Observational constraints from the Solar System and from Extrasolar Planets

Size: px
Start display at page:

Download "Observational constraints from the Solar System and from Extrasolar Planets"

Transcription

1 Lecture 1 Part II Observational constraints from the Solar System and from Extrasolar Planets Lecture Universität Heidelberg WS 11/12 Dr. Christoph Mordasini mordasini@mpia.de Mentor Prof. T. Henning

2 Lecture overview 1. Introduction 2. Planet formation paradigm 3. Structure of the Solar System 4. The surprise: 51 Peg b 5. Detection techniques: radial velocity, transits, direct imaging, (microlensing, timing, astrometry) 6. Properties of extrasolar planets: mass, distance, eccentricity distributions, metallicity effect, massradius diagram,...

3 6. Properties of extrasolar planets

4 Current status 692 planets Candidates detected by radial velocity or astrometry 524 planetary systems 640 planets 76 multiple planet systems Transiting planets 171 planetary systems 184 planets 14 multiple planet systems Candidates detected by microlensing 12 planetary systems 13 planets 1 multiple planet systems planet candidates from the KEPLER satellite (transit) Candidates detected by imaging 22 planetary systems 25 planets 1 multiple planet systems Candidates detected by timing 9 planetary systems 14 planets 4 multiple planet systems Extra-solar planet encyclopedia (

5 Different techniques - different constraints direct imaging

6 A quickly progressing field Jupiter Saturn Uranus Neptune Earth Venus Mars Incredible wealth of data provided by already flying space mission (e.g. CoRoT and Kepler). More to come. Field observationally driven. Formation theory struggles to keep up... Observation and theory often don t match well. Common characteristic: provide observations of a large number of exoplanets. This data should therefore be treated as a statistical ensemble. This could help.

7 Overview on observed exoplanet properties Extrasolar planets exhibit a very large diversity (all techniques). Frequencies -Low mass close-in planets: approx. 50 % (radial velocity) -Jovian planets inside a few AU: approx % (rv) -Hot Jupiters: 0.5-1% (rv, transits) -Cold Neptunes are common (microlensing) -Overall (FGK stars): any mass, P<10 years: 75% (rv) The mass function is strongly rising towards small masses. There might be local minimum in the planetary mass function around Mearth (rv). The radius distribution is strongly increasing towards small radii (transits). The semimajor axis distribution of giant planets consists of a pile up at a period of about 3 days, a period valley, and an upturn at about 1 AU. (rv) Close-in low mass (or small radius) planets are found somewhat further out than Hot Jupiters (rv, transits). Hot Jupiters are lonely (rv, transits). Low mass close-in planets are in multiple systems (rv, transits). Massive giants planets at large distances are rare, at least around solar like stars (direct imaging). Giant planet frequency and host star [Fe/H] are positively correlated.

8 Today, formation theory cannot explain all these observed characteristics in one coherent picture. But at least for some observations, theory can give us ideas about possible mechanisms responsible for them.

9 6.1 a-m diagram

10 Diversity & structures in the a-m diagram Direct imaging Diversity - close-in giant planets - evaporating planets - eccentric planets - super Jupiters - Hot Neptunes & Super Earth - pile-ups and voids: planetary desert period valley - planets at large distances Microlensing Radial velocity & Transits J. Schneider s exoplanet.eu ~2010 (already outdated!) HARPS high precision sample 2011

11 Frequency of planet types Bias-corrected frequency (at least one planet per star) in the a-m (or equivalently period-mass) plane found by high precision RV around solar like FGK stars. Mayor et al Close in planets: P<50 d

12 6.2 Mass distribution

13 Mass distribution: old versions (giants) Udry et al Marcy et al Number of Planets Planet Mass Distribution dn/dm! M Planets Keck, Lick, AAT M sin i (M JUP )? HARPS mass distribution from RV observations. rising towards smaller masses. No obs. bias: smaller masses are more difficult to detect. beware of uncorrected (biased) distributions! frequency of Jovian planets falls as about M -1. maximum of giant planet masses at about 1 Jupiter mass. HARPS gave around 2007 the first hint of a second population of low mass planets.

14 Mass distribution II: new view (w. low masses) uncorrected for obs. bias corrected for obs. bias Mayor et al Mayor et al RV: thanks to 1 m/s precision observations, a new huge population of low mass planets has emerged in the last few years (mostly planets found by HARPS). bi (tri?) modal distribution: minimum at about 30 Earth masses. Imprint of formation? neptunian bump: strong increase between ME. overall maximum at small masses more than 50% of solar-type stars harbor at least one planet of any mass and with period up to 100 days (!)

15 Mass distribution III: upper boundary Grether & Lineweaver 2006 Sahlmann et al desert Segresan et al. less than 0.6 % of Sun-like stars have a brown-dwarf companion: so called Brown dwarf desert mass distribution function shows a lack of objects between MJ. Upper end of planet mass distribution? Nothing particular is seen at 13 MJ (Dburning limit). A distinction of BD vs. planets based on formation seems advisable, but difficult to realize in practice.

16 6.3 Semimajor axis distribution

17 Semimajor axis distribution I: giants Msini>0.75 MJ Msini<0.75 MJ Msini<21 Mearth Msini>50 Mearth uncorrected for obs. bias corrected for obs. bias N Udry & Santos log(period) (days) uncorrected for obs. bias Mayor et al The semimajor axis distribution of giant planets found by RV consists of a pile up at a period of about 3 days (0.04 AU). Stopping mechanism for migration? Tidal circularization? Magnetospheric cavity? maybe this pile up is only tiny, when properly correcting for obs. bias... a period valley (10 d < P < 100 d). Timescale effect? an upturn at about 1 AU. Reservoir at large distances. Original formation region?

18 Number of Planets per Star Transits P 0 = 1.7 days P 0 = 2.2 days Orbital Period (days) Howard et al Semimajor axis distribution II: P 0 = 7.0 days low mass/radius planets 2!4 R E 4!8 R E 8!32 R E Cut off below P0: -small radii 2-4 Re: P0 = 7 days -large radii >4 Re : P0 = 2 days. Neptunian and smaller sized further out than giant planets. No pile up at 3 days. Consistent with earlier results from high precision RV. Lovis et al estimated 10 days. Different stopping mechanism? RV Msini<50 Mearth uncorrected for obs. bias corrected for obs. bias The semimajor axis distribution of low mass planets found by RV consists of a continuous increase to about 40 d. then again a decrease. Why? affected by obs. bias? In principle corrected... such planets seem extremely abundant. Mayor et al. 2011

19 6.4 Eccentricity distribution

20 high and even very high eccentricities are common among exoplanets. This is very different than in the Solar System. mean eccentricity for giants: 0.28 > any planet of the Solar System. lower mass planets seem to have lower (but still quite high) e <0.5. planets very close to the star get tidally circularized. origin? formation - evolution? several possible explanations: Planet-planet interactions, influence of stellar or planet companion (Kozai effect), planet-disk interaction (M >10 MJ), dynamical interactions in a cluster Eccentricity distribution Mayor et al. 2011

21 6.5 Metallicity

22 Stellar metallicity Mordasini et al [Fe/H]: iron content of the star ([Fe/H]=0: solar composition, [Fe/H]=0.5: ~ 3 times more iron than the sun). Iron serves as a proxy for the overall metal content in the star (scaled solar composition). Stars in the the solar neighborhood have a distribution of metallicities which is roughly Gaussian around zero. Other parts in the galaxies can have completely different [Fe/H] distributions. These stars can also have a non-scaled solar composition (e.g. thick disk stars). There exists also a galactic metallicity gradient (higher [Fe/H] towards the center).

23 the detection probability for giant planets is a strongly increasing function of the host star metallicity. No hot Jupiters found in globular cluster 47 Tuc ([Fe/H]=-0.76). Expected for solar neighborhood frequency (~0.5%): seven discoveries. Best known star-planet correlation for exoplanets. Important constraint for formation. Explanation: planets form more readily in metal rich systems (primordial hypothesis). Likely. falling in planets have enriched the star (pollution hypothesis) Metallicity effect for giant planets N. Santos et al. (2005) search sample (all stars) stars with giant planets

24 No metallicity effect for low mass planets?? Mayor et al Mayor et al HARPS high precision sample: [Fe/H] for giant gaseous planets (black), for planets less massive than 30 ME (red), and for the global combined sample stars (blue). No metallicity effect for low mass planets. Even absence of low mass planets at high [Fe/H]? Natural outcome in the core accretion formation model.

25 Metallicity effect as function of mass Sousa et al The division between metalophile and not metalophile planets coincides with a minimum in the planetary mass function. (ca. 30 ME) Different populations: Giant planets (w. gas runaway accretion) vs. Neptunian planets. Correlation with other elemental abundances in the stars are less clear (maybe Lithium-planet anticorrelation).

26 6.6 Stellar mass

27 Influence of the host star mass Equal bin in log(mstar) M dwarfs solar stars intermediate masses Planetary system mass / star number => mass of planetary material scales with Mstar Planets around more massive stars are more massive and more frequent. RV bias underestimate the last bin. The Neptunian vs Jovian planet ratio is higher around M dwarfs. Consistent with a correlation of stellar mass, protoplanetary disk mass, and (giant) planet formation probability.

28 6.7 Multiplicity

29 Multiplicity Fraction of giant planets in multiple systems: ~25%. Incomplete... Fraction of low mass planets in multiple systems: ~70% Hot Jupiters seem to be lonely. Formation? Disk cleaning? Kozai? HD10180: up to 7 planets (RV) HD10180 a[au] Msini (b) c d e f g h Lovis et al Eccentricities Solar like star Fe/H=0.08, M=1.06 Msun Some period ratios are fairly close to integer or half-integer values, but no mean-motion resonances. Roughly regularly spaced on a logarithmic scale Kepler-11: six transiting planets Kepler-11 a[au] Msini b c d e f g 0.46 <300 Lissauer et al all within i 1.5 deg. Very complanar. Solar like star Fe/H=0, M=0.95 Msun b, c close to 5:4 resonance, but otherwise not in resonances. Low densities Dynamically packed

30 Packed systems numbers=distance in mutual Hill spheres. Lovis et al Low mass planets seem to follow a radius exclusion law: they cannot be too close together when measured in mutual Hill spheres. Many systems seem to be dynamically packed. Could not add another planet. Numerical simulations show that systems with 3 5 planets and masses between a few ME and a few MJ, separations between adjacent planets should be of at least 7 9 mutual Hill radii to ensure stability on a 10-Gyr timescale. Additional stability islands exist at resonances. Dynamical evolution of the systems. Ejection/collision of surplus planets.

31 Kepler multiple systems Lissauer et al N/N TOT < 5 Kepler adjacent pairings RV adjacent pairings Kepler has detected a lot of systems with multiple transiting planet candidates. The distribution of observed period ratios shows that the majority of candidate pairs are neither in nor near low-order mean motion resonances. Nonetheless, there is a small but statistically significant excesses of pairs both in resonance and spaced slightly further apart, particularly near 2:1. Resonant capture due during migration? Slope of Cumulative Period Ratio Period Ratio Kepler adjacent pairings RV adjacent pairings Period Ratio

32 6.8 Radius distribution

33 Kepler results Planet Radius, R p (R E ) (2) (4) (5) (6) (11) (6) (21) (17) (9) (39) (34) (9) (45) (20) (64) (85) Planet Occurrence! d 2 f/dlogp/dlogr p Planet Occurrence! f cell (69) (25) (73) (18) (104) (269) (262) (15) (15) (74) (60) (353) (521) (159) (28) (70) (31) (153) (607) (893) (375) (25) (154) (160) (208) (591) (1101) (410) (10) (10) (50) (59) (18) (85) (41) Orbital Period, P (days) 1 (15) (168) (52) (278) (198) (799) (749) (295) Howard et al Planet Radius (R E ) Only reliable KEPLER candidates around bright, main sequence GK stars. Correct for observational bias. Complete to p=50 d, and R > 2 RE. decrease with period decrease with size (S/N) Diagonal band of increasing planet frequency. Number of Planets per Star with P < 50 days Incompleteness Strong increase towards small radius. Reminiscent of RV results. But absolute fraction less than HARPS. Radius - mass relationship? Does HARPS detect high density planets that KEPLER cannot see?

34 6.9 Mass-Radius diagram

35 M-R: Giant planets During evolution on Gyrs, giant planets contract and cool. The more massive the core, the smaller the total radius. Many transiting Hot Jupiters are bloated planets: not explainable by standard internal structure modeling. Energy source must act deep in the interior. Several mechanism proposed for explanation. Some giant exoplanets seem to contain very large amounts of metals (>100 ME)

36 M-R: Low mass planets Kepler-11 b,c,d,e,f Kepler 10b Corot-7b Diversity: very different radii for a given M. Some are clearly rocky planets. Observational constraints on the internal composition. Migration? Problem: degeneracy. different composition can give the same M-R. e.g. Ice=rock + some H2/He. Spectra of atmospheres can help to distinguish: Water vapor atmosphere has a smaller scale height than a H2/He atmosphere. Close in planets! Evaporation (atmospheric escape) could play an important role on Gyrs. Must consider formation and evolution. Origin unknown... low mass planets from the beginning or boiled down giant planets?

37 Additional observations

38 Direct imaging: planets form hot Janson et al The two competing models for giant planet formation, core accretion and direct collapse, predict different initial conditions for planet evolution. For direct collapse, planets should initially be very hot. For core accretion, they can also be cold. Observations point to a Hot start. This could help to distinguish formation models.

39 Transits: correlation planetary core mass and stellar metallicity Guillot et al. Miller & Fortney 2010 Transit observations & RV mass measurements show that the core mass of giant planets, and the stellar metallicity are positively correlated. This is reproduced by core accretion models. Recent observations maybe even indicate that that all giant planets contain at least 10 ME of metals. For direct collapse, planets can result both enriched and depleted.

40 Questions?

Data from: The Extrasolar Planet Encyclopaedia.

Data from: The Extrasolar Planet Encyclopaedia. Data from: The Extrasolar Planet Encyclopaedia http://exoplanet.eu/ 2009->10 Status of Exoplanet Searches Direct Detection: 5->9 planets detected Sensitive to large planets in large orbits around faint

More information

III The properties of extrasolar planets

III The properties of extrasolar planets III The properties of extrasolar planets (as of early 2016) http://sgoodwin.staff.shef.ac.uk/phy229.html 3.0 Introduction This lecture will discuss what we have found so far. It is important to remember

More information

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

More information

Sta%s%cal Proper%es of Exoplanets

Sta%s%cal Proper%es of Exoplanets Sta%s%cal Proper%es of Exoplanets Mordasini et al. 2009, A&A, 501, 1139 Next: Popula%on Synthesis 1 Goals of Population Synthesis: incorporate essential planet formation processes, with simplifying approximation

More information

Time: a new dimension of constraints for planet formation and evolution theory

Time: a new dimension of constraints for planet formation and evolution theory S. Jin, P. Mollière Max Planck Institut for Astronomy, Heidelberg, Germany Y. Alibert & W. Benz University of Bern, Switzerland Christoph Mordasini PLATO meeting Taormina 3.12.2014 Time: a new dimension

More information

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Conclusions PD. Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Programm: 1) Weiterführende Vorlesungen 2) Fragebogen 3) Eigene Forschung 4) Bachelor/Masterarbeiten

More information

Architecture and demographics of planetary systems

Architecture and demographics of planetary systems Architecture and demographics of planetary systems Struve (1952) The demography of the planets that we detect is strongly affected by detection methods psychology of the observer Understanding planet demography

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search. François Bouchy OHP - IAP Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

More information

Internal structure and atmospheres of planets

Internal structure and atmospheres of planets Internal structure and atmospheres of planets SERGEI POPOV 1312.3323 Sizes and masses Radius vs. mass Results of modeling. Old (relaxed) planets. Colors correspond to different fractions of light elements.

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

On the relation between stars and their planets

On the relation between stars and their planets On the relation between stars and their planets Nuno C. Santos Centro de Astrofísica, Universidade do Porto Instituto de Astrofísica e Ciências do Espaço Why we stellar parameters are important in exoplanets

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Kozai-Lidov oscillations

Kozai-Lidov oscillations Kozai-Lidov oscillations Kozai (1962 - asteroids); Lidov (1962 - artificial satellites) arise most simply in restricted three-body problem (two massive bodies on a Kepler orbit + a test particle) e.g.,

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

RV- method: disturbing oscilla8ons Example: F- star Procyon

RV- method: disturbing oscilla8ons Example: F- star Procyon Star spots RV- method: disturbing oscilla8ons Example: F- star Procyon In- class ac8vity (1) 1) You are working with the HARPS instrument and you want to unambiguously detect Jupiter-twins around nearby

More information

[25] Exoplanet Characterization (11/30/17)

[25] Exoplanet Characterization (11/30/17) 1 [25] Exoplanet Characterization (11/30/17) Upcoming Items APOD 12/2/16 1. Read chapters 24.1-24.3 for Tuesday 2. We will have a final exam review in the last discussion section (Friday, Dec 8) and also

More information

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017 Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

More information

Observations of Extrasolar Planets

Observations of Extrasolar Planets Observations of Extrasolar Planets Hamilton 2005 Shay Zucker Observations of Extrasolar Planets Spectroscopic detection of exoplanets Emerging properties of the sample Transiting planets Future prospects

More information

Planets and Brown Dwarfs

Planets and Brown Dwarfs Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

More information

Exoplanet Host Stars

Exoplanet Host Stars Exoplanet Host Stars The Hertzsprung-Russel (HR)Diagram The Hertzsprung-Russel (HR)Diagram Standard Doppler Surveys The Hertzsprung-Russel (HR)Diagram Direct Imaging detections Standard Doppler Surveys

More information

Why Search for Extrasolar Planets?

Why Search for Extrasolar Planets? Why Search for Extrasolar Planets? What is the diversity of habitats for life in the universe? Are Earth-like planets common or rare in our region of the galaxy? We have an elaborate and self-consistent

More information

Adam Burrows, Princeton April 7, KITP Public Lecture

Adam Burrows, Princeton April 7, KITP Public Lecture Adam Burrows, Princeton April 7, 2010 KITP Public Lecture The Ancient History of Comparative Planetology There are infinite worlds both like and unlike this world of ours...we must believe that in all

More information

Who was here? How can you tell? This is called indirect evidence!

Who was here? How can you tell? This is called indirect evidence! 1 Who was here? How can you tell? This is called indirect evidence! 2 How does a planetary system form? The one we can study in the most detail is our solar system. If we want to know whether the solar

More information

Design Reference Mission. DRM approach

Design Reference Mission. DRM approach Design Reference Mission The Design Reference Mission (DRM) is a set of observing programs which together provide a tool to assist with tradeoff decisions in the design of the E-ELT (examples of observing

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

Heavy meteal rules. Vardan Adibekyan Institute of Astrophysics and Space Sciences. The star-planet connection. 1 June 2015 NAOJ, Tokyo

Heavy meteal rules. Vardan Adibekyan Institute of Astrophysics and Space Sciences. The star-planet connection. 1 June 2015 NAOJ, Tokyo The star-planet connection Institute of Astrophysics and Space Sciences 1 June 2015 NAOJ, Tokyo 1 Introduction to exoplanets Diversity of exoplanets Planet formation theories 2 Planet formation and metallicity

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations Lecture #36: Planets Around Other Stars Extrasolar Planets! Theory Observations Detection methods Results to date... Implications for "Habitable Zones" Reading: Chapter 13 Astro 102/104 1 The Main Point(s)

More information

Planets & Life. Planets & Life PHYS 214. Please start all class related s with 214: 214: Dept of Physics (308A)

Planets & Life. Planets & Life PHYS 214. Please start all class related  s with 214: 214: Dept of Physics (308A) Planets & Life Planets & Life PHYS 214 Dr Rob Thacker Dept of Physics (308A) thacker@astro.queensu.ca Please start all class related emails with 214: 214: Today s s lecture Assignment 1 marked will hand

More information

Imprints of Formation on Exoplanets

Imprints of Formation on Exoplanets Imprints of Formation on Exoplanets The role of Stellar Mass and Metallicity ILARIA PASCUCCI Lunar and Planetary Laboratory, Department of Planetary Sciences The University of Arizona https://almascience.nrao.edu/alma-science/planet-forming-disks

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars Characterization of the exoplanet host stars Exoplanets Properties of the host stars Properties of the host stars of exoplanets are derived from a combination of astrometric, photometric, and spectroscopic

More information

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

More information

Finding Other Earths. Jason H. Steffen. Asset Earth Waubonsee Community College October 1, 2009

Finding Other Earths. Jason H. Steffen. Asset Earth Waubonsee Community College October 1, 2009 Finding Other Earths Jason H. Steffen Asset Earth Waubonsee Community College October 1, 2009 True Earth Analog Necessities: 1) Main Sequence Star 2) Within the Stellar Habitable Zone 3) Roughly Earth

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Conclusions Dr. H. Klahr & Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Programm: 1) Weiterführende Vorlesungen 2) Fragebogen 3) Eigene Forschung 4)

More information

Planets in different environments

Planets in different environments Planets in different environments Is the formation and evolution of planets effected by the stellar environment? Eike W. Guenther Thüringer Landessternwarte Tautenburg Which factors are important for the

More information

Observational Cosmology Journal Club

Observational Cosmology Journal Club Observational Cosmology Journal Club 07/09/2018 Shijie Wang 1. Heller, R. (2018). Formation of hot Jupiters through disk migration and evolving stellar tides. Retrieved from arxiv.1806.06601 2. Rey, J.,

More information

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory Finding Extra-Solar Earths with Kepler William Cochran McDonald Observatory Who is Bill Cochran? Senior Research Scien;st McDonald Observatory Originally interested in outer planet atmospheres Started

More information

Probing the Galactic Planetary Census

Probing the Galactic Planetary Census Probing the Galactic Planetary Census Greg Laughlin -- UCSC Astronomy Exoplanet News from the AAS meeting (New York Times) The finding was called exciting by Dr. Kenneth Franklin of the American Museum-Hayden

More information

II. Results from Transiting Planets. 1. Global Properties 2. The Rossiter-McClaughlin Effect

II. Results from Transiting Planets. 1. Global Properties 2. The Rossiter-McClaughlin Effect II. Results from Transiting Planets 1. Global Properties 2. The Rossiter-McClaughlin Effect Planet Radius Most transiting planets tend to be inflated. Approximately 68% of all transiting planets have radii

More information

Ruth Murray-Clay University of California, Santa Barbara

Ruth Murray-Clay University of California, Santa Barbara A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara Strange New Worlds. Slide credit: Scott Gaudi ~1500

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Planetary interiors: What they can(not) tell us about formation

Planetary interiors: What they can(not) tell us about formation Planetary interiors: What they can(not) tell us about formation Methods and constraints Jérémy Leconte Timeline Formation ( 1-10 Myr) Mass Radius Orbital Parameters Stellar Parameters... Evolution ( 1-10

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC Exploring the giant planet - brown dwarf connection with astrometry ESA Research Fellow at ESAC Who s Who, Paris - 2 July 215 IS MASS A GOOD DEMOGRAPHIC INDICATOR? 2MASSWJ127334 393254 first image of a

More information

Star-planet connection:

Star-planet connection: : The role of stellar metallicity Centro de Astrofísica da Universidade do Porto Instituto de Astrofísica e Ciências do Espaço 18 September 2014 Porto, Portugal 1 Planet formation and metallicity Giant

More information

ASTB01 Exoplanets Lab

ASTB01 Exoplanets Lab ASTB01 Exoplanets Lab Author: Anders Johansen Revision date: $Date: 2015/08/28 14:55:59 $ Planets orbiting stars other than the Sun are called exoplanets. Stellar light reflected off

More information

EXOPLANETS. Aurélien CRIDA

EXOPLANETS. Aurélien CRIDA EXOPLANETS Aurélien CRIDA EXOPLANETS Giordano Bruno said that the many stars are like our Sun, with planets like our Earth, inhabited as well (in de l'infinito universo e mondi (1574) ). He was burnt alive

More information

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley ASTR 200 : Lecture 6 Introduction to the Solar System 1 2004 Pearson Education Inc., publishing as Addison-Wesley Comparative Planetology Studying the similarities among and differences between the planets

More information

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). Sun motion due to: Jupiter:

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

Project RISARD. - the story so far. Marcin P. Gawroński (Toruń Centre for Astronomy)

Project RISARD. - the story so far. Marcin P. Gawroński (Toruń Centre for Astronomy) Project RISARD - the story so far credit : wiki Marcin P. Gawroński (Toruń Centre for Astronomy) in collaboration with K. Goźdzewski, K. Katarzyński, G. Rycyk (TCfA) Overview RISARD motivation and current

More information

Young Solar-like Systems

Young Solar-like Systems Young Solar-like Systems FIG.2. Panels(a),(b),and(c)show 2.9,1.3,and 0.87 mm ALMA continuum images of other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the (f) show

More information

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds 10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

More information

Extrasolar Planets and Chemical Abundance

Extrasolar Planets and Chemical Abundance Extrasolar Planets and Chemical Abundance Intermediate Graduate Physics Seminar Waqas Bhatti May 1, 2007 Abstract Over 200 extrasolar planets have been discovered since the first confirmed observation

More information

Planet Detection. AST 105 Intro Astronomy The Solar System

Planet Detection. AST 105 Intro Astronomy The Solar System Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

More information

Extra Solar Planetary Systems and Habitable Zones

Extra Solar Planetary Systems and Habitable Zones Lecture Overview Extra Solar Planetary Systems and Habitable Zones Our Galaxy has 200 Billion Stars, Our Sun has 8 planets. It seems like an awful waste if we are alone Exoplanets Karen J. Meech, Svetlana

More information

The Physics of Exoplanets

The Physics of Exoplanets The Physics of Exoplanets Heike Rauer Institut für Planetenforschung, DLR, Berlin-Adlershof, Zentrum für Astronomie und Astrophysik, TU Berlin Formation in protoplanetary disk, migration Loss of primary,

More information

Overview of the Solar System. Solar system contents one star, several planets, lots of debris.

Overview of the Solar System. Solar system contents one star, several planets, lots of debris. Overview of the Solar System Solar system contents one star, several planets, lots of debris. Most of it is the Sun! 99.8% of the mass of the Solar System resides in the Sun. A hot ball of mostly hydrogen

More information

Lab 5: Searching for Extra-Solar Planets

Lab 5: Searching for Extra-Solar Planets Lab 5: Searching for Extra-Solar Planets Until 1996, astronomers only knew about planets orbiting our sun. Though other planetary systems were suspected to exist, none had been found. Now, thirteen years

More information

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe? Other Planetary Systems (Chapter 13) Extrasolar Planets Is our solar system the only collection of planets in the universe? Based on Chapter 13 No subsequent chapters depend on the material in this lecture

More information

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute How Common Are Planets Around Other Stars? Transiting Exoplanets Kailash C. Sahu Space Tel. Sci. Institute Earth as viewed by Voyager Zodiacal cloud "Pale blue dot" Look again at that dot. That's here.

More information

Other planetary systems

Other planetary systems Exoplanets are faint! Other planetary systems Planets are seen only by reflected light at optical wavelengths At the distance of another star the faint light of a planet is lost in the glare of the star

More information

3.4 Transiting planets

3.4 Transiting planets 64 CHAPTER 3. TRANSITS OF PLANETS: MEAN DENSITIES 3.4 Transiting planets A transits of a planet in front of its parent star occurs if the line of sight is very close to the orbital plane. The transit probability

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information

Searching for extrasolar planets using microlensing

Searching for extrasolar planets using microlensing Searching for extrasolar planets using microlensing Dijana Dominis Prester 7.8.2007, Belgrade Extrasolar planets Planets outside of the Solar System (exoplanets) Various methods: mostly massive hot gaseous

More information

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk ascension.html

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk  ascension.html Astronomy 330 This class (Lecture 11): What is f p? Eric Gobst Suharsh Sivakumar Next Class: Life in the Solar System HW 2 Kira Bonk http://www.ufodigest.com/news/0308/ ascension.html Matthew Tenpas http://morphman.hubpages.com/hub/alien-

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

Exoplanets: the quest for Earth twins

Exoplanets: the quest for Earth twins 369, 572 581 doi:1.198/rsta.21.245 Exoplanets: the quest for Earth twins BY MICHEL MAYOR*, STEPHANE UDRY, FRANCESCO PEPE AND CHRISTOPHE LOVIS Observatoire de Genève, Université de Genève, Geneva, Switzerland

More information

Atmospheric Chemistry on Substellar Objects

Atmospheric Chemistry on Substellar Objects Atmospheric Chemistry on Substellar Objects Channon Visscher Lunar and Planetary Institute, USRA UHCL Spring Seminar Series 2010 Image Credit: NASA/JPL-Caltech/R. Hurt Outline introduction to substellar

More information

Extrasolar Planets. Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau

Extrasolar Planets. Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau Extrasolar Planets Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau Lecture Introduction to Solar System Physics Uni Göttingen, 8 June 2009 Outline Historical Overview Detection

More information

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009 Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets PHY 688, Lecture 24 Mar 23, 2009 Outline Review of previous lecture: atmospheric temperature structure of irradiated planets isothermal

More information

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller 1 Chapter Overview Distant Suns (11.1) Life cycle of stars and their habitability zones Extrasolar

More information

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th Moon Obs #1 Due! Moon visible: early morning through afternoon 6 more due June 13 th 15 total due June 25 th Final Report Due June 28th Our Solar System Objectives Overview of what is in our solar system

More information

Super-Earths as Failed Cores in Orbital Migration Traps

Super-Earths as Failed Cores in Orbital Migration Traps Super-Earths as Failed Cores in Orbital Migration Traps Yasuhiro Hasegawa (Jet Propulsion Laboratory, California Institute of Technology) Hasegawa 2016, ApJ, 832, 83 Copyright 2017. All rights reserved.

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 18 Planetary System Formation and Evolution February 25, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

Planetary system dynamics Part III Mathematics / Part III Astrophysics

Planetary system dynamics Part III Mathematics / Part III Astrophysics Planetary system dynamics Part III Mathematics / Part III Astrophysics Lecturer: Prof. Mark Wyatt (Dr. Amy Bonsor on 9,11 Oct) Schedule: Michaelmas 2017 Mon, Wed, Fri at 10am MR11, 24 lectures, start Fri

More information

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1. The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

More information

Outline. RV Planet Searches Improving Doppler Precision Population Synthesis Planet Formation Models Eta-Earth Survey Future Directions

Outline. RV Planet Searches Improving Doppler Precision Population Synthesis Planet Formation Models Eta-Earth Survey Future Directions The NASA-UC Eta-Earth Survey: A Systematic Search for Low-mass Planets From Keck Observatory - Andrew Howard - Townes Post-doctoral Fellow, UC Berkeley HD 7924b Collaborators Geoff Marcy Debra Fischer

More information

Foundations of Astrophysics

Foundations of Astrophysics Foundations of Astrophysics Barbara Ryden The Ohio State University Bradley M. Peterson The Ohio State University Preface xi 1 Early Astronomy 1 1.1 The Celestial Sphere 1 1.2 Coordinate Systems on a Sphere

More information

see disks around new stars in Orion nebula where planets are probably being formed 3

see disks around new stars in Orion nebula where planets are probably being formed 3 Planet Formation contracting cloud forms stars swirling disk of material around forming star (H, He, C, O, heavier elements, molecules, dust ) form planets New born star heats up material, blows away solar

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

More information

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley ASTR 200 : Lecture 6 Introduction to the Solar System 1 2004 Pearson Education Inc., publishing as Addison-Wesley ANNOUNCEMENTS Keep up with reading! Always posted on course web site. Reading material

More information

Transiting Hot Jupiters near the Galactic Center

Transiting Hot Jupiters near the Galactic Center National Aeronautics and Space Administration Transiting Hot Jupiters near the Galactic Center Kailash C. Sahu Taken from: Hubble 2006 Science Year in Review The full contents of this book include more

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Observational constraints from the Solar System and from Extrasolar Planets

Observational constraints from the Solar System and from Extrasolar Planets Lecture 1 Part I Observational constraints from the Solar System and from Extrasolar Planets Lecture Universität Heidelberg WS 11/12 Dr. Christoph Mordasini Partially based on script by Prof. W. Benz Mentor

More information

Kepler Planets back to the origin

Kepler Planets back to the origin Kepler Planets back to the origin Acknowledgements to the Kepler Team Yanqin Wu (Toronto) + Yoram Lithwick, James Owen, Ji-Wei Xie, Nikhil Mahajan, Bonan Pu, Ari Silburt Kepler planets: an Unexpected population

More information

Global models of planetary system formation. Richard Nelson Queen Mary, University of London

Global models of planetary system formation. Richard Nelson Queen Mary, University of London Global models of planetary system formation Richard Nelson Queen Mary, University of London Hot Jupiters Cold Jupiters Super-Earths/ Neptunes 2 Sumi et al (2016) Occurence rates 30-50% of FGK stars host

More information

Class 15 Formation of the Solar System

Class 15 Formation of the Solar System Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

More information

8. Solar System Origins

8. Solar System Origins 8. Solar System Origins Chemical composition of the galaxy The solar nebula Planetary accretion Extrasolar planets Our Galaxy s Chemical Composition es Big Bang produced hydrogen & helium Stellar processes

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 17 Planetary System Formation and Evolution February 22, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Dynamically Unstable Planetary Systems Emerging Out of Gas Disks

Dynamically Unstable Planetary Systems Emerging Out of Gas Disks EXTREME SOLAR SYSTEMS ASP Conference Series, Vol. 398, 2008 D. Fischer, F. A. Rasio, S. E. Thorsett, and A. Wolszczan Dynamically Unstable Planetary Systems Emerging Out of Gas Disks Soko Matsumura, Edward

More information