobern takes a look at the challenges of managing biodiversity data 46 Volume 12 > Number 9 > 2008 www.asiabiotech.com Cicadetta sp., Canberra, Australia, December 2007 Photograph

More information

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting.

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting. Genome Annotation Bioinformatics and Computational Biology Genome Annotation Frank Oliver Glöckner 1 Genome Analysis Roadmap Genome sequencing Assembly Gene prediction Protein targeting trna prediction

More information

Computational Biology Course Descriptions 12-14

Computational Biology Course Descriptions 12-14 Computational Biology Course Descriptions 12-14 Course Number and Title INTRODUCTORY COURSES BIO 311C: Introductory Biology I BIO 311D: Introductory Biology II BIO 325: Genetics CH 301: Principles of Chemistry

More information

ToxiCat: Hybrid Named Entity Recognition services to support curation of the Comparative Toxicogenomic Database

ToxiCat: Hybrid Named Entity Recognition services to support curation of the Comparative Toxicogenomic Database ToxiCat: Hybrid Named Entity Recognition services to support curation of the Comparative Toxicogenomic Database Dina Vishnyakova 1,2, 4, *, Julien Gobeill 1,3,4, Emilie Pasche 1,2,3,4 and Patrick Ruch

More information

Context dependent visualization of protein function

Context dependent visualization of protein function Article III Context dependent visualization of protein function In: Juho Rousu, Samuel Kaski and Esko Ukkonen (eds.). Probabilistic Modeling and Machine Learning in Structural and Systems Biology. 2006,

More information

Use of data mining and chemoinformatics in the identification and optimization of high-throughput screening hits for NTDs

Use of data mining and chemoinformatics in the identification and optimization of high-throughput screening hits for NTDs Use of data mining and chemoinformatics in the identification and optimization of high-throughput screening hits for NTDs James Mills; Karl Gibson, Gavin Whitlock, Paul Glossop, Jean-Robert Ioset, Leela

More information

The anatomy of phenotype ontologies: principles, properties and applications

The anatomy of phenotype ontologies: principles, properties and applications Briefings in Bioinformatics, 19(5), 2018, 1008 1021 doi: 10.1093/bib/bbx035 Advance Access Publication Date: 6 April 2017 Paper The anatomy of phenotype ontologies: principles, properties and applications

More information

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr Introduction to Bioinformatics Shifra Ben-Dor Irit Orr Lecture Outline: Technical Course Items Introduction to Bioinformatics Introduction to Databases This week and next week What is bioinformatics? A

More information

Sample Size Estimation for Studies of High-Dimensional Data

Sample Size Estimation for Studies of High-Dimensional Data Sample Size Estimation for Studies of High-Dimensional Data James J. Chen, Ph.D. National Center for Toxicological Research Food and Drug Administration June 3, 2009 China Medical University Taichung,

More information

New Computational Methods for Systems Biology

New Computational Methods for Systems Biology New Computational Methods for Systems Biology François Fages, Sylvain Soliman The French National Institute for Research in Computer Science and Control INRIA Paris-Rocquencourt Constraint Programming

More information

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013 EBI web resources II: Ensembl and InterPro Yanbin Yin Spring 2013 1 Outline Intro to genome annotation Protein family/domain databases InterPro, Pfam, Superfamily etc. Genome browser Ensembl Hands on Practice

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs William (Bill) Welsh welshwj@umdnj.edu Prospective Funding by DTRA/JSTO-CBD CBIS Conference 1 A State-wide, Regional and National

More information

Differential Modeling for Cancer Microarray Data

Differential Modeling for Cancer Microarray Data Differential Modeling for Cancer Microarray Data Omar Odibat Department of Computer Science Feb, 01, 2011 1 Outline Introduction Cancer Microarray data Problem Definition Differential analysis Existing

More information

GENE ONTOLOGY (GO) Wilver Martínez Martínez Giovanny Silva Rincón

GENE ONTOLOGY (GO) Wilver Martínez Martínez Giovanny Silva Rincón GENE ONTOLOGY (GO) Wilver Martínez Martínez Giovanny Silva Rincón What is GO? The Gene Ontology (GO) project is a collaborative effort to address the need for consistent descriptions of gene products in

More information

Identifying Signaling Pathways

Identifying Signaling Pathways These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Anthony Gitter, Mark Craven, Colin Dewey Identifying Signaling Pathways BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2018

More information

Introduction: The Cell Cycle and Mitosis

Introduction: The Cell Cycle and Mitosis Contents 1 Introduction: The Cell Cycle and Mitosis 2 Mitosis Review Introduction: The Cell Cycle and Mitosis The cell cycle refers to the a series of events that describe the metabolic processes of growth

More information

Supplementary Information 16

Supplementary Information 16 Supplementary Information 16 Cellular Component % of Genes 50 45 40 35 30 25 20 15 10 5 0 human mouse extracellular other membranes plasma membrane cytosol cytoskeleton mitochondrion ER/Golgi translational

More information

Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening

Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening APPLICATION NOTE ArrayScan High Content Platform Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening Suk J. Hong and Richik N. Ghosh

More information

Exam 1 ID#: October 4, 2007

Exam 1 ID#: October 4, 2007 Biology 4361 Name: KEY Exam 1 ID#: October 4, 2007 Multiple choice (one point each) (1-25) 1. The process of cells forming tissues and organs is called a. morphogenesis. b. differentiation. c. allometry.

More information

protein biology cell imaging Automated imaging and high-content analysis

protein biology cell imaging Automated imaging and high-content analysis protein biology cell imaging Automated imaging and high-content analysis Automated imaging and high-content analysis Thermo Fisher Scientific offers a complete portfolio of imaging platforms, reagents

More information

Honors Biology Test Chapter 8 Mitosis and Meiosis

Honors Biology Test Chapter 8 Mitosis and Meiosis Honors Biology Test Chapter 8 Mitosis and Meiosis 1. In mitosis, if a parent cell has 16 chromosomes, each daughter cell will have how many chromosomes? a. 64 b. 32 c. 16 d. 8 e. 4 2. Chromatids that are

More information

AP Biology Essential Knowledge Cards BIG IDEA 1

AP Biology Essential Knowledge Cards BIG IDEA 1 AP Biology Essential Knowledge Cards BIG IDEA 1 Essential knowledge 1.A.1: Natural selection is a major mechanism of evolution. Essential knowledge 1.A.4: Biological evolution is supported by scientific

More information

Computational Structural Bioinformatics

Computational Structural Bioinformatics Computational Structural Bioinformatics ECS129 Instructor: Patrice Koehl http://koehllab.genomecenter.ucdavis.edu/teaching/ecs129 koehl@cs.ucdavis.edu Learning curve Math / CS Biology/ Chemistry Pre-requisite

More information

BIOINFORMATICS LAB AP BIOLOGY

BIOINFORMATICS LAB AP BIOLOGY BIOINFORMATICS LAB AP BIOLOGY Bioinformatics is the science of collecting and analyzing complex biological data. Bioinformatics combines computer science, statistics and biology to allow scientists to

More information

DNA and GENETICS UNIT NOTES

DNA and GENETICS UNIT NOTES DNA and GENETICS UNIT NOTES NAME: DO NOT LOSE! 1 DNA - Deoxyribose Nucleic Acid Shape is called double DNA has the information for our cells to make. DNA through transcription makes m mrna through translation

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

Mitosis and Meiosis. 2. The distribution of chromosomes in one type of cell division is shown in the diagram below.

Mitosis and Meiosis. 2. The distribution of chromosomes in one type of cell division is shown in the diagram below. Name: Date: 1. Jack bought a small turtle. Three months later, the turtle had grown to twice its original size. Which of the following statements best describes why Jack s turtle got bigger? A. Parts of

More information

Spatial Data Management of Bio Regional Assessments Phase 1 for Coal Seam Gas Challenges and Opportunities

Spatial Data Management of Bio Regional Assessments Phase 1 for Coal Seam Gas Challenges and Opportunities Spatial Data Management of Bio Regional Assessments Phase 1 for Coal Seam Gas Challenges and Opportunities By Dr Zaffar Sadiq Mohamed-Ghouse Principal Consultant, Spatial & IT, GHD zaffar.sadiq@ghd.com

More information

Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms.

Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms. Subject Area - 3: Science and Technology and Engineering Education Standard Area - 3.1: Biological Sciences Organizing Category - 3.1.A: Organisms and Cells Course - 3.1.B.A: BIOLOGY Standard - 3.1.B.A1:

More information

Biology 2018 Final Review. Miller and Levine

Biology 2018 Final Review. Miller and Levine Biology 2018 Final Review Miller and Levine bones blood cells elements All living things are made up of. cells If a cell of an organism contains a nucleus, the organism is a(n). eukaryote prokaryote plant

More information

Chromosome Chr Duplica Duplic t a ion Pixley

Chromosome Chr Duplica Duplic t a ion Pixley Chromosome Duplication Pixley Figure 4-6 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-72 Molecular Biology of the Cell ( Garland Science 2008) Interphase During mitosis (cell division),

More information

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA.

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Systems Biology-Models and Approaches Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Taxonomy Study external

More information

Biological Concepts and Information Technology (Systems Biology)

Biological Concepts and Information Technology (Systems Biology) Biological Concepts and Information Technology (Systems Biology) Janaina de Andréa Dernowsek Postdoctoral at Center for Information Technology Renato Archer Janaina.dernowsek@cti.gov.br Division of 3D

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK. COURSE OUTLINE BIOL 310 The Human Genome. Prepared By: Ron Tavernier

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK. COURSE OUTLINE BIOL 310 The Human Genome. Prepared By: Ron Tavernier STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE BIOL 310 The Human Genome Prepared By: Ron Tavernier SCHOOL OF SCIENCE, HEALTH & CRIMINAL JUSTICE SCIENCE DEPARTMENT May

More information

-max_target_seqs: maximum number of targets to report

-max_target_seqs: maximum number of targets to report Review of exercise 1 tblastn -num_threads 2 -db contig -query DH10B.fasta -out blastout.xls -evalue 1e-10 -outfmt "6 qseqid sseqid qstart qend sstart send length nident pident evalue" Other options: -max_target_seqs:

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Which row in the chart correctly identifies the functions of structures A, B, and C? A) 1 B) 2 C) 3 D) 4

Which row in the chart correctly identifies the functions of structures A, B, and C? A) 1 B) 2 C) 3 D) 4 1. What is a similarity between all bacteria and plants? A) They both have a nucleus B) They are both composed of cells C) They both have chloroplasts D) They both lack a cell wall 2. Which statement is

More information

Document Navigation: Ontologies or Knowledge Organisation Systems

Document Navigation: Ontologies or Knowledge Organisation Systems Document Navigation: Ontologies or Knowledge Organisation Systems Simon Jupp - NETTAB 2007 BioHealth Informatics Group University of Manchester, UK Introduction Bioinformatics relies heavily on web for

More information

CLRG Biocreative V

CLRG Biocreative V CLRG ChemTMiner @ Biocreative V Sobha Lalitha Devi., Sindhuja Gopalan., Vijay Sundar Ram R., Malarkodi C.S., Lakshmi S., Pattabhi RK Rao Computational Linguistics Research Group, AU-KBC Research Centre

More information

Molecular Biology: from sequence analysis to signal processing. University of Sao Paulo. Junior Barrera

Molecular Biology: from sequence analysis to signal processing. University of Sao Paulo. Junior Barrera Molecular Biology: from sequence analysis to signal processing Junior Barrera University of Sao Paulo Layout Introduction Knowledge evolution in Genetics Data acquisition Data Analysis A system for genetic

More information

Introducing the Morphologi G3 ID The future of particle characterization

Introducing the Morphologi G3 ID The future of particle characterization Introducing the Morphologi G3 ID The future of particle characterization Dr Anne Virden, Product technical specialist diffraction and analytical imaging What is the Morphologi G3-ID? Advanced R&D particle

More information

Statistics for Differential Expression in Sequencing Studies. Naomi Altman

Statistics for Differential Expression in Sequencing Studies. Naomi Altman Statistics for Differential Expression in Sequencing Studies Naomi Altman naomi@stat.psu.edu Outline Preliminaries what you need to do before the DE analysis Stat Background what you need to know to understand

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Introducing a Bioinformatics Similarity Search Solution

Introducing a Bioinformatics Similarity Search Solution Introducing a Bioinformatics Similarity Search Solution 1 Page About the APU 3 The APU as a Driver of Similarity Search 3 Similarity Search in Bioinformatics 3 POC: GSI Joins Forces with the Weizmann Institute

More information

CyFlow Ploidy Analyser High-resolution DNA analysis

CyFlow Ploidy Analyser High-resolution DNA analysis CyFlow Ploidy Analyser High-resolution DNA analysis For agroscience breeding aquaculture www.sysmex-partec.com A dedicated solution for ploidy analysis and genome size determination Determining ploidy

More information

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter 9/10/2008 1 Learning Objectives Explain why a cell cycle was selected for during evolution

More information

Comparative analysis of RNA- Seq data with DESeq2

Comparative analysis of RNA- Seq data with DESeq2 Comparative analysis of RNA- Seq data with DESeq2 Simon Anders EMBL Heidelberg Two applications of RNA- Seq Discovery Eind new transcripts Eind transcript boundaries Eind splice junctions Comparison Given

More information

USING BLAST TO IDENTIFY PROTEINS THAT ARE EVOLUTIONARILY RELATED ACROSS SPECIES

USING BLAST TO IDENTIFY PROTEINS THAT ARE EVOLUTIONARILY RELATED ACROSS SPECIES USING BLAST TO IDENTIFY PROTEINS THAT ARE EVOLUTIONARILY RELATED ACROSS SPECIES HOW CAN BIOINFORMATICS BE USED AS A TOOL TO DETERMINE EVOLUTIONARY RELATIONSHPS AND TO BETTER UNDERSTAND PROTEIN HERITAGE?

More information

The Saguaro Genome. Toward the Ecological Genomics of a Sonoran Desert Icon. Dr. Dario Copetti June 30, 2015 STEMAZing workshop TCSS

The Saguaro Genome. Toward the Ecological Genomics of a Sonoran Desert Icon. Dr. Dario Copetti June 30, 2015 STEMAZing workshop TCSS The Saguaro Genome Toward the Ecological Genomics of a Sonoran Desert Icon Dr. Dario Copetti June 30, 2015 STEMAZing workshop TCSS Why study a genome? - the genome contains the genetic information of an

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Topic 2: Cells (12 hours)

Topic 2: Cells (12 hours) Topic : Cells ( hours). Cell theory hours.. Outline the cell theory. Include the following. Living organisms are composed of cells. Cells are the smallest unit of life. Cells come from pre-existing cells...

More information

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2:

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2: 1 3/1/2005 A Quantitative Cell-Based High-Content Screening Assay for the Epidermal Growth Factor Receptor-Specific Activation of Mitogen-Activated Protein Kinase Richik N. Ghosh, Linnette Grove, and Oleg

More information

Proteomics Systems Biology

Proteomics Systems Biology Dr. Sanjeeva Srivastava IIT Bombay Proteomics Systems Biology IIT Bombay 2 1 DNA Genomics RNA Transcriptomics Global Cellular Protein Proteomics Global Cellular Metabolite Metabolomics Global Cellular

More information

Manual: R package HTSmix

Manual: R package HTSmix Manual: R package HTSmix Olga Vitek and Danni Yu May 2, 2011 1 Overview High-throughput screens (HTS) measure phenotypes of thousands of biological samples under various conditions. The phenotypes are

More information

Mitochondrial Genome Annotation

Mitochondrial Genome Annotation Protein Genes 1,2 1 Institute of Bioinformatics University of Leipzig 2 Department of Bioinformatics Lebanese University TBI Bled 2015 Outline Introduction Mitochondrial DNA Problem Tools Training Annotation

More information

Hands-On Nine The PAX6 Gene and Protein

Hands-On Nine The PAX6 Gene and Protein Hands-On Nine The PAX6 Gene and Protein Main Purpose of Hands-On Activity: Using bioinformatics tools to examine the sequences, homology, and disease relevance of the Pax6: a master gene of eye formation.

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

Geert Geeven. April 14, 2010

Geert Geeven. April 14, 2010 iction of Gene Regulatory Interactions NDNS+ Workshop April 14, 2010 Today s talk - Outline Outline Biological Background Construction of Predictors The main aim of my project is to better understand the

More information

E. Incorrect! At telophase II, cells are nearly completed with meiosis, with no cross-over.

E. Incorrect! At telophase II, cells are nearly completed with meiosis, with no cross-over. OAT Biology - Problem Drill 06: Mitosis and Meiosis Question No. 1 of 10 1. During meiosis, cross-over between homologous chromosomes occurs at the end of. Question #01 (A) Anaphase II (B) Metaphase I

More information

Process Analytical Technology Diagnosis, Optimization and Monitoring of Chemical Processes

Process Analytical Technology Diagnosis, Optimization and Monitoring of Chemical Processes FRAUNHOFER INSTITUTe FoR Chemical Technology ICT Process Analytical Technology Diagnosis, Optimization and Monitoring of Chemical Processes Process Analytical Technology Diagnosis, Optimization and Monitoring

More information

Pathway Association Analysis Trey Ideker UCSD

Pathway Association Analysis Trey Ideker UCSD Pathway Association Analysis Trey Ideker UCSD A working network map of the cell Network evolutionary comparison / cross-species alignment to identify conserved modules The Working Map Network-based classification

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

Warm Up. What are some examples of living things? Describe the characteristics of living things

Warm Up. What are some examples of living things? Describe the characteristics of living things Warm Up What are some examples of living things? Describe the characteristics of living things Objectives Identify the levels of biological organization and explain their relationships Describe cell structure

More information

Computational approaches for functional genomics

Computational approaches for functional genomics Computational approaches for functional genomics Kalin Vetsigian October 31, 2001 The rapidly increasing number of completely sequenced genomes have stimulated the development of new methods for finding

More information