1. Which of the following best represents the speed of a banana slug?

Size: px
Start display at page:

Download "1. Which of the following best represents the speed of a banana slug?"

Transcription

1 Scientific Notation 1. Which of the following best represents the speed of a banana slug? A kilometers per second B meters per second C meters per second D kilometers per second 2. The equatorial radius of Mars is 3,394 km. Which of the following would be a reasonable estimate for the equatorial radius of Mars? A km B km C km D km 3. The display on a calculator screen is shown below EE9 What number does the calculator display represent? A. 3,375,080,000 B C. 337,508,000,000,000 D Visible blue light has a wavelength of about centimeters. What is this measurement written in scientific notation? A centimeters B centimeters C centimeters D centimeters 5. The display on a calculator screen is shown below.

2 EE-6 What number does the calculator display represent? A B. 375,187.2 C D. 3,751, Which shows the expression below simplified? A B C D ( ) 8. The Earth is approximately km from Venus at its closest approach. The Earth is also about km from Proxima Centauri, a star. Which of the following is true? A. The distance from Earth to Proxima Centauri is approximately two trillion times the distance from Earth to Venus. B. The distance from Earth to Proxima Centauri is approximately two billion times the distance from Earth to Venus. C. The distance from Earth to Proxima Centauri is approximately two thousand times the distance from Earth to Venus. D. The distance from Earth to Proxima Centauri is approximately two million times the distance from Earth to Venus. 9. The length of an object is measured as 24.7 centimeters. What is this measurement in scientific notation? A centimeters B centimeters C centimeters

3 D. 2, centimeters 10. Which shows the expression below in simplified form? A B C D ( ) ( ) Answers 1. C 2. D 3. A 4. B 5. A 6. B 8. D 9. B 10. A Explanations 1. A banana slug moves very slowly, so its speed is best represented by a very small number. Therefore, meters per second best represents the speed of a banana slug. 2. First, round the radius of Mars to the thousands place. Then, write each option in standard notation. 3,394 km 3,000 km km = km km = km km = 3,000 km km = 30,000 km

4 Therefore, km is the best estimate for the equatorial radius of Mars. 3. The calculator display represents a number in scientific notation where 10 is raised to the power given after the EE symbol EE9 = Convert the number to standard notation by moving the decimal point 9 places to the right = 3,375,080,000 Therefore, the calculator display represents the number 3,375,080, A number is written in scientific notation when it is expressed in the form shown below, where a is greater than or equal to 1 and less than 10, and n is an integer. a 10 n To write as a number greater than or equal to 1 and less than 10, move the decimal point 5 places to the right, and then multiply by 10-5 to offset moving the decimal point centimeters = centimeters 5. The calculator display represents a number in scientific notation where 10 is raised to the power given after the EE symbol EE-6 = Convert the number to standard notation by moving the decimal point 6 places to the left = Therefore, the calculator display represents the number First, convert to scientific notation ( ) = ( ) + ( ) Next, convert ( ) so the exponent is the same as the exponent in the second number. Then, complete the addition. Finally, convert to scientific notation. ( ) + ( ) = ( ) + ( ) ( ) + ( ) =

5 = Convert all of the values in scientific notation to standard notation. To help visualize this, think of it in terms of meters instead of millimeters. Remember, 1 meter is equal to 1,000 millimeters. The only reasonable option is 5.6 meters per second, or slow.. The other options are too 8. Compare the distance from Earth to Proxima Centauri to the distance from Earth to Venus by dividing the distance to Proxima Centauri by the distance to Venus. Since is equal to 2,000,000, the distance from Earth to Proxima Centauri is approximately two million times the distance from Earth to Venus. 9. A number is written in scientific notation when it is expressed in the form shown below, where a is greater than or equal to 1 and less than 10, and n is an integer. a 10 n To write 24.7 centimeters as a number greater than or equal to 1 and less than 10, move the decimal point 1 place to the left, and then multiply by 10 1 to offset moving the decimal point centimeters = centimeters 10. First, group the numbers multiplied by powers of 10 together, and then group the powers of 10 together. ( ) ( ) = (6 4) ( ) Then, multiply the numbers in the first set of parentheses and add the exponents of 10. Finally, convert to scientific notation. (6 4) ( ) = (-2) =

6 = Therefore, the simplified expression is

8.4 Scientific Notation

8.4 Scientific Notation 8.4. Scientific Notation www.ck12.org 8.4 Scientific Notation Learning Objectives Write numbers in scientific notation. Evaluate expressions in scientific notation. Evaluate expressions in scientific notation

More information

Fundamentals. Copyright Cengage Learning. All rights reserved.

Fundamentals. Copyright Cengage Learning. All rights reserved. Fundamentals Copyright Cengage Learning. All rights reserved. 1.2 Exponents and Radicals Copyright Cengage Learning. All rights reserved. Objectives Integer Exponents Rules for Working with Exponents Scientific

More information

Ready To Go On? Skills Intervention 7-1 Integer Exponents

Ready To Go On? Skills Intervention 7-1 Integer Exponents 7A Evaluating Expressions with Zero and Negative Exponents Zero Exponent: Any nonzero number raised to the zero power is. 4 0 Ready To Go On? Skills Intervention 7-1 Integer Exponents Negative Exponent:

More information

Large & Small Numbers

Large & Small Numbers Large & Small Numbers Scientists frequently work with very large or small numbers. Astronomers work with galaxies that contain billions of stars at great distances from us. On the other hand, biologists

More information

Exponents, Polynomials, and Polynomial Functions. Copyright 2014, 2010, 2006 Pearson Education, Inc. Section 5.1, 1

Exponents, Polynomials, and Polynomial Functions. Copyright 2014, 2010, 2006 Pearson Education, Inc. Section 5.1, 1 5 Exponents, Polynomials, and Polynomial Functions Copyright 2014, 2010, 2006 Pearson Education, Inc. Section 5.1, 1 5.1 Integer Exponents R.1 Fractions and Scientific Notation Objectives 1. Use the product

More information

Objectives. Vocabulary. 1-5 Properties of Exponents. 1.5: Properties of Exponents. Simplify expressions involving exponents. Use scientific notation.

Objectives. Vocabulary. 1-5 Properties of Exponents. 1.5: Properties of Exponents. Simplify expressions involving exponents. Use scientific notation. Starter 1.5 HW 1.???, Short Quiz 1. & 1.4 Simplify. 1. 4 4 4 64 2.. 20 4. Objectives Simplify expressions involving exponents. Use 5. 6. 10 5 100,000 7. 10 4 0,000 scientific notation Vocabulary In an

More information

MILLIONS AND BILLIONS STUDENT WORKSHEET

MILLIONS AND BILLIONS STUDENT WORKSHEET MILLIONS AND BILLIONS STUDENT WORKSHEET Name: Date: Problem 1: A) How tall is a stack of a million sheets of paper? B) How tall is a stack of a billion sheets of paper? 1. I would estimate that the height

More information

Evaluate numerical expressions

Evaluate numerical expressions EXAMPLE 1 Evaluate numerical expressions a. ( 4 2 5 ) 2 ( 4) 2 (2 5 ) 2 16 2 5 2 16 2 10 16,384 Power of a product property Power of a power property Simplify and evaluate power. b. 11 5 11 8 1 11 8 11

More information

Mathematics (P)review

Mathematics (P)review Mathematics (P)review The star Proxima Centauri is 23,400,000,000,000 miles away from Earth. If we could travel in a spaceship at 5000 miles/hour, it would take over 534,000 years to get there. Scientific

More information

Students write, add and subtract numbers in scientific notation and understand what is meant by the term leading digit.

Students write, add and subtract numbers in scientific notation and understand what is meant by the term leading digit. Student Outcomes Students write, add and subtract numbers in scientific notation and understand what is meant by the term leading digit. Classwork Discussion (5 minutes) Our knowledge of the integer powers

More information

2nd. The TI-30XIIS Calculator and Fractions, Mixed Numbers and Decimals These are the buttons we will be using to calculate fractions.

2nd. The TI-30XIIS Calculator and Fractions, Mixed Numbers and Decimals These are the buttons we will be using to calculate fractions. The TI-30XIIS Calculator and Fractions, Mixed Numbers and Decimals These are the buttons we will be using to calculate fractions. FRACTION A!! ON Let s start with the basic arithmetic operations: Ø ADDITION:!!

More information

Pre-Algebra Notes Integer Exponents and Scientific Notation

Pre-Algebra Notes Integer Exponents and Scientific Notation Pre-Algebra Notes Integer Exponents and Scientific Notation Rules of Exponents CCSS 8.EE.A.1: Know and apply the properties of integer exponents to generate equivalent numerical expressions. Review with

More information

Solve Problems Using Scientific Notation

Solve Problems Using Scientific Notation Domain 2 Lesson 8 Solve Problems Using Scientific Notation Common Core Standards: 8.EE.3, 8.EE.4 Getting the Idea Sometimes, you may need to multiply or divide numbers written in scientific notation in

More information

Real Numbers. UNIT 1 Study Guide Review. Key Vocabulary EXAMPLE 1 EXAMPLE 2 EXAMPLE 3. C _ 13 irrational, real

Real Numbers. UNIT 1 Study Guide Review. Key Vocabulary EXAMPLE 1 EXAMPLE 2 EXAMPLE 3. C _ 13 irrational, real ? UNIT 1 Study Guide Review MODULE 1 ESSENTIL QUESTION Real Numbers How can you use real numbers to solve real-world problems? EXMPLE 1 Write 0. _ as a fraction in simplest form. x = 0. 100x =. -x -0.

More information

Reteach Simplifying Algebraic Expressions

Reteach Simplifying Algebraic Expressions 1-4 Simplifying Algebraic Expressions To evaluate an algebraic expression you substitute numbers for variables. Then follow the order of operations. Here is a sentence that can help you remember the order

More information

Math 8 Notes Unit 3: Exponents and Scientific Notation

Math 8 Notes Unit 3: Exponents and Scientific Notation Math 8 Notes Unit : Exponents and Scientific Notation Writing Exponents Exponential form: a number is in exponential form when it is written with a base and an exponent. 5 ; the base is 5 and the exponent

More information

Proton. Size of cell. 100 = 10 2, so the logarithm of 100 is 2, written Log 100= 2

Proton. Size of cell. 100 = 10 2, so the logarithm of 100 is 2, written Log 100= 2 Homework 1 Date Due Name You will be making a chart of the sizes of things in the Universe. It should come out similar to Figure., but more precise. The plot you will be working on is at the end of this

More information

Name Date PD SCIENTIFIC NOTATION

Name Date PD SCIENTIFIC NOTATION Name Date PD SCIENTIFIC NOTATION Name: Scientific Notation Date: Class: Definition: A number in scientific notation is written as a product of two factors in the form of a 10 n, where n is an integer and

More information

b) Rectangular box: length L, width W, height H, volume: V = LWH, cube of side s, V = s 3

b) Rectangular box: length L, width W, height H, volume: V = LWH, cube of side s, V = s 3 Basic Math Review for PHYS 100 - Physics of Everyday Experience ----------------------------------------------------------------------------------------------------- Basic Algebra a) If x = y + z, then:

More information

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ABSTRACT We will be doing some review of Math concepts in this lab. Scientific notation, unit conversions, scale modeling, time to

More information

Scientific Notation. Chemistry Honors

Scientific Notation. Chemistry Honors Scientific Notation Chemistry Honors Used to easily write very large or very small numbers: 1 mole of a substance consists of 602,000,000,000,000,000,000,000 particles (we ll come back to this in Chapter

More information

ASTRO 1050 Scientific Notation, Model Scales, and Calculations

ASTRO 1050 Scientific Notation, Model Scales, and Calculations ASTRO 1050 Scientific Notation, Model Scales, and Calculations The simple truth is, interstellar distances will not fit into the human imagination. - Douglas Adams Materials: Ping pong balls, meter sticks,

More information

TI-84+ GC 2: Exponents and Scientific Notation

TI-84+ GC 2: Exponents and Scientific Notation Rev 6-- Name Date TI-84+ GC : Exponents and Scientific Notation Objectives: Use the caret and square keys to calculate exponents Review scientific notation Input a calculation in scientific notation Recognize

More information

8th Grade Scientific Notation

8th Grade Scientific Notation Slide 1 / 137 Slide 2 / 137 8th Grade Scientific Notation 2015-11-20 www.njctl.org Slide 3 / 137 Table of Contents Click on the topic to go to that section Purpose of Scientific Notation Writing Numbers

More information

8th Grade Scientific Notation

8th Grade Scientific Notation Slide 1 / 137 Slide 2 / 137 8th Grade 2015-11-20 www.njctl.org Slide 3 / 137 Slide 4 / 137 Table of Contents Click on the topic to go to that section Purpose of Writing Numbers in Converting Between and

More information

Astronomy 1143 Homework 1

Astronomy 1143 Homework 1 Astronomy 43 Homework October 7, 205. Two Martian astronomers, Marvin and Marla, are located due north and south of each other on the planet Mars. Marvin sees the Sun directly overhead (at the zenith)

More information

1-4 Powers and Exponents

1-4 Powers and Exponents Warm Up Lesson Presentation Lesson Quiz Warm Up Simplify. 1. 2(2) 4 2. ( 2)( 2) 4 3. ( 2)( 2)( 2) 8 4. 3(3)(3) 5. 27 4 9 Objective Evaluate expressions containing exponents. power base exponent Vocabulary

More information

STARS. THE LIGHT BILLIONS of MILES AWAY

STARS. THE LIGHT BILLIONS of MILES AWAY STARS THE LIGHT BILLIONS of MILES AWAY Sit back and enjoy the stars! They're BRIGHT!!!!!!!!!!!!!!!!!!!!! THE BIGGEST STAR IN OUR GALAXY Some people think that the stars in our galaxy are right outside

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1 MULTIPLE CHOICE (Right answers are reported in red) 1.. A solar system contains a. primarily planets. b. large amounts of gas and dust

More information

Standard Form Scientific Notation Numbers $ 10 8,000, Numbers $ 1 and, Numbers. 0 and, 1 0.

Standard Form Scientific Notation Numbers $ 10 8,000, Numbers $ 1 and, Numbers. 0 and, 1 0. Domain 2 Lesson 7 Scientific Notation Common Core Standard: 8.EE.4 Getting the Idea Scientific notation is a way to abbreviate very large or very small numbers using powers of 10. A number written in scientific

More information

1. Sara tells Michael she is 160 centimeters tall, while Michael says he is 60 inches tall. If there. are 2.54 centimeters in an inch, who is taller?

1. Sara tells Michael she is 160 centimeters tall, while Michael says he is 60 inches tall. If there. are 2.54 centimeters in an inch, who is taller? Complete the activity, filling in the worksheet. You MUST complete the online assessment when you are done to earn any credit. http://www.explorelearning.com Name: Period You need to use either Internet

More information

Section 4.7 Scientific Notation

Section 4.7 Scientific Notation Section 4.7 Scientific Notation INTRODUCTION Scientific notation means what it says: it is the notation used in many areas of science. It is used so that scientist and mathematicians can work relatively

More information

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific notation in calculations. Significant figures - consist of

More information

Brooklyn College Department of Mathematics. Precalculus. Preparatory Workbook. Spring Sandra Kingan

Brooklyn College Department of Mathematics. Precalculus. Preparatory Workbook. Spring Sandra Kingan Brooklyn College Department of Mathematics Precalculus Preparatory Workbook Spring 0 Sandra Kingan Supported by the CUNY Office of Academic Affairs through funding for the Gap Project CONTENTS. Review

More information

3 Organizing Data. What is scientific notation? How are precision and accuracy different? How do scientists use graphs to show data?

3 Organizing Data. What is scientific notation? How are precision and accuracy different? How do scientists use graphs to show data? CHAPTER 1 Introduction to Science 3 Organizing Data SECTION KEY IDEAS As you read this section, keep these questions in mind: What is scientific notation? How are precision and accuracy different? How

More information

PHYS133 Lab 1 Math Review

PHYS133 Lab 1 Math Review PHYS133 Lab 1 Goal: To review mathematical concepts that will be used in this course. What You Turn In: The worksheet in this manual. Background: This course requires the use of several concepts from high

More information

Chapter 3: Numbers in the Real World Lecture notes Math 1030 Section B

Chapter 3: Numbers in the Real World Lecture notes Math 1030 Section B Section B.1: Writing Large and Small Numbers Large and small numbers Working with large and small numbers is much easier when we write them in a special format called scientific notation. Scientific notation

More information

Investigation 1: How Thick is Aluminum Foil?

Investigation 1: How Thick is Aluminum Foil? Investigation 1: How Thick is Aluminum Foil? Purpose: 1. To determine the thickness of one sheet of aluminum foil in centimeters. 2. To determine the thickness of aluminum foil in terms of atoms of aluminum.

More information

1.1 Units and unit conversions

1.1 Units and unit conversions Fundamentals This chapter reviews four important mathematical concepts and techniques that will be helpful in many quantitative problems you re likely to encounter in a college-level introductory astronomy

More information

Chapter Two. Integers ASSIGNMENT EXERCISES H I J 8. 4 K C B

Chapter Two. Integers ASSIGNMENT EXERCISES H I J 8. 4 K C B Chapter Two Integers ASSIGNMENT EXERCISES. +1 H 4. + I 6. + J 8. 4 K 10. 5 C 1. 6 B 14. 5, 0, 8, etc. 16. 0 18. For any integer, there is always at least one smaller 0. 0 >. 5 < 8 4. 1 < 8 6. 8 8 8. 0

More information

Chapter Review. Write each expression using exponents SOLUTION: The base 6 is a factor 5 times. So, the exponent is 5.

Chapter Review. Write each expression using exponents SOLUTION: The base 6 is a factor 5 times. So, the exponent is 5. Write each expression using exponents. 1. 6 6 6 6 6 2. 4 The base 6 is a factor 5 times. So, the exponent is 5. 6 6 6 6 6 = 6 5 6 5 The base 4 is a factor 1 time. So, the exponent is 1. 4 = 4 1 4 1 3.

More information

Scientific Notation. Part A: Express each of the following in standard form x x x

Scientific Notation. Part A: Express each of the following in standard form x x x Name: Course: Scientific Notation Part A: Express each of the following in standard form. 1. 5.2 x 10 3 5. 3.6 x 10 1 2. 9.65 x 10 4 6. 6.452 x 10 2 3. 8.5 x 10 2 7. 8.77 x 10 1 4. 2.71 x 10 4 8. 6.4 x

More information

4-2 Negative Exponents

4-2 Negative Exponents 1. Write each expression using a positive exponent. 5. Write each fraction as an expression using a negative exponent other than 1. 2. 6. 3. 7. 4. 8. esolutions Manual - Powered by Cognero Page 1 9. When

More information

Reading Scientific Notation ACTIVITY: Very Large Numbers. ACTIVITY: Very Small Numbers. How can you read numbers that are written in

Reading Scientific Notation ACTIVITY: Very Large Numbers. ACTIVITY: Very Small Numbers. How can you read numbers that are written in 16.5 Reading Scientific Notation scientific notation? How can you read numbers that are written in 1 ACTIVITY: Very Large Numbers Work with a partner. Use a calculator. Experiment with multiplying large

More information

8 th Grade Intensive Math

8 th Grade Intensive Math 8 th Grade Intensive Math Ready Florida MAFS Student Edition August-September 2014 Lesson 1 Part 1: Introduction Properties of Integer Exponents Develop Skills and Strategies MAFS 8.EE.1.1 In the past,

More information

Name Period Date. RNS1.3 Scientific Notation Read and write large and small numbers. Use scientific notation to write numbers and solve problems.

Name Period Date. RNS1.3 Scientific Notation Read and write large and small numbers. Use scientific notation to write numbers and solve problems. Name Period Date REAL NUMBER SYSTEM Student Pages for Packet : RNS. Conjectures About Make conjectures about multiplication with eponents. Use eponent definitions and rules to simplify epressions. RNS.

More information

Essentials of Intermediate Algebra

Essentials of Intermediate Algebra Essentials of Intermediate Algebra BY Tom K. Kim, Ph.D. Peninsula College, WA Randy Anderson, M.S. Peninsula College, WA 9/24/2012 Contents 1 Review 1 2 Rules of Exponents 2 2.1 Multiplying Two Exponentials

More information

The following data for the Sun and the four inner planets of the Solar System have been observed. Diameter (kilometers)

The following data for the Sun and the four inner planets of the Solar System have been observed. Diameter (kilometers) The following data for the Sun and the four inner planets of the Solar System have been observed. Mean Distance from the Sun (million kilometers) Diameter (kilometers) Sun 1,400,000 Mercury 58 4,900 Venus

More information

Exponents 4-1. Lesson Objectives. Vocabulary. Additional Examples. Evaluate expressions with exponents. exponential form (p. 162) exponent (p.

Exponents 4-1. Lesson Objectives. Vocabulary. Additional Examples. Evaluate expressions with exponents. exponential form (p. 162) exponent (p. LESSON 4-1 Exponents Lesson Objectives Evaluate expressions with exponents Vocabulary exponential form (p. 16) exponent (p. 16) base (p. 16) power (p. 16) Additional Examples Example 1 Write in exponential

More information

{...- 4, - 3, - 2, - 1, 0, 1, 2, 3, 4,...}

{...- 4, - 3, - 2, - 1, 0, 1, 2, 3, 4,...} Introduction to Integers (2.1) Integers are the set of whole numbers and their opposites. {...- 4, - 3, - 2, - 1, 0, 1, 2, 3, 4,...} Example: The highest elevation in North America is Mt. McKinley, which

More information

Grade 8 * Module 1. Integer Exponents and Scientific Notation CCSS 8.EE.1, 8.EE.3, 8.EE.4. Lesson # Homework Quiz/Exit slip

Grade 8 * Module 1. Integer Exponents and Scientific Notation CCSS 8.EE.1, 8.EE.3, 8.EE.4. Lesson # Homework Quiz/Exit slip Track your progress: Grade 8 * Module 1 Integer Exponents and Scientific Notation CCSS 8.EE.1, 8.EE.3, 8.EE.4 Lesson # Homework Quiz/Exit slip 1 2 3 4 5 6 Summative lessons 1-6: Lesson # Homework Quiz/Exit

More information

= cm = 30.5 cm. in. = 39 in. = 380,000. = 150, 000, 000 km. 1 mi. = 1, 800 arcsec

= cm = 30.5 cm. in. = 39 in. = 380,000. = 150, 000, 000 km. 1 mi. = 1, 800 arcsec Chapter 1 Exercise Solutions 1. a) 1 in 2.54 cm or 2.54 cm 1 in b) 1.6 km 1 mi or 1 mi 1.6 km c) 60 arcmin 3600 arcsec or 3600 arcsec 60 arcmin 2. a) 12 in. 2.54 cm 12 2.54 cm 30.5 cm 1 in. b) 100 cm 1

More information

Arthur & Polly Mays Conservatory Of The Arts

Arthur & Polly Mays Conservatory Of The Arts Arthur & Polly Mays Conservatory Of The Arts Dear Honors Chemistry Student, This packet is prepared to provide entering students of Honors Chemistry with practice to be familiar with the following skills

More information

The Size of the Solar System

The Size of the Solar System The Size of the Solar System Overview Questions: My answers: Become familiar with the scale of the planets vs. their distances. Get an overview of the solar system. Introduction It is easy to flip to the

More information

California 5 th Grade Standards / Excel Math Correlation by Lesson Number

California 5 th Grade Standards / Excel Math Correlation by Lesson Number (Activity) L1 L2 L3 Excel Math Objective Recognizing numbers less than a million given in words or place value; recognizing addition and subtraction fact families; subtracting 2 threedigit numbers with

More information

Explain why miles cannot be used to measure distances in space.

Explain why miles cannot be used to measure distances in space. Space SC.8.E.5.1 SC.8.E.5.1: Recognize that there are enormous distances between objects in space and apply our knowledge of light and space travel to understand this difference. Essential Questions: Distances

More information

Writing very large numbers

Writing very large numbers 19.1 Tools of Astronomers Frequently in the news we hear about discoveries that involve space. Since the 1970s, space probes have been sent to all of the planets in the solar system and we have seen them

More information

Name Period Date MATHLINKS GRADE 8 STUDENT PACKET 11 EXPONENTS AND ROOTS

Name Period Date MATHLINKS GRADE 8 STUDENT PACKET 11 EXPONENTS AND ROOTS Name Period Date 8-11 STUDENT PACKET MATHLINKS GRADE 8 STUDENT PACKET 11 EXPONENTS AND ROOTS 11.1 Squares and Square Roots Use numbers and pictures to understand the inverse relationship between squaring

More information

Don t forget to turn in all graphs and the objective and conclusion.

Don t forget to turn in all graphs and the objective and conclusion. Mathematics and Problem Solving In this lab, you will be applying your knowledge of mathematics to scientific and astronomical problems. It is NOT a test. DO work with your friends and check your results

More information

αα Measuring Global Temperatures 2.1 Measuring Global Temperatures Introductory Chemistry Fourth Edition Nivaldo J.

αα Measuring Global Temperatures 2.1 Measuring Global Temperatures Introductory Chemistry Fourth Edition Nivaldo J. Introductory Chemistry Fourth Edition Nivaldo J. Tro Chapter 2 Measurement and Problem Solving Dr. Sylvia Esjornson Southwestern Oklahoma State University Weatherford, OK 2.1 Measuring Global Temperatures

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Why are celestial motions and forces important? They explain the world around us.

More information

Lesson 1.3: Algebra and Scientific Notation with Small Numbers

Lesson 1.3: Algebra and Scientific Notation with Small Numbers Specific Objectives Students will understand that in algebra, numbers and variables can be combined to produce expressions, equations and inequalities. numbers between 0 and 1 can be written using scientific

More information

Using Proportions to Solve Percent Problems (page 562)

Using Proportions to Solve Percent Problems (page 562) LESSON Name 81 Using Proportions to Solve Percent Problems (page 562) Percent problems can be solved using proportions. Make and complete a percent box. (The total is always 100.) 1. Write in the known

More information

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents.

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents. Chapter 5 Section 5. Integer Exponents and Scientific Notation Objectives 2 4 5 6 Use the product rule for exponents. Define 0 and negative exponents. Use the quotient rule for exponents. Use the power

More information

Appendix. Using Your Calculator. Squares, Square Roots, Reciprocals, and Logs. Addition, Subtraction, Multiplication, and Division

Appendix. Using Your Calculator. Squares, Square Roots, Reciprocals, and Logs. Addition, Subtraction, Multiplication, and Division 370770_app.qxd 1/9/03 7:2 PM Page A1 mac114 Mac 114:2nd shift:4_rst: Using Your Calculator In this section we will review how to use your calculator to perform common mathematical operations. This discussion

More information

Introductory Chemistry Fifth Edition Nivaldo J. Tro

Introductory Chemistry Fifth Edition Nivaldo J. Tro Introductory Chemistry Fifth Edition Nivaldo J. Tro Chapter 2 Measurement and Problem Solving Dr. Sylvia Esjornson Southwestern Oklahoma State University Weatherford, OK Reporting the Measure of Global

More information

Unit 1, Activity 1, Rational Number Line Cards - Student 1 Grade 8 Mathematics

Unit 1, Activity 1, Rational Number Line Cards - Student 1 Grade 8 Mathematics Unit, Activity, Rational Number Line Cards - Student Grade 8 Mathematics Blackline Masters, Mathematics, Grade 8 Page - Unit, Activity, Rational Number Line Cards - Student Blackline Masters, Mathematics,

More information

AP Environmental Science Math Prep

AP Environmental Science Math Prep AP Environmental Science Math Prep This year in APES you will hear the two words most dreaded by high school students NO CALCULATORS! That s right, you cannot use a calculator on the AP Environmental Science

More information

Adding and Subtracting Terms

Adding and Subtracting Terms Adding and Subtracting Terms 1.6 OBJECTIVES 1.6 1. Identify terms and like terms 2. Combine like terms 3. Add algebraic expressions 4. Subtract algebraic expressions To find the perimeter of (or the distance

More information

Vocabulary Cards and Word Walls

Vocabulary Cards and Word Walls Vocabulary Cards and Word Walls Revised: September 9, 2011 Important Notes for Teachers: The vocabulary cards in this file match the Common Core, the mathematics learning standards adopted by the Washington

More information

Length, mass, and time

Length, mass, and time Length, mass, and time Objectives Record data using scientific notation. Record data using International System (SI) units. 1. Express the following numbers in scientific notation: a. 275 b..173 c. 93,422

More information

Introduction to the World of Energy

Introduction to the World of Energy Introduction to the World of Energy 1.1 Ratios and per How can ratios simplify problem solving? How are ratios used to find efficiency? 1.2 Exponents and Scientific Notation Why is scientific notation

More information

n th Roots and Rational Exponents (Part I) Read 5.1 Examples 1-3

n th Roots and Rational Exponents (Part I) Read 5.1 Examples 1-3 HW # n th Roots and Rational Exponents (Part I) Read. Examples - Section. s a. Vocabulary Rewrite the expression t in radical form. Then state the index of the radical.. Complete the Sentence For an integer

More information

Chapter 36, example problems:

Chapter 36, example problems: Chapter 6, example problems: (6.0) Light wave with electric field E y (x, t) = E max sin [(.20 0 7 m ) x ω t] passes through a slit. First dark band at ±2.6 from the center of the diffraction pattern.

More information

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s)

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Chapter 2 Measurements & Calculations Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Measurements can be expressed in a variety of units: Example: length(cm,

More information

Appendix Prerequisites and Review

Appendix Prerequisites and Review BMapp0AppendixPrerequisitesFundamentalsofAlgebra.qxd 6//3 4:35 PM Page 5 Appendix Prerequisites and Review BMapp0AppendixPrerequisitesFundamentalsofAlgebra.qxd 6//3 4:35 PM Page 53 IN THIS APPENDIX real

More information

Eleven reference pages that conveniently fit a standard composition book!

Eleven reference pages that conveniently fit a standard composition book! Eleven reference pages that conveniently fit a standard composition book! By: Deborah Kirkendall 2013 http://www.teacherspayteachers.com/store/deborah-kirkendall Operation Words to Describe Add + Subtract

More information

Chapter 9. Chapter 9 Opener. Big Ideas Math Blue Worked-Out Solutions. Try It Yourself (p. 349) So, =

Chapter 9. Chapter 9 Opener. Big Ideas Math Blue Worked-Out Solutions. Try It Yourself (p. 349) So, = Chapter Chapter Opener Try It Yourself (p. ).. +.. So,. +....... So,...... +.. So,. +..... +.. So,. +....... So,........ So,...... +.. So,. +....... So,........ So,............ So,...... So,....... So,......

More information

HONORS Chemistry Summer Assignment

HONORS Chemistry Summer Assignment HONORS Chemistry Summer Assignment Part II - MATH SKILLS SCIENTIFIC NOTATION Directions: Review the rules for scientific notation. You should be able to change a standard number into scientific notation

More information

Using the Metric System

Using the Metric System C H E M I S TRY I METRIC REVIEW Using the Metric System On Sept., 1999, a $15 million Mars orbiter went missing. The loss occurred because the engineering team that designed part of the orbiter used Imperial

More information

Scientific Notation. Scientific Notation. Table of Contents. Purpose of Scientific Notation. Can you match these BIG objects to their weights?

Scientific Notation. Scientific Notation. Table of Contents. Purpose of Scientific Notation. Can you match these BIG objects to their weights? Scientific Notation Table of Contents Click on the topic to go to that section The purpose of scientific notation Scientific Notation How to write numbers in scientific notation How to convert between

More information

PRE-ALGEBRA SUMMARY WHOLE NUMBERS

PRE-ALGEBRA SUMMARY WHOLE NUMBERS PRE-ALGEBRA SUMMARY WHOLE NUMBERS Introduction to Whole Numbers and Place Value Digits Digits are the basic symbols of the system 0,,,, 4,, 6, 7, 8, and 9 are digits Place Value The value of a digit in

More information

Everyday Conversion: Money

Everyday Conversion: Money Everyday Conversion: Money Everyday Measurement: Water Everyday Measurement: Water Everyday Accuracy: Weighing Scales The need to measure correctly and convert! Some Interesting Quantities Length Volume

More information

Co Curricular Data Analysis Review

Co Curricular Data Analysis Review Chapter Vocabulary Co Curricular Data Analysis Review Base Unit Second (s) Meter (m) Kilogram (kg) Kelvin (K) Derived unit Liter Density Scientific notation Dimensional analysis (Equality) not in book

More information

1 The Solar System. 1.1 a journey into our galaxy

1 The Solar System. 1.1 a journey into our galaxy 1 The Solar System Though Pluto, and the far-flung depths of the Solar System, is the focus of this book, it is essential that Pluto is placed in the context of the planetary system that it inhabits our

More information

SCIE 0900 REVIEW FOR TEST 3 For the test be sure to know how to do everything listed below. Plan to able to show your work for any problems

SCIE 0900 REVIEW FOR TEST 3 For the test be sure to know how to do everything listed below. Plan to able to show your work for any problems SCIE 0900 REVIEW FOR TEST 3 For the test be sure to know how to do everything listed below. Plan to able to show your work for any problems Metric Conversions with just moving the decimal - To convert

More information

UNIT 14 Exponents. Scientific Notation

UNIT 14 Exponents. Scientific Notation Unit 14 CCM6+/7+ Page 1 UNIT 14 Exponents and Scientific Notation CCM6+/7+ Name Math Teacher Projected Test Date Main Ideas Page(s) Unit 14 Vocabulary 2 Exponent Basics, Zero & Negative Exponents 3 6 Multiplying,

More information

Scientific Method: a logical approach to understanding or solving problems that needs solved.

Scientific Method: a logical approach to understanding or solving problems that needs solved. Chapter 2 Section 1 Section 2-1 Objectives Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations. Describe the differences between hypotheses, theories,

More information

Exit Ticket. 1. a. Express the following in exponential notation: ( 13) ( 13) b. Will the product be positive or negative? 2. Fill in the blank: 2 3

Exit Ticket. 1. a. Express the following in exponential notation: ( 13) ( 13) b. Will the product be positive or negative? 2. Fill in the blank: 2 3 COMMON CORE MATHEMATICS CURRICULUM Lesson 1 8 1 Name Date Lesson 1: Exponential Notation Exit Ticket 1. a. Express the following in exponential notation: ( 13) ( 13) 35 times b. Will the product be positive

More information

Unit 1. Scientific activity

Unit 1. Scientific activity Index Unit 1. Scientific activity 1. The scientific method...2 2.- Measurement...4 2.1 Unit transformation...4 2.2. Scientific notation...6 3. Working in the lab...7 Practice exam...9 Page 1 of 11 1. The

More information

A Review of the Mathematics Used In AST 301

A Review of the Mathematics Used In AST 301 A Review of the Mathematics Used In AST 301 1 Units If you say that a car is traveling at a speed of 70, most people in the United States will assume you mean 70 miles per hour. In Europe Mexico, though,

More information

CLEP Precalculus - Problem Drill 02: Prerequisite Review

CLEP Precalculus - Problem Drill 02: Prerequisite Review CLEP Precalculus - Problem Drill 02: Prerequisite Review No. 1 of 10 1. Given a right triangle with leg lengths 5 and 12, find the length of the hypotenuse. (A) 14 (B) 10 (C) 8 (D) 13 (E) 17 This is incorrect

More information

Which method did Ole Rømer use to show that light did not travel at infinite speed?

Which method did Ole Rømer use to show that light did not travel at infinite speed? Homework 8! This is a preview of the draft version of the quiz Started: Mar 25 at 8:26am Quiz Instruc!ons Question 1 Ultraviolet light differs from orange light in that it always travels more quickly than

More information

Fifth Grade Mathematics Mathematics Course Outline

Fifth Grade Mathematics Mathematics Course Outline Crossings Christian School Academic Guide Middle School Division Grades 5-8 Fifth Grade Mathematics Place Value, Adding, Subtracting, Multiplying, and Dividing s will read and write whole numbers and decimals.

More information

1 Tools for Success in ASTR 105G

1 Tools for Success in ASTR 105G Name: Date: 1 Tools for Success in ASTR 105G 1.1 Introduction Astronomy is a physical science. Just like biology, chemistry, geology, and physics, astronomers collect data, analyze that data, attempt to

More information

Scientific Notation: Standard to Scientific

Scientific Notation: Standard to Scientific Scientific Notation: Standard to Scientific Do you know what 300,000,000 m/sec is the measure of? It s the speed of light. Do you recognize what 0.000 000 000 753 kilograms is the measure of? This is the

More information

Exponents ACTIVITY: Using Exponent Notation. ACTIVITY: Using Exponent Notation. How can you use exponents to. write numbers?

Exponents ACTIVITY: Using Exponent Notation. ACTIVITY: Using Exponent Notation. How can you use exponents to. write numbers? 6. Exponents write numbers? How can you use exponents to The expression 3 5 is called a power. The base is 3. The exponent is 5. base 3 5 exponent ACTIVITY: Using Exponent Notation Work with a partner.

More information

Practice ? b a (-a) b a b (3a)

Practice ? b a (-a) b a b (3a) Practice 8- Zero and Negative Exponents. 6 0 2. -2 3. 3-3. 8-5. 6. 7. 3 8. 2 2 2 25 23 6 2 2 25 9. 3? 8 0 0. 6? 2-2. 2-2. -7-2 3. 6? 0. 9 0 5. 32 2 6. 9 8 2 2 2 7. 8 22 8. 9 2 9. 5(-6) 0 20. (3.7) 0 0

More information

The Universe in my pocket. The Solar System. Gloria Delgado Inglada. 4 No. 4. Instituto de Astronomía, UNAM, Mexico

The Universe in my pocket. The Solar System. Gloria Delgado Inglada. 4 No. 4. Instituto de Astronomía, UNAM, Mexico The Universe in my pocket The Solar System 4 No. 4 Gloria Delgado Inglada Instituto de Astronomía, UNAM, Mexico 2 The Solar System is composed of the Sun and of all the bodies travelling around it: planets,

More information