Discrete-Time Filter (Switched-Capacitor Filter) IC Lab

Similar documents
Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

Switched Capacitor Filters (SCF)

ELEN 610 Data Converters

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Lectures on APPLICATIONS

Chapter 2 Switched-Capacitor Circuits

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2)

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2)

Sample-and-Holds David Johns and Ken Martin University of Toronto

An Analysis on a Pseudo- Differential Dynamic Comparator with Load Capacitance Calibration

System on a Chip. Prof. Dr. Michael Kraft

Analog and Mixed-Signal Center, TAMU

ECEN 610 Mixed-Signal Interfaces

Design of Analog Integrated Circuits

Nyquist-Rate A/D Converters

Electronic Circuits Summary

1 Introduction 1. 2 Elements of filter design 2. 3 FPAA technology Capacitor bank diagram Switch technology... 6

EE 508 Lecture 29. Integrator Design. Metrics for comparing integrators Current-Mode Integrators

Homework Assignment 11

2N5545/46/47/JANTX/JANTXV

Characteristics of Active Devices

EE247 Lecture 16. Serial Charge Redistribution DAC

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

OPERATIONAL AMPLIFIER APPLICATIONS

EE C245 ME C218 Introduction to MEMS Design

Appendix A Butterworth Filtering Transfer Function

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges

Lecture 400 Discrete-Time Comparators (4/8/02) Page 400-1

Digital Integrated Circuits A Design Perspective

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Input and Output Impedances with Feedback

EE 508 Lecture 31. Switched Current Filters

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor

Introduction to Switched Capacitor Circuits

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

Monolithic N-Channel JFET Dual

Monolithic N-Channel JFET Duals

Stability and Frequency Compensation

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

MULTIRATE SYSTEMS. work load, lower filter order, lower coefficient sensitivity and noise,

Chapter 4 Field-Effect Transistors

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Nyquist-Rate D/A Converters. D/A Converter Basics.

Homework Assignment 08

Modeling All-MOS Log-Domain Σ A/D Converters

A 51pW Reference-Free Capacitive-Discharging Oscillator Architecture Operating at 2.8Hz. Sept Hui Wang and Patrick P.

Oversampling Converters

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

EE247 Lecture 10. Switched-Capacitor Integrator C

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

VLSI Design I; A. Milenkovic 1

Low-Power, High-Speed CMOS Analog Switches

Nonideal Effects in SC circuits

LM148 Low Power Quad 741 Operational Amplifier

ECE 546 Lecture 11 MOS Amplifiers

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

VLSI Design and Simulation

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design

Low-Sensitivity, Highpass Filter Design with Parasitic Compensation

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Introduction to CMOS RF Integrated Circuits Design

STS3401. P -C hannel E nhancement Mode MOS FE T. ABS OLUTE MAXIMUM R ATINGS (T A=25 C unless otherwise noted) THE R MAL C HAR AC TE R IS TIC S

Monolithic N-Channel JFET Dual

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA

EE 505. Lecture 27. ADC Design Pipeline

MOS SWITCHING CIRCUITS

EE C245 ME C218 Introduction to MEMS Design

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Pipelined multi step A/D converters

DG417/418/419. Precision CMOS Analog Switches. Features Benefits Applications. Description. Functional Block Diagram and Pin Configuration

PART TOP VIEW. Maxim Integrated Products 1

Chapter 5 Frequency Domain Analysis of Systems

Deliyannis, Theodore L. et al "Two Integrator Loop OTA-C Filters" Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999

Electronics and Communication Exercise 1

University of Toronto. Final Exam

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Lecture 120 Filters and Charge Pumps (6/9/03) Page 120-1

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

CAPACITORS / CAPACITANCE ECET11

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.

Quad SPST CMOS Analog Switches

Sophomore Physics Laboratory (PH005/105)

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Monolithic N-Channel JFET Dual

I. Introduction II. Biochemistry III. Microfluidic Packaging IV. Capacitive Sensors V. Cells Manipulation and Detection.

Advanced Current Mirrors and Opamps

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Advantages of Using CMOS

EE221 Circuits II. Chapter 14 Frequency Response

Transcription:

Discreteime Filter (Switchedapacitor Filter) I Lab

Discreteime Filters AntiAliasing Filter & Smoothing Filter f pass f stop A attenuation FIR Filters f max Windowing (Kaiser), Optimization 0 f s f max f s f s f max IIR Filters Frequency ransformation from Filters Forward / Backward Euler ransformation Bilinear ransformation Lossless Discrete Integrator (LDI) ransformation I Lab

S ircuit Motivation Active R Filter R imeonstant ariation ~ 30% apacitance Ratio ariation ~ 0.% Building Blocks Well Integrated Operational Amplifier : Foldedascode onfiguration apacitor : PolyPoly, MetalMetal Switches : ransmission Gate MultiPhase NonOverlapping locks I Lab

Foldedascode Op Amp SingleStage Op Amp DD Frequency ompensation M 9 M 0 BP by Load apacitance L D voltage gain A ( 0) g R g [ g r ] m m m ds M M v in M6 M 5 BP M 3 M 4 v UnityGain Frequency ω 0dB gm L BN M 0 M 7 M 8 Slew Rate SR I 0 L SS Fully Differential ersion I Lab

S ircuit Applications Analog Discreteime Filters Analog Discreteime Signal Processing ircuits oltage Amplifiers, GA Interpolators, Decimations Modulators, Demodulators, Mixers Oscillators, Waveform Generators,.. Data ransceivers : elecom I, ODE, Baseband Processors,. Data onverters DA : hargeredistribution, yclic (Algorithmic) AD : Successive Approximation, yclic (Algorithmic), Pipeline SigmaDelta Modulators Other Areas I Lab

Basic Idea of S ircuits Req harge ransfer ( ) Q Q ( ) Q Average urrent during Q ( ) Iavg Equivalent Resistance R eq Iavg f S I Lab

R vs S Integrators R v v Passive Resistor Switchedapacitor Branch v R t ( t) v ( τ) dτ H ( s) in a in ( s) ( s) R s Requirements R I Lab

S Integrator Operations v v q q v v v f f q v q q ( n) v( n) vin( n) ( n) v ( n) [ 0 v ( n) ] q q ( n) v( n) 0 ( n) v ( n) [ 0 v ( n) ] at the integration time (f ) n, (f ) n, Dq Dq q q( n) q( n) q( n ) 0 { vin( n ) } ( n) q( n) q( n ) [ 0 v( n) ] [ 0 v( n ) ] [ v ( n) v ( n ) ] v ( n ) in I Lab

Basic S Integrator v q v q v t n t n/ t n t n/ t n q q [ 0 { vin( n ) }] [ v( n) v( n ) ] [ v ( n) v ( n ) ] v t n t n t n ( z) [ z ] ( z) z in v t n/ t n/ H ( z) in ( z) z ( z) z v I Lab

Basic Integrator v q v q v t n t n/ t n t n/ t n q q [ vin( n) 0] [ v( n) v( n ) ] [ v ( n) v ( n ) ] v t n t n t n ( z) [ z ] ( z) in v t n/ t n/ H ( z) in ( z) ( z) z v I Lab

I Lab Frequency Response of SI ransfer Function ondition : W << ontinuousime Integrator For Same Frequency Response ( ) ( ) e H z e H j e z j j Ω Ω Ω ( ) ( ) j j H e j Ω Ω Ω Ω L ( ) ( ) Ω Ω Ω j R H s j H j s R / & accurate / & accurate

Parasitic apacitance Problem P3 P4 v P P P ( ) P H z z z P : onnected to GND P3 : onnected to irtual GND P4 : onnected to Output of an Amplifier I Lab

ParasiticInsensitive S Integrators v v H ( ) ( z) z z H( z) ( z) z in in ( z) ( z) z All Parasitic apacitors onnected to GND / irtual GND oltage Source / Output of Amplifier I Lab

Signal Flow Graph Establishment (n) q(n) v (n) in z (z ) Switched Branch Input : in, Output : DQ q ( n) q( n) q( n ) [ 0 vin( n) ] Q( z) z ( z) Op Amp w/ Feedback Input : DQ, Output :, v in ( n) v ( n ) q( n) ( z ( z) Q( z) ) I Lab

Signal Flow Graph for S Integrators v ( z ) v F v z (/ F ) z 3 3 3 v 3 z 3 ( z) ( z) ( z) ( z) 3 F F z F z I Lab

storder S Filter Active R ersion S ersion F R 3 R F v (n) in (s) (s) (n) 3 Signal Flow Graph in (z ) F (z ) 3 ( ) H z in ( z) F F ( z) 3 F z z I Lab

HighOrder Filter Implementation ascade of Biquad Blocks X H...... H i H N/ Y N N bz bz b0 i i az az a0 ( ) Hi( z) H z H H...H i...h N/ RL Prototype X(s) R S L L 4... 3 R L Y(s) I I sl ( s) [ ( s) ( s) ] ( z) I ( s) z s z I Lab

LowQ S Biquad Active R ersion S ersion k 4 F k 6 F (s) ω 0 /h 0 F /ω 0 /ω 0 Q/ω 0 F v (s) k F F k 5 F F v /h k F h ( ) H s in ( s) hs hs h ( s) ωo s s ω Q o 0 k 3 F I Lab

LowQ S Biquad (cont d) Signal Flow Graph k 4 k 6 k k 5 z z z v k k 3 (z ) ransfer Function ( ) H z in ( z) ( z) ( k k3) z ( kk5 k k3 ) z k3 az az a ( k ) z ( k k k ) z b z b z 6 4 5 6 0 k 3 a 0 k a a 0 k5 a 0 a a k 6 b 4 k5 b b k k I Lab

HighQ S Biquad Active R ersion S ersion k 4 F /ω 0 (s) ω 0 /h 0 F /Q /ω 0 F v (s) k F F k 6 F k 5 F F v h /ω 0 k F h k 3 F ( ) H s in ( s) hs hs h ( s) ωo s s ω Q o 0 I Lab

HighQ S Biquad (cont d) Signal Flow Graph k 4 k 6 (z ) k k 5 z z z v k (z ) k 3 (z ) ransfer Function ( ) H z in ( z) ( z) k 3 z z ( kk5 kk5 k3 ) z ( k3 kk5) az az a ( k k k k ) z ( k k ) z bz b0 4 5 5 6 5 6 0 k k 3 a k5 a a0 k k5 a 0 a a 5 k6 b0 k 4 k5 b b0 k I Lab

S Ladder Filter RL Prototype R S I L 3 R L v I 3 s sl s 3 ( ) ( ) 3 ( I) in R S 3 R L ( I ) Block Diagram /R S in (s) /R S I s sl s 3 3 /R L I Lab

S Ladder Filter (cont d) Active R Implementation S Implementation R S in S S in (s) I L 3 3 (s) S L R R S L L 3 L R L I Lab

in S L S 3 For discharged to GND For connected to I/O of op amp. in S L S 3 φ φ φ L L I Lab

Scaling for Maximum Dynamic Range apacitors onnected to Output of Op Amp k, m,k m,k α k,k / α k For Maximum Output of Op Amp k, max,k a k max,k / max,lin d a d a a a (n) v (n) b c (n) v (n) a b a c max,lin max, max,lin max, Noise Increase by Much Less than O(a k ) I Lab

Scaling for Minimum apacitance apacitors onnected to Input of Op Amp k, n,k n,k β k in,k For Minimum apacitance of Op Amp k, min,k β k min / min,k where min is the min. capacitance value set by technology. Smallest apacitor onnected to Input of Op Amp k ~ min otal apacitance Minimized I Lab

Nonideal Problems in S FIlters Switch Nonidealities NonZero OnResistance harge Injection Junction Leakage urrent apacitance Nonidealities Mismatch Problem Op Amp Nonidealities Offset oltage Finite D Gain & Bandwidth Limited Slew Rate NonZero Output Impedance Noise I Lab

harge Injection φ ov e v Due to Overlap apacitance O Signal Independent O O ( ) Due to hannel harge DQ H Signal Dependent O DD SS H Q H ox WL ( ) WL ( ) GS H ox DD S H I Lab

Solution D O HalfSize Dummy Switch Driven By omplement locks ransmission Gate Fully Differential Approach S v S v ov () & ov () ancelled Each Other I Lab

Solution D H Delayed locking Scheme φ 4 φ 3 v φ 3 φ 4 Due to S : hannel harge Dependent on in Due to S3 & S4 : hannel harge Dependent on GND an be Removed uring Off S 3 & S 4 Earlier hannel harge of S Isolated from Using ompensation apacitor Insert () Q H Stored on ompensation apacitor I Lab

apacitance Mismatch Area Inaccuracy & Oxide hickness ariation Keep apacitance Ratio onstant 0µm 40µm 0µm 0µm 0µm 40µm ( 400.5 ) ( 400.5) ( 00.5 ) ( 00.5 ).6% error 4. 03 4 ( 00.5 ) ( 00.5 ) ( 00.5) ( 00.5 ) 4 I Lab

apacitance Lay ommomentroid Approach 4 4 Ground Shielding poly nwell analog ground poly n I Lab

DS echnique orrelated Double Sampling an Remove Offset oltage, /fnoise, Power Supply Noise, Finite D Gain Error f f offset Stored offset Removed v v offset v v v offset v offset v offset I Lab

Finite D Gain of Op Amp v / A 0 v ransfer Function Frequency Response Magnitude Error ( ) H z A 0 jω jω Hideal ( ) ( e ) H e m ( ω) m A A 0 z e jω ( ω) jθ( ω) jsin( ω ) m( ω) jθ( ω) 0 Phase Error θ ( ω) A 0 sin ( ω ) I Lab

I Lab Finite Bandwidth of Op Amp Op Amp : OnePole System w/ Unity Gain Freq. of w 0 Frequency Response Magnitude Error Phase Error A (s) [db] A 0 0 p ω 0 ω ( ) 0 0 0 p s p s p A p s A s A ω ( ) ( ) ( ) ( ) ( ) ω ω ω ω ω ω F jsin e e H F H e j j ideal j ( ) ( ) ( ) cos e m F o 0 ω ω ω ω ( ) ( ) ( ) sin e F 0 0 ω θ ω ω ω

Lay Example ADD ASS GND Op Amp Well apacitor DDD DSS LKs Switch I Lab

S Filter Simulation Example LowQ S Lowpass Biquad Filter FF Analysis for Each Frequency of Interest.fft v(node) np 048 format unorm ircuit Schematic φ 0.68p Simulation Results ndorder S Lowpass Biquad Low Q.56p 0 0.68p 0.68p v magnitude (db) 0 0 30 40 0p 50 0p Model first ircuit Second 60 70 0 0 0 0 4 0 6 frequency (Hz) I Lab

Implementation Example 5thOrder Lowpass Filter for ISDN UI/F AFE x Filter 0 0 H(f) [db] 0 30 40 : calculation o : simulation x : measurement 50 60 70 0 4 0 5 0 6 frequency [Hz] I Lab

Recent Advance Example 6thOrder hannel Select Lowpass Filter IEEE LSI Symposium 996. I Lab

Recent Advance Example Bandpass Biquad w/ GainEnhancement Replica Op Amp f center 0MHz (Q0) f sample 00MHz IEEE ISS 997. I Lab

Recent Advance Example 3 Bandpass Biquad w/ Switched Op Amp f center 440kHz (Q6.7) w/ f s.8mhz Power 60µW @ DD IEEE ISS 997. I Lab

Recent Advance Example 4 00MSampes/s SLPF 0.5µm MOS echnology Power 0mW @ DD 3 IEEE ISS 999. I Lab

Recent Advance Example 5 SBPF w/ Switched Op Amp 0.5µm MOS echnology f o 75kHz w/ Q 45 Power 30µW @ DD IEEE ISS 000. I Lab