Ruth Murray-Clay University of California, Santa Barbara

Size: px
Start display at page:

Download "Ruth Murray-Clay University of California, Santa Barbara"

Transcription

1 A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara

2 Strange New Worlds. Slide credit: Scott Gaudi ~1500 Confirmed Planets ~3300 Planet Candidates

3 Slide credit: Scott Gaudi (Ida & Lin)!

4 Many important physical processes have highly uncertain parameters. Population comparisons are more robust than absolute comparisons to synthesis models, since there are likely fewer parameters controlling the differences across planetary systems than there are theoretical knobs. Ex: Stellar mass, total solid mass in the disk (metallicity), stellar X-ray flux available to ionize the disk (activity)

5 ~ AU ice giants ~ 1 AU rocky planets ~ 5-10 AU gas giants

6 Solids grow through collisions in the disk

7 Growth timescale is set by: A: cross-section for collisions v: relative velocities of colliding bodies n: density of bodies available to accrete A v t Volume = Avt number density = n Sun v H ~ v torb Fast growth: high density, large cross-section, short orbital period # collisions in time t ~ n Avt ~ (nh) A (t/torb)

8 Pre-exoplanets: ~ AU ice giants More Material ~ 1 AU rocky planets Longer Orbital Time Less Material ~ 5-10 AU gas giants

9 Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

10 Major uncertainties Initial conditions: the MMSN isn t good enough anymore accretion physics (non-ideal MHD) Is early disk structure (set by fast and episodic accretion, varying stellar luminosity, etc.) preserved and imprinted on the planet population? Outer disk scale: cloud infall, early binarity, dynamical interactions in a cluster? Do stellar interactions perturb the gas disk? Can the disk approach gravitational fragmentation? Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

11 Henning & Semenov 2013

12 Major uncertainties Initial conditions: the MMSN isn t good enough anymore accretion physics (non-ideal MHD) Is early disk structure (set by fast and episodic accretion, varying stellar luminosity, etc.) preserved and imprinted on the planet population? Outer disk scale: cloud infall, early binarity, dynamical interactions in a cluster? Do stellar interactions perturb the gas disk? Can the disk approach gravitational fragmentation? Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

13 Xuening Bai

14 Major uncertainties Initial conditions: the MMSN isn t good enough anymore accretion physics (non-ideal MHD) Is early disk structure (set by fast and episodic accretion, varying stellar luminosity, etc.) preserved and imprinted on the planet population? Outer disk scale: cloud infall or do early binarity & dynamical interactions in a cluster matter? Do stellar interactions perturb the gas disk? Can the disk approach gravitational fragmentation? Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

15 ALMA data will help, but not necessarily through direct measurements of the surface density distribution HL Tau ALMA Partnership 2015 planets? non-ideal MHD zonal flows? accumulation of dust in pressure maxima?

16 Major uncertainties Initial conditions: the MMSN isn t good enough anymore accretion physics (non-ideal MHD) Is early disk structure (set by fast and episodic accretion, varying stellar luminosity, etc.) preserved and imprinted on the planet population? Outer disk scale: cloud infall or do early binarity & dynamical interactions in a cluster matter? Do stellar interactions perturb the gas disk? Can the disk approach gravitational fragmentation? Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

17 Major uncertainties Initial conditions: the MMSN isn t good enough anymore accretion physics (non-ideal MHD) Is early disk structure (set by fast and episodic accretion, varying stellar luminosity, etc.) preserved and imprinted on the planet population? Outer disk scale: cloud infall or do early binarity & dynamical interactions in a cluster matter? Do stellar interactions perturb the gas disk? Can the disk approach gravitational fragmentation? Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

18 HR 8799 Neptune s orbital distance big planets or small stars? Marois et al. 2010

19 Gravitational instability Collapse must occur at the end of infall or the fragment will grow into a binary star Kratter, Murray-Clay, & Youdin (2010)

20 Gravitational instability Collapse must occur at the end of infall or the fragment will grow into a binary star Kratter, Murray-Clay, & Youdin (2010)

21 Gravitational instability Collapse must occur at the end of infall or the fragment will grow into a binary star Kratter, Murray-Clay, & Youdin (2010)

22 Test case HR 8799: Brown Dwarfs or Planets? A population comparison M p /M * Planetary companions Kratter, Murray-Clay, & Youdin, ApJ (2010) Data: Zuckerman & Song 2009; exoplanet.eu r p (AU) Brown dwarf companions HR 8799 Jupiter Saturn ~stars ~brown dwarfs ~planets Larger than most protoplanetary disks

23 Major uncertainties Planetesimal growth: meter size barrier---overcome from the top down or the bottom up? When do planetesimals grow and how many grow large? Implications for drift, solid and compositional redistribution, interpretation of dust observations. Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

24 Gas Alters the Orbits of Planetesimals planetesimal wants to orbit The resulting star at v Kep drag acceleration F D m is small large radial pressure gradient but gas orbits more slowly v orb <v Kep v 2 orb r = GM r dp dr

25 Planetesimals can drift well past the nominal snow line before desorbing Piso, Oberg, Birnstiel, & Murray-Clay (submitted)

26 Major uncertainties Why do some planets become giants while others stay small? Timescales? Ice line enhancements? Inability to accrete disk gas? Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

27 Capture by gas drag allows fast enough growth to nucleate a massive atmosphere core Sun increased cross-section planetesimal Murray-Clay et al., in prep Ormel & Klahr 2010, Perets & Murray-Clay 2011, Lambrechts & Johansen 2012

28 Xu, Bai, & Murray-Clay in prep

29 Michael Rosenthal - Gas Assisted Growth of Planetesimals Gas drag dramatically changes the timescale predicted by typical core accretion models (e.g. Lambrechts & Johansen, 2012) We use an order of magnitude model to calculate these timescales, as well as to take into account additional effects, such as turbulence.

30

31 Major uncertainties Why do some planets become giants while others stay small? Timescales? Ice line enhancements? Inability to accrete disk gas? Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

32 If pebble accretion allows fast core growth, then why aren t Uranus and Neptune gas giants?

33 Renata Frelikh Gas accretion onset: Late enough to avoid runaway, but before disk fully dissipates Both planets have a short timeframe to finish core growth and accrete ~10% by mass atmospheres Full gas disk Gas disk depleted to ~0.025 of original value Gas disk fully dissipated (~3 Myr timescale for gas to fully dissipate) Uranus and Neptune Formation: Fine Tuned?

34 Major uncertainties Why do some planets become giants while others stay small? Timescales? Ice line enhancements? Inability to accrete disk gas? I will come back to this question. Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

35 Major uncertainties Dynamical redistribution: Among easily observable giants, it is clearly important More generally, it is probably important: Type II (gap opening) disk migration--understood if disk interactions are well modeled with an effective viscosity Type I: something is wrong! planet-planet interactions (scattering, secular chaos, Kozai) planet-stellar companion Kozai Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

36 P M V E M J S U N Wright et al. 2009

37 Major uncertainties Dynamical redistribution: Among easily observable giants, it is clearly important More generally, it is probably important: Type II (gap opening) disk migration--understood if disk interactions are well modeled with an effective viscosity Type I: something is wrong! planet-planet interactions (scattering, secular chaos, Kozai) planet-stellar companion Kozai Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

38 Another population comparison: Metal-rich stars host more hot Jupiters and highly eccentric planets: A signature of planet-planet interactions hot Jupiters highly eccentric planets ~ in situ formation? Dawson & Murray-Clay 2013

39 Solar system? Kuiper belt Neptune Asteroid belt

40 5:2 resonance population is large UCSB undergraduate Mathew Yu is characterising the population that could be transiently stuck from the population currently scattered by Neptune Volk, Murray-Clay, Gladman, OSSOS team, submitted

41 Major uncertainties Atmospheric bulk compositions: bulk solid composition --> outgassing bulk accreted gas composition atmospheric escape chemistry & geophysics we don t know what life will do Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

42 Density [g/cc] Neutral Fraction Temperature [K] Line-of-sight Velocity [cm/s] 0.00 s 3.00e4 s 6.00e4 s 1.85e5 s 1.39e6 s Tripathi, Kratter, Murray-Clay, and Krumholz, 2015

43

44 Major uncertainties Atmospheric bulk compositions: bulk solid composition --> outgassing bulk accreted gas composition atmospheric escape chemistry & geophysics we don t know what life will do Infall and disk accretion sets the initial conditions for growth of planetesimals and planets which then migrate as they interact with residual gas and planetesimals and then evolve dynamically over long timescales all the while developing atmospheres that depend on this history.

45 A timely question: Where do the Kepler super-earths come from? What determines whether a core accretes a giant atmosphere?

46 gas giant Disk Mass rock ice Solar System lower planet mass relative to disk mass last gasp gas migration drift Murray-Clay & Rogers in prep Distance from Star planetesimal-driven migration

47 Where are the solar system analogs? Guess: orbiting low metallicity stars

Origins of Gas Giant Planets

Origins of Gas Giant Planets Origins of Gas Giant Planets Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Image Credit: NASA Graduate Students Piso Tripathi Dawson Undergraduates Wolff Lau Alpert Mukherjee Wolansky Jackson

More information

Forming habitable planets on the computer

Forming habitable planets on the computer Forming habitable planets on the computer Anders Johansen Lund University, Department of Astronomy and Theoretical Physics 1/9 Two protoplanetary discs (Andrews et al., 2016) (ALMA Partnership, 2015) Two

More information

From pebbles to planetesimals and beyond

From pebbles to planetesimals and beyond From pebbles to planetesimals... and beyond (Lund University) Origins of stars and their planetary systems Hamilton, June 2012 1 / 16 Overview of topics Size and time Dust µ m Pebbles cm Planetesimals

More information

Core Accretion at Wide Separations: The Critical Role of Gas

Core Accretion at Wide Separations: The Critical Role of Gas Core Accretion at Wide Separations: The Critical Role of Gas Marois et al. 2008 Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Kaitlin Kratter, Hagai Perets, Andrew Youdin Wide separation

More information

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University Planetary System Stability and Evolution N. Jeremy Kasdin Princeton University (Lots of help from Eric Ford, Florida and Robert Vanderbei, Princeton) KISS Exoplanet Workshop 10 November 2009 Motivation

More information

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is what we call planets around OTHER stars! PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is only as of June 2012. We ve found at least double

More information

Evolution of protoplanetary discs

Evolution of protoplanetary discs Evolution of protoplanetary discs and why it is important for planet formation Bertram Bitsch Lund Observatory April 2015 Bertram Bitsch (Lund) Evolution of protoplanetary discs April 2015 1 / 41 Observations

More information

From pebbles to planets

From pebbles to planets . (Lund University) with Michiel Lambrechts, Katrin Ros, Andrew Youdin, Yoram Lithwick From Atoms to Pebbles Herschel s View of Star and Planet Formation Grenoble, March 2012 1 / 11 Overview of topics

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Exoplanets: a dynamic field

Exoplanets: a dynamic field Exoplanets: a dynamic field Alexander James Mustill Amy Bonsor, Melvyn B. Davies, Boris Gänsicke, Anders Johansen, Dimitri Veras, Eva Villaver The (transiting) exoplanet population Solar System Hot Jupiters:

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Current Properties of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from North pole) Rotation

More information

Kozai-Lidov oscillations

Kozai-Lidov oscillations Kozai-Lidov oscillations Kozai (1962 - asteroids); Lidov (1962 - artificial satellites) arise most simply in restricted three-body problem (two massive bodies on a Kepler orbit + a test particle) e.g.,

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 18 Planetary System Formation and Evolution February 25, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow EXOPLANET LECTURE PLANET FORMATION Dr. Judit Szulagyi - ETH Fellow (judits@ethz.ch) I. YOUNG STELLAR OBJECTS AND THEIR DISKS (YSOs) Star Formation Young stars born in 10 4 10 6 M Sun Giant Molecular Clouds.

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 17 Planetary System Formation and Evolution February 22, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

How do we model each process of planet formation? How do results depend on the model parameters?

How do we model each process of planet formation? How do results depend on the model parameters? How do we model each process of planet formation? How do results depend on the model parameters? Planetary Population Synthesis: The Predictive Power of Planet Formation Theory, Ringberg, Nov 29, 2010

More information

How migrating geese and falling pens inspire planet formation

How migrating geese and falling pens inspire planet formation How migrating geese and falling pens inspire planet Common Seminar, Department of Astronomy and Theoretical Physics Lund University, November 2010 About me Biträdande universitetslektor (associate senior

More information

Minimum Mass Solar Nebulae, Nice model, & Planetary Migration.

Minimum Mass Solar Nebulae, Nice model, & Planetary Migration. Minimum Mass Solar Nebulae, Nice model, & Planetary Migration. Aurélien CRIDA 1) MMSN : definition, recipe Minimum Mass Solar Nebula Little reminder : It is not a nebula, but a protoplanetary disc. Solar

More information

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Planet Formation: theory and observations Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Outline Stages of Planet Formation Solar System Formation Cores to disks (c2d) Observational

More information

Dynamic Exoplanets. Alexander James Mustill

Dynamic Exoplanets. Alexander James Mustill Dynamic Exoplanets Alexander James Mustill Exoplanets: not (all) like the Solar System Exoplanets: not (all) like the Solar System Solar System Lissauer et al 14 Key questions to bear in mind What is role

More information

arxiv: v1 [astro-ph.ep] 20 Apr 2014

arxiv: v1 [astro-ph.ep] 20 Apr 2014 The Formation of Uranus & Neptune: Challenges and Implications For Intermediate-Mass Exoplanets Ravit Helled 1 and Peter Bodenheimer 2 1 Department of Geophysical, Atmospheric, and Planetary Sciences,

More information

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

More information

Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI)

Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI) Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI) Questions How are terrestrial planets put together? Where do they get their material? Questions How are terrestrial planets put together?

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from N.P.) Rotation Axes to orbit plane (Sun & most planets;

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

Giant Planet Formation

Giant Planet Formation Giant Planet Formation Overview Observations: Meteorites to Extrasolar Planets Our Solar System Dynamics Meteorites Geology Planetary composition & structure Other Stars Circumstellar disks Extrasolar

More information

Formation of Planets around M & L dwarfs

Formation of Planets around M & L dwarfs Formation of Planets around & L dwarfs D.N.C. Lin University of California with S. Ida, H. Li, S.L.Li, E. Thommes, I. Dobbs-Dixon, S.T. Lee,P. Garaud,. Nagasawa AAS Washington Jan 11th, 006 17 slides Disk

More information

Lecture 16. How did it happen? How long did it take? Where did it occur? Was there more than 1 process?

Lecture 16. How did it happen? How long did it take? Where did it occur? Was there more than 1 process? Planet formation in the Solar System Lecture 16 How did it happen? How long did it take? Where did it occur? Was there more than 1 process? Planet formation How do planets form?? By what mechanism? Planet

More information

Heavy meteal rules. Vardan Adibekyan Institute of Astrophysics and Space Sciences. The star-planet connection. 1 June 2015 NAOJ, Tokyo

Heavy meteal rules. Vardan Adibekyan Institute of Astrophysics and Space Sciences. The star-planet connection. 1 June 2015 NAOJ, Tokyo The star-planet connection Institute of Astrophysics and Space Sciences 1 June 2015 NAOJ, Tokyo 1 Introduction to exoplanets Diversity of exoplanets Planet formation theories 2 Planet formation and metallicity

More information

The dynamical evolution of the asteroid belt in the pebble accretion scenario

The dynamical evolution of the asteroid belt in the pebble accretion scenario The dynamical evolution of the asteroid belt in the pebble accretion scenario S. Pirani 1, A. Johansen 1, B. Bitsch 1, A. J. Mustill 1 and D. Turrini 2,3 1 Lund Observatory, Department of Astronomy and

More information

Accretion of Planets. Bill Hartmann. Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes

Accretion of Planets. Bill Hartmann. Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes Accretion of Planets Bill Hartmann Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes Overview Start with planetesimals: km-size bodies, interactions are gravitational (formation

More information

Nature and Origin of Planetary Systems f p "

Nature and Origin of Planetary Systems f p Nature and Origin of Planetary Systems f p " Our Solar System as Example" We know far more about our solar system than about any other" It does have (at least) one planet suitable for life" Start with

More information

Class 15 Formation of the Solar System

Class 15 Formation of the Solar System Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

More information

Orbital Structure and Dynamical Evolution of. TNOs. Patryk Sofia Lykawka ( )

Orbital Structure and Dynamical Evolution of. TNOs. Patryk Sofia Lykawka ( ) Orbital Structure and Dynamical Evolution of TNOs Patryk Sofia Lykawka ( ) patryksan@gmail.com Outline I: Introduction and motivation II: III: IV: Dynamical stability and planet migration Stable TNO populations

More information

Planetary system dynamics Part III Mathematics / Part III Astrophysics

Planetary system dynamics Part III Mathematics / Part III Astrophysics Planetary system dynamics Part III Mathematics / Part III Astrophysics Lecturer: Prof. Mark Wyatt (Dr. Amy Bonsor on 9,11 Oct) Schedule: Michaelmas 2017 Mon, Wed, Fri at 10am MR11, 24 lectures, start Fri

More information

F. Marzari, Dept. Physics, Padova Univ. Planetary migration

F. Marzari, Dept. Physics, Padova Univ. Planetary migration F. Marzari, Dept. Physics, Padova Univ. Planetary migration Standard model of planet formation based on Solar system exploration Small semimajor axes Large eccentricities The standard model Protostar +Disk

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

The Long-Term Dynamical Evolution of Planetary Systems

The Long-Term Dynamical Evolution of Planetary Systems The Long-Term Dynamical Evolution of Planetary Systems Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University Co-authors: Fred Adams, Philip Armitage, John Chambers, Eric Ford,

More information

Global models of planetary system formation. Richard Nelson Queen Mary, University of London

Global models of planetary system formation. Richard Nelson Queen Mary, University of London Global models of planetary system formation Richard Nelson Queen Mary, University of London Hot Jupiters Cold Jupiters Super-Earths/ Neptunes 2 Sumi et al (2016) Occurence rates 30-50% of FGK stars host

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration?

planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration? 2 planet migration driven by a gas disk: type I & type II planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration? 3 Type I migration: follow

More information

THE ORIGIN AND EVOLUTION OF FREE-FLOATING PLANETS IN STAR CLUSTERS

THE ORIGIN AND EVOLUTION OF FREE-FLOATING PLANETS IN STAR CLUSTERS THE ORIGIN AND EVOLUTION OF FREE-FLOATING PLANETS IN STAR CLUSTERS M.B.N. (Thijs) Kouwenhoven Kavli Institute for Astronomy and Astrophysics, Peking University Hao Wei (MPIA), Li Yun (KIAA), Wang Long

More information

SIMULTANEOUS FORMATION OF GIANT PLANETS

SIMULTANEOUS FORMATION OF GIANT PLANETS SIMULTANEOUS FORMATION OF GIANT PLANETS ANDREA FORTIER O. GUILERA, O.G. BENVENUTO, A. BRUNINI RINGBERG, 30 NOVEMBER 2010 PHYSIKALISCHES INSTITUT, UNIVERSITY OF BERN, SWITZERLAND FCAGLP, UNIVERSIDAD DE

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge How inner planetary systems relate to inner and outer debris belts Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner

More information

Observational Cosmology Journal Club

Observational Cosmology Journal Club Observational Cosmology Journal Club 07/09/2018 Shijie Wang 1. Heller, R. (2018). Formation of hot Jupiters through disk migration and evolving stellar tides. Retrieved from arxiv.1806.06601 2. Rey, J.,

More information

C. Mordasini & G. Bryden. Sagan Summer School 2015

C. Mordasini & G. Bryden. Sagan Summer School 2015 Hands-on Session I C. Mordasini & G. Bryden Sagan Summer School 2015 Population synthesis Monday Tuesday Wednesday Thursday Thursday GlobalPFE model Minimum physical processes to consider GlobalPFE: Toy

More information

Mars Growth Stunted by an Early Orbital Instability between the Giant Planets

Mars Growth Stunted by an Early Orbital Instability between the Giant Planets Mars Growth Stunted by an Early Orbital Instability between the Giant Planets M.S. Clement University of Oklahoma Advisor: Professor N.A. Kaib Collaborators: S.N. Raymond, K.J. Walsh 19 September 2017

More information

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Conclusions Dr. H. Klahr & Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Programm: 1) Weiterführende Vorlesungen 2) Fragebogen 3) Eigene Forschung 4)

More information

Solar System evolution and the diversity of planetary systems

Solar System evolution and the diversity of planetary systems Solar System evolution and the diversity of planetary systems Alessandro Morbidelli (OCA, Nice) Work in collaboration with: R. Brasser, A. Crida, R. Gomes, H. Levison, F. Masset, D. O brien, S. Raymond,

More information

Data from: The Extrasolar Planet Encyclopaedia.

Data from: The Extrasolar Planet Encyclopaedia. Data from: The Extrasolar Planet Encyclopaedia http://exoplanet.eu/ 2009->10 Status of Exoplanet Searches Direct Detection: 5->9 planets detected Sensitive to large planets in large orbits around faint

More information

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Conclusions PD. Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Programm: 1) Weiterführende Vorlesungen 2) Fragebogen 3) Eigene Forschung 4) Bachelor/Masterarbeiten

More information

Kuiper Belt Dynamics and Interactions

Kuiper Belt Dynamics and Interactions Kuiper Belt Dynamics and Interactions Minor Planet Center Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Kuiper belt µm ejected by radiation pressure larger grains migrate in via PR drag

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

Internal structure and atmospheres of planets

Internal structure and atmospheres of planets Internal structure and atmospheres of planets SERGEI POPOV 1312.3323 Sizes and masses Radius vs. mass Results of modeling. Old (relaxed) planets. Colors correspond to different fractions of light elements.

More information

9. Formation of the Solar System

9. Formation of the Solar System 9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow

More information

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher -Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher Formation Overview All explanations as to how the solar system was formed are only

More information

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m. If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between

More information

9.2 - Our Solar System

9.2 - Our Solar System 9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit

More information

Architecture and demographics of planetary systems

Architecture and demographics of planetary systems Architecture and demographics of planetary systems Struve (1952) The demography of the planets that we detect is strongly affected by detection methods psychology of the observer Understanding planet demography

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

More information

Observational constraints from the Solar System and from Extrasolar Planets

Observational constraints from the Solar System and from Extrasolar Planets Lecture 1 Part II Observational constraints from the Solar System and from Extrasolar Planets Lecture Universität Heidelberg WS 11/12 Dr. Christoph Mordasini mordasini@mpia.de Mentor Prof. T. Henning Lecture

More information

Overview of Planetesimal Accretion

Overview of Planetesimal Accretion Overview of Planetesimal Accretion German-Japanese Workshop Jena, 01.10.2010 Chris W. Ormel Max-Planck-Institute for Astronomy, Heidelberg, Germany with Kees Dullemond, Hubert Klahr, Marco Spaans MPIA

More information

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1. The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Pluto, the Kuiper Belt, and Trans- Neptunian Objects

Pluto, the Kuiper Belt, and Trans- Neptunian Objects Pluto, the Kuiper Belt, and Trans- Neptunian Objects 1 What about Pluto? Pluto used to be considered a planet Pluto is one of a large number of Trans-Neptunian Objects, not even the largest one! Discovery

More information

Comet Science Goals II

Comet Science Goals II Comet Science Goals II {questions for goals} Don Brownlee Did the events postulated by the Nice Hypothesis really happen? Were there wide-spread solar system wide impact events that were coeval with the

More information

Comparative Planetology I: Our Solar System

Comparative Planetology I: Our Solar System Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers

More information

The Formation of the Solar System

The Formation of the Solar System The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting

More information

Astronomy 1140 Quiz 4 Review

Astronomy 1140 Quiz 4 Review Astronomy 1140 Quiz 4 Review Anil Pradhan December 6, 2016 I The Outer Planets in General 1. How do the sizes, masses and densities of the outer planets compare with the inner planets? The outer planets

More information

Recent advances in understanding planet formation

Recent advances in understanding planet formation Credit: ALMA (ESO/NAOJ/NRAO) Recent advances in understanding planet formation Misato Fukagawa Chile observatory (Mitaka), NAOJ Contents of this talk 1. Introduction: Exoplanets, what we want to know from

More information

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge Detectability of extrasolar debris Mark Wyatt Institute of Astronomy, University of Cambridge Why image extrasolar debris? Emission spectrum shows dust thermal emission, used to infer radius of parent

More information

Initial Conditions: The temperature varies with distance from the protosun.

Initial Conditions: The temperature varies with distance from the protosun. Initial Conditions: The temperature varies with distance from the protosun. In the outer disk it is cold enough for ice to condense onto dust to form large icy grains. In the inner solar system ice can

More information

see disks around new stars in Orion nebula where planets are probably being formed 3

see disks around new stars in Orion nebula where planets are probably being formed 3 Planet Formation contracting cloud forms stars swirling disk of material around forming star (H, He, C, O, heavier elements, molecules, dust ) form planets New born star heats up material, blows away solar

More information

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th Moon Obs #1 Due! Moon visible: early morning through afternoon 6 more due June 13 th 15 total due June 25 th Final Report Due June 28th Our Solar System Objectives Overview of what is in our solar system

More information

Planet formation and (orbital) Evolution

Planet formation and (orbital) Evolution W. Kley Planet formation and (orbital) Evolution Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen 31. July, 2013 W. Kley Plato 2.0, ESTEC: 31.

More information

The Collisional Evolution of Small Bodies in the Solar System

The Collisional Evolution of Small Bodies in the Solar System The Collisional Evolution of Small Bodies in the Solar System David P. O'Brien* Planetary Science Institute Tucson, AZ Invited Review CD '07 Alicante, Spain * with Don Davis, Scott Kenyon and Benjamin

More information

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years U238>Pb206 Halflife: 4.5 billion years Oldest earth rocks 3.96 billion years Meteors and Moon rocks 4.6 billion years This is the time they solidified The solar system is older than this. Radioactive Dating

More information

Star and Planet Formation: New Insights from Spatially Resolved Observations

Star and Planet Formation: New Insights from Spatially Resolved Observations Star and Planet Formation: New Insights from Spatially Resolved Observations Laura M. Pérez Universidad de Chile Division B, Comision B4 Radio Astronomy August 24, 2018 Setting the stage: Our current view

More information

Water in Exoplanets: Can we learn from our Solar System? Fred Ciesla Department of the Geophysical Sciences The University of Chicago

Water in Exoplanets: Can we learn from our Solar System? Fred Ciesla Department of the Geophysical Sciences The University of Chicago Water in Exoplanets: Can we learn from our Solar System? Fred Ciesla Department of the Geophysical Sciences The University of Chicago Gerard Kuiper What about Life? Water = Habitability Mystery of Earth

More information

Our Planetary System & the Formation of the Solar System

Our Planetary System & the Formation of the Solar System Our Planetary System & the Formation of the Solar System Chapters 7 & 8 Comparative Planetology We learn about the planets by comparing them and assessing their similarities and differences Similarities

More information

The Connection between Planets and the Stellar Chemical Composition

The Connection between Planets and the Stellar Chemical Composition The Connection between Planets and the Stellar Chemical Composition Lorenzo Spina Universidade de São Paulo, IAG, Departamento de Astronomia - Brazil Credits: NASA Jupiter Saturn Neptune Uranus Venus Earth

More information

Who was here? How can you tell? This is called indirect evidence!

Who was here? How can you tell? This is called indirect evidence! 1 Who was here? How can you tell? This is called indirect evidence! 2 How does a planetary system form? The one we can study in the most detail is our solar system. If we want to know whether the solar

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

Kepler Planets back to the origin

Kepler Planets back to the origin Kepler Planets back to the origin Acknowledgements to the Kepler Team Yanqin Wu (Toronto) + Yoram Lithwick, James Owen, Ji-Wei Xie, Nikhil Mahajan, Bonan Pu, Ari Silburt Kepler planets: an Unexpected population

More information

ASTEROIDS, COMETS, AND TRANS-NEPTUNIAN OBJECTS:

ASTEROIDS, COMETS, AND TRANS-NEPTUNIAN OBJECTS: ASTEROIDS, COMETS, AND TRANS-NEPTUNIAN OBJECTS: SMALL BODIES IN THE SOLAR SYSTEM Rosemary E. Pike ASIAA TIARA Summer School 2018 On the Origins of the Solar System SMALL BODIES IN THE SOLAR SYSTEM Formation

More information

Star & Planet Formation 2017 Lecture 10: Particle growth I From dust to planetesimals. Review paper: Blum & Wurm 2008 ARAA

Star & Planet Formation 2017 Lecture 10: Particle growth I From dust to planetesimals. Review paper: Blum & Wurm 2008 ARAA Star & Planet Formation 2017 Lecture 10: Particle growth I From dust to planetesimals Review paper: Blum & Wurm 2008 ARAA Lecture 9: Particle motions in a gaseous disk 1. Planet formation I. From dust

More information

Making a Solar System

Making a Solar System Making a Solar System Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit

More information

Modeling interactions between a debris disc and planet: which initial conditions?

Modeling interactions between a debris disc and planet: which initial conditions? Modeling interactions between a debris disc and planet: which initial conditions? Elodie Thilliez @ET_astro Supervisors : Prof Sarah Maddison (Swinburne) Prof Jarrod Hurley (Swinburne) Crédit : NASA/JPL-Caltech

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information

Super-Earths as Failed Cores in Orbital Migration Traps

Super-Earths as Failed Cores in Orbital Migration Traps Super-Earths as Failed Cores in Orbital Migration Traps Yasuhiro Hasegawa (Jet Propulsion Laboratory, California Institute of Technology) Hasegawa 2016, ApJ, 832, 83 Copyright 2017. All rights reserved.

More information

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune Uranus & Neptune: The Ice Giants Discovery of Uranus Discovery of Uranus & Neptune Properties Density & Composition Internal Heat Source Magnetic fields Rings Uranus Rotational Axis by William Herschel

More information

DIRECT PLANET DETECTION

DIRECT PLANET DETECTION DIRECT PLANET DETECTION James R. Graham (UCB) Bruce Macintosh (LLNL) & Mitchell Troy (JPL) 1 High Contrast Imaging? Broad new frontier enabled by large telescopes & AO Exoplanet detection Direct methods

More information

A Framework for Atmospheric Escape from Low-Mass Planets. Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics

A Framework for Atmospheric Escape from Low-Mass Planets. Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics A Framework for Atmospheric Escape from Low-Mass Planets Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics 1 hot Jupiter Mercury 0.39 AU Earth 1 AU ~0.05 AU ~ 10 R * Star Sun: LUV ~ 10-6 Lbol

More information