#5 Demodulation and Detection Error due to Noise

Size: px
Start display at page:

Download "#5 Demodulation and Detection Error due to Noise"

Transcription

1 06 Q Wirele Communicaion Engineering #5 Demodulaion and Deecion Error due o Noie Kei Sakaguci akaguci@mobile.ee. Jul 8, 06

2 Coure Scedule Dae Tex Conen # June 7, 7 Inroducion o wirele communicaion em # June 7, 5, ec Link budge deign of wirele acce #3 June 4 Up/down converion and equivalen baeband em #4 June 4 3.3, 3.4 Digial modulaion and pule aping Jul No cla #5 Jul Demodulaion and deecion error due o noie #6 Jul Cannel fading and diveri combining Jul 8, 06 Wirele Communicaion Engineering

3 From reviou Lecure n Digial modulaion + j D DI DQ f m Ampliude ae Frequenc Daa rae, power efficienc, complexi, error rae n ule aping band limiaion g τ D τ dτ Recangular Nqui Gauian andwid, error rae n IQ analog modulaion I coπf c Q inπf c Carrier frequenc Jul 8, 06 Wirele Communicaion Engineering 3

4 Conen Srucure of receiver Analog demodulaion Maced filer Coeren deecion Error rae of SK ignal Error rae of QAM ignal Demonraion Jul 8, 06 Wirele Communicaion Engineering 4

5 m f Digial modulaion D Tranmier g ule aping D/A D/A Analog modulaion co πf 0 Carrier freq. f 0 Coverage Smbol leng T andwid T Modulaion order M log Daa rae M T c d 0 4πf αn γ Modulaion f Energ efficienc, Complexi of circui, i error rae ule g ower leackage Jul 8, 06 Wirele Communicaion Engineering 5 S g f SD f p e

6 Receiver n Analog demod. coπ f 0 g r Maced filer D kt Cannel e. Co. de. ĥkt ŝ D kt Digial demod. mˆ kt Addiive wie noie Termal noie generaed in receiver andpa fileer Iner em inerference cancellaion Analog demodulaion Conver ignal from RF o Maced filer Maximizaion of SNR Coeren deecion Compenaion of cannel repone Digial demodulaion Conver complex ignal o meage Jul 8, 06 Wirele Communicaion Engineering 6

7 f 0 Tranmier Up converer [ ] RF & τ n Down converer Re τ τ dτ R Receiver f 0 jπf0 R e + R j ilb jπf0 R e Jul 8, 06 Wirele Communicaion Engineering 7

8 Analog Demodulaion receive ignal I + jq R e jπ f 0 Re R [ ] Ico πf 0 Q in πf 0 Analog demod. coπ f 0 Analog demodulaion Low pa filer I I co πf 0 d π Q in πf 0 d Q Jul 8, 06 Wirele Communicaion Engineering 8

9 Narrow and Sem Equivalen em Narrow band aumpion τ! τ dτ jπf0τ τ τ e τ 0! τ 0 e jθ 0 H f τ 0 f 0 τ 0 τ Jul 8, 06 Wirele Communicaion Engineering 9

10 Noie noie n ni + jnq n R n e jπ f 0 n Re n R [ ] n nico πf 0 nq in πf 0 Analog demod. coπ f 0 n Analog demodulaion n n I Q n co πf 0 d n in πf 0 d Jul 8, 06 Wirele Communicaion Engineering 0

11 roper of Noie Noie power n ni + nq N 0 σ DF of noie p n x n p n e I Q E[ n I ] E!" n Q # $ 0 E σ πσ [ ] [ ] ni E nq σ S n f Jul 8, 06 Wirele Communicaion Engineering S n R f S n f f c f c 0 f f f N 0 N 0 N 0

12 n received ignal + n ranmi ignal Maced Filer Analog demod. coπ f 0 g r Maced filer D kt g a g nt D n n Oupu of receiver filer D gr gr g D + gr n Jul 8, 06 Wirele Communicaion Engineering

13 Receive filer oupu SNR Maced Filer γ g0 g g E[ n ] r g nd gr n D 0 n Combined pule of ranmier & receiver Frequenc domain anali Signal power r Analog demod. coπ f 0 g r Maced filer Noie power g G f G f df E[ n D ] N 0 G r f d f D kt Jul 8, 06 Wirele Communicaion Engineering 3

14 Scwarz inequali g n Maced Filer 3 0 Gr f G f df Gr f df G f df Maced filer SNR maximizaion G * G g g r f f Maximum SNR γ g0 r E[ n ] N 0 G f Analog demod. Energ of ranmi pule coπ f 0 g r d f E N 0 T N 0 N 0 σ Maced filer D kt Jul 8, 06 Wirele Communicaion Engineering 4

15 Received ignal Deecion Sceme D k D k + nd k Deecion Modulaion Demodulaion Envelope ASK ˆ k D D k Correlaion FSK exp jπδfd exp jπδf d Differenial Differenial mod. ~ θ k θ k + θ k ˆ D k D k D k Coeren SK, QAM, MSK ˆ D D Jul 8, 06 Wirele Communicaion Engineering 5

16 n Coeren Deecion Analog demod. coπ f 0 g r Maced filer D kt Oupu of maced filer D g D + gr n Cannel e. Co. de. ˆ ŝ D kt kt Digial demod. D k D k + nd k Nqui maced filer k k + n k g gr g Coeren deecion g 0 d ˆ k k ˆ G f f Compenaion of Gr f df cannel repone Digial demodulaion mˆ k f ˆ k for eac modulaion meod of ASK, SK, FSK mˆ kt Jul 8, 06 Wirele Communicaion Engineering 6

17 Oupu of maced filer k k + TR ~ k Cannel Eimaion TR k n k Training ignal Cannel eimaion g r Maced filer D kt Cannel e. Co. de. Frame rucure of ranmi ignal # of raining mbol: K ˆ ŝ D kt kt ˆ ~ K k K k Training ignal Daa ignal Jul 8, 06 Wirele Communicaion Engineering 7

18 Error Rae of SK Signal Oupu of coeren deecion ˆ k E [ k ] k Tranmi power k + n k Error rae of SK ignal x eb exp dx 0 / / + πσ σ Jul 8, 06 Complex Gauian wi variance σ / erfc σ erfc γ γ erfc x σ Wirele Communicaion Engineering 0 π x Receive SNR exp Re[ ˆ k] Complemenar error funcion z dz 8

19 Error Rae of QSK Signal Oupu of coeren deecion ˆ k k I k + j Q k + n k Tranmi power E [ k ] E[ k ] I Q QSK Q I i error rae eb Jul 8, 06 erfc Smbol error rae σ erfc γ eb eb eb eb eb e I Q Wirele Communicaion Engineering roporional o SNR per bi 9

20 Error Rae of QAM Signal Smbol error rae ei eq ei eq e 6QAM M SK ei eb + M M Cener erfc M SK eb Two edge E 0 σ Tranmi power M E0 M E i M i 3 0 i error rae eb log M e Smbol error correpond o one bi error owing o Gra coding E 0 Jul 8, 06 Wirele Communicaion Engineering 0

21 Error Rae erformance i error rae performance SK QSK 6QAM 64QAM i Error Rae Average SNR per anenna [d] Jul 8, 06 Wirele Communicaion Engineering

22 Summar Jul 8, 06 Wirele Communicaion Engineering n Analog demodulaion & maced fileer n Cannel eimaion & coeren deecion n Error rae of SK ignal γ σ erfc erfc eb ˆ k n k k k + K k k k K TR ˆ ] exp Re[ 0 f j π n + r D D n g g + r g g g g g d 0 f f G g d r f f G Nqui maced fileer 0 eb erfc log σ E M M n Error rae of QAM ignal

23 Tranmier Training ignal Demo Coeren deec. Digial demod. Jul 8, 06 Cannel eimaion Wirele Communicaion Engineering 3

24 Error Rae of MSK Oupu of coeren deecion ˆ k k + MSK modulaion n k k exp jθ k πa θ k k + θ k Conellaion a k a k θ k T 0,π θ k T π, π ER of MSK ignal eb erfc σ erfc γ Jul 8, 06 Wirele Communicaion Engineering 4

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

st semester. Kei Sakaguchi

st semester. Kei Sakaguchi 0 s semeser MIMO Communicaion Sysems #5: MIMO Channel Capaciy Kei Sakaguchi ee ac May 7, 0 Schedule ( s half Dae Tex Conens # Apr. A-, B- Inroducion # Apr. 9 B-5, B-6 Fundamenals

More information

Lecture 8. Digital Communications Part III. Digital Demodulation

Lecture 8. Digital Communications Part III. Digital Demodulation Lecure 8. Digial Communicaions Par III. Digial Demodulaion Binary Deecion M-ary Deecion Lin Dai (Ciy Universiy of Hong Kong) EE38 Principles of Communicaions Lecure 8 Analog Signal Source SOURCE A-D Conversion

More information

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 3: Signal Transmission and Filering A. Bruce Carlson Paul B. Crilly 00 The McGraw-Hill Companies Chaper 3: Signal Transmission and Filering Response of LTI sysems Signal

More information

28. Narrowband Noise Representation

28. Narrowband Noise Representation Narrowband Noise Represenaion on Mac 8. Narrowband Noise Represenaion In mos communicaion sysems, we are ofen dealing wih band-pass filering of signals. Wideband noise will be shaped ino bandlimied noise.

More information

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2 Soluions o he Exam Digial Communicaions I given on he 11h of June 2007 Quesion 1 (14p) a) (2p) If X and Y are independen Gaussian variables, hen E [ XY ]=0 always. (Answer wih RUE or FALSE) ANSWER: False.

More information

Interpolation and Pulse Shaping

Interpolation and Pulse Shaping EE345S Real-Time Digial Signal Proceing Lab Spring 2006 Inerpolaion and Pule Shaping Prof. Brian L. Evan Dep. of Elecrical and Compuer Engineering The Univeriy of Texa a Auin Lecure 7 Dicree-o-Coninuou

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE373 : Digial Communicaions Week 6-7: Deecion Error Probabiliy Signal Space Orhogonal Signal Space MAJU-Digial Comm.-Week-6-7 Deecion Mached filer reduces he received signal o a single variable zt, afer

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

12. Nyquist Sampling, Pulse-Amplitude Modulation, and Time- Division Multiplexing

12. Nyquist Sampling, Pulse-Amplitude Modulation, and Time- Division Multiplexing Nyqui Sapling, Pule-Apliude Modulaion, and Tie Diviion Muliplexing on Mac 2. Nyqui Sapling, Pule-Apliude Modulaion, and Tie- Diviion Muliplexing Many analogue counicaion ye are ill in wide ue oday. Thee

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM Name: UNIVERSIY OF CALIFORNIA College of Engineering Deparmen of Elecrical Engineering and Compuer Sciences Professor David se EECS 121 FINAL EXAM 21 May 1997, 5:00-8:00 p.m. Please wrie answers on blank

More information

EELE Lecture 8 Example of Fourier Series for a Triangle from the Fourier Transform. Homework password is: 14445

EELE Lecture 8 Example of Fourier Series for a Triangle from the Fourier Transform. Homework password is: 14445 EELE445-4 Lecure 8 Eample o Fourier Series or a riangle rom he Fourier ransorm Homework password is: 4445 3 4 EELE445-4 Lecure 8 LI Sysems and Filers 5 LI Sysem 6 3 Linear ime-invarian Sysem Deiniion o

More information

EE456 Digital Communications

EE456 Digital Communications EE456 Digial Communicaions Professor Ha Nguyen Sepember 6 EE456 Digial Communicaions Inroducion o Basic Digial Passband Modulaion Baseband ransmission is conduced a low frequencies. Passband ransmission

More information

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 8

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 8 Digital Communication I: odulation and Coding Coure Term 3-8 Catharina Logotheti Lecture 8 Lat time we talked about: Some bandpa modulation cheme -A, -SK, -FSK, -QA How to perform coherent and noncoherent

More information

Lecture 4. Goals: Be able to determine bandwidth of digital signals. Be able to convert a signal from baseband to passband and back IV-1

Lecture 4. Goals: Be able to determine bandwidth of digital signals. Be able to convert a signal from baseband to passband and back IV-1 Lecure 4 Goals: Be able o deermine bandwidh o digial signals Be able o conver a signal rom baseband o passband and back IV-1 Bandwidh o Digial Daa Signals A digial daa signal is modeled as a random process

More information

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction EE-202/445, 3/18/18 9-1 R. A. DeCarlo Lecures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS I. Inroducion 1. The biquadraic ransfer funcion has boh a 2nd order numeraor and a 2nd order denominaor:

More information

Problem Formulation in Communication Systems

Problem Formulation in Communication Systems Problem Formulaion in Communicaion Sysems Sooyong Choi School of Elecrical and Elecronic Engineering Yonsei Universiy Inroducion Problem formulaion in communicaion sysems Simple daa ransmission sysem :

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

st semester. Kei Sakaguchi. ee ac May. 10, 2011

st semester. Kei Sakaguchi. ee ac May. 10, 2011 0 s semeser IO Communcaon Sysems #4: Array Sgnal Processng Ke Sakaguc ee ac ay. 0, 0 Scedule s alf Dae Tex Conens # Apr. A-, B- Inroducon # Apr. 9 B-5, B-6 Fundamenals of wreless

More information

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE 345S Real-Time Digial Signal Processing Lab Spring 26 Signals and Sysems Prof. Brian L. Evans Dep. of Elecrical and Compuer Engineering The Universiy of Texas a Ausin Review Signals As Funcions of Time

More information

6.003: Signals and Systems. Lecture 1 Introduction to Signals and Systems

6.003: Signals and Systems. Lecture 1 Introduction to Signals and Systems 6.003: Signals and Sysems Lecure 1 Inroducion o Signals and Sysems 6.003: Signals and Sysems Today s handous: Single package conaining Subjec Informaion Lecure #1 slides (for oday) Reciaion #2 handou (for

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson 6.32 Feedback Syem Phae-locked loop are a foundaional building block for analog circui deign, paricularly for communicaion circui. They provide a good example yem for hi cla becaue hey are an excellen

More information

Chapter 8: Response of Linear Systems to Random Inputs

Chapter 8: Response of Linear Systems to Random Inputs Caper 8: epone of Linear yem o anom Inpu 8- Inroucion 8- nalyi in e ime Domain 8- Mean an Variance Value of yem Oupu 8-4 uocorrelaion Funcion of yem Oupu 8-5 Crocorrelaion beeen Inpu an Oupu 8-6 ample

More information

Performance Comparison of LCMV-based Space-time 2D Array and Ambiguity Problem

Performance Comparison of LCMV-based Space-time 2D Array and Ambiguity Problem Inernaional journal of cience Commerce and umaniie Volume No 2 No 3 April 204 Performance Comparion of LCMV-baed pace-ime 2D Arra and Ambigui Problem 2 o uan Chang and Jin hinghia Deparmen of Communicaion

More information

Multiphase Shift Keying (MPSK) Lecture 8. Constellation. Decision Regions. s i. 2 T cos 2π f c t iφ 0 t As iφ 1 t. t As. A c i.

Multiphase Shift Keying (MPSK) Lecture 8. Constellation. Decision Regions. s i. 2 T cos 2π f c t iφ 0 t As iφ 1 t. t As. A c i. π fc uliphase Shif Keying (PSK) Goals Lecure 8 Be able o analyze PSK modualion s i Ac i Ac Pcos π f c cos π f c iφ As iφ π i p p As i sin π f c p Be able o analyze QA modualion Be able o quanify he radeoff

More information

A Theoretical Model of a Voltage Controlled Oscillator

A Theoretical Model of a Voltage Controlled Oscillator A Theoreical Model of a Volage Conrolled Ocillaor Yenming Chen Advior: Dr. Rober Scholz Communicaion Science Iniue Univeriy of Souhern California UWB Workhop, April 11-1, 6 Inroducion Moivaion The volage

More information

Communication System Analysis

Communication System Analysis Communicaion Sysem Analysis Communicaion Sysems A naïve, absurd communicaion sysem 12/29/10 M. J. Robers - All Righs Reserved 2 Communicaion Sysems A beer communicaion sysem using elecromagneic waves o

More information

Demodulation of Digitally Modulated Signals

Demodulation of Digitally Modulated Signals Addiional maerial for TSKS1 Digial Communicaion and TSKS2 Telecommunicaion Demodulaion of Digially Modulaed Signals Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping November

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

System-On-Chip. Embedding A/D Converters in SoC Applications. Overview. Nyquist Rate Converters. ADC Fundamentals Operations

System-On-Chip. Embedding A/D Converters in SoC Applications. Overview. Nyquist Rate Converters. ADC Fundamentals Operations Overview Embedding A/D Conversion in SoC applicaions Marin Anderson Dep. of Elecrical and Informaion Technology Lund Universiy, Sweden Fundamenal limiaions: Sampling and Quanizaion Pracical limiaions:

More information

ENERGY SEPARATION AND DEMODULATION OF CPM SIGNALS

ENERGY SEPARATION AND DEMODULATION OF CPM SIGNALS ENERGY SEPARATION AND DEMODULATION OF CPM SIGNALS Balu Sanhanam SPCOM Laboraory Deparmen of E.E.C.E. Universiy of New Meico Moivaion CPM has power/bandwidh efficiency and used in he wireless sysem infrasrucure.

More information

Parameter Estimation

Parameter Estimation 1 / 44 Parameter Estimation Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay October 25, 2012 Motivation System Model used to Derive

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

Receivers, Antennas, and Signals. Professor David H. Staelin Fall 2001 Slide 1

Receivers, Antennas, and Signals. Professor David H. Staelin Fall 2001 Slide 1 Receivers, Anennas, and Signals Professor David H. Saelin 6.66 Fall 00 Slide A Subjec Conen A Human Processor Transducer Radio Opical, Infrared Acousic, oher Elecromagneic Environmen B C Human Processor

More information

Application of Combined Fourier Series Transform (Sampling Theorem)

Application of Combined Fourier Series Transform (Sampling Theorem) Applicaion o Combined Fourier Serie ranorm Sampling heorem x X[] m m Sampling Frequency Deparmen o Elecrical and Compuer Engineering Deparmen o Elecrical and Compuer Engineering X[] x We need Fourier Serie

More information

Coherent PSK. The functional model of passband data transmission system is. Signal transmission encoder. x Signal. decoder.

Coherent PSK. The functional model of passband data transmission system is. Signal transmission encoder. x Signal. decoder. Cheren PSK he funcinal mdel f passand daa ransmissin sysem is m i Signal ransmissin encder si s i Signal Mdular Channel Deecr ransmissin decder mˆ Carrier signal m i is a sequence f syml emied frm a message

More information

Low-complexity Algorithms for MIMO Multiplexing Systems

Low-complexity Algorithms for MIMO Multiplexing Systems Low-complexiy Algoihms fo MIMO Muliplexing Sysems Ouline Inoducion QRD-M M algoihm Algoihm I: : o educe he numbe of suviving pahs. Algoihm II: : o educe he numbe of candidaes fo each ansmied signal. :

More information

PRACTICE FINAL EXAM SOLUTION Jing Liang 12/06/2006

PRACTICE FINAL EXAM SOLUTION Jing Liang 12/06/2006 PRACICE FIAL EXAM SOLUIO Jing Liang /6/6 PROBLEM (a) (b) (c) (d) (e) he propagation ignal experience power variation due to the contructive and detructive addition of multi-path ignal component, and therefore

More information

Answers to Exercises in Chapter 7 - Correlation Functions

Answers to Exercises in Chapter 7 - Correlation Functions M J Robers - //8 Answers o Exercises in Chaper 7 - Correlaion Funcions 7- (from Papoulis and Pillai) The random variable C is uniform in he inerval (,T ) Find R, ()= u( C), ()= C (Use R (, )= R,, < or

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Frequency Response. We now know how to analyze and design ccts via s- domain methods which yield dynamical information

Frequency Response. We now know how to analyze and design ccts via s- domain methods which yield dynamical information Frequency Repone We now now how o analyze and deign cc via - domain mehod which yield dynamical informaion Zero-ae repone Zero-inpu repone Naural repone Forced repone The repone are decribed by he exponenial

More information

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1 8. a For ep repone, inpu i u, U Y a U α α Y a α α Taking invere Laplae ranform a α e e / α / α A α 0 a δ 0 e / α a δ deal repone, α d Y i Gi U i δ Hene a α 0 a i For ramp repone, inpu i u, U Soluion anual

More information

The Potential Effectiveness of the Detection of Pulsed Signals in the Non-Uniform Sampling

The Potential Effectiveness of the Detection of Pulsed Signals in the Non-Uniform Sampling The Poenial Effeciveness of he Deecion of Pulsed Signals in he Non-Uniform Sampling Arhur Smirnov, Sanislav Vorobiev and Ajih Abraham 3, 4 Deparmen of Compuer Science, Universiy of Illinois a Chicago,

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 4. Envelope Correlation Space-time Correlation

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 4. Envelope Correlation Space-time Correlation ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 4 Envelope Correlation Space-time Correlation 1 Autocorrelation of a Bandpass Random Process Consider again the received band-pass random process r(t) = g

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences. = 4 for QPSK) E b Q 2. 2E b.

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences. = 4 for QPSK) E b Q 2. 2E b. Exercie: QPSK I Find the error rate for the ignal et n (t) = p 2E /T co(2pf c t + n p/2 + p/4), for n = 0,, 3 I Anwer: (Recall h P = d min 2 E b = 4 for QPSK) E Pr{e} = 2Q Q 2 = 2Q = 2Q 2E b h P E b 2

More information

Çankaya University ECE Department ECE 376 (MT)

Çankaya University ECE Department ECE 376 (MT) Çankaya Univerity ECE Department ECE 376 (M) Student Name : Date : 13.4.15 Student Number : Open Source Exam Quetion 1. (7 Point) he time waveform of the ignal et, and t t are given in Fig. 1.1. a. Identify

More information

SE Sequence: 90º, 180º RF Pulses, Readout Gradient e.g., 256 voxels in a row

SE Sequence: 90º, 180º RF Pulses, Readout Gradient e.g., 256 voxels in a row Ouline for Today 1. 2. 3. Inroducion o MRI Quanum NMR and MRI in 0D Magneizaion, m(x,), in a Voxel Proon T1 Spin Relaxaion in a Voxel Proon Densiy MRI in 1D MRI Case Sudy, and Cavea Skech of he MRI Device

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

6.003 Homework #13 Solutions

6.003 Homework #13 Solutions 6.003 Homework #3 Soluions Problems. Transformaion Consider he following ransformaion from x() o y(): x() w () w () w 3 () + y() p() cos() where p() = δ( k). Deermine an expression for y() when x() = sin(/)/().

More information

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Carrier frequency estimation. ELEC-E5410 Signal processing for communications Carrier frequency estimation ELEC-E54 Signal processing for communications Contents. Basic system assumptions. Data-aided DA: Maximum-lielihood ML estimation of carrier frequency 3. Data-aided: Practical

More information

BOKDSGE: A DSGE Model for the Korean Economy

BOKDSGE: A DSGE Model for the Korean Economy BOKDSGE: A DSGE Model for he Korean Economy June 4, 2008 Joong Shik Lee, Head Macroeconomeric Model Secion Research Deparmen The Bank of Korea Ouline 1. Background 2. Model srucure & parameer values 3.

More information

ψ ( t) = c n ( t ) n

ψ ( t) = c n ( t ) n p. 31 PERTURBATION THEORY Given a Hamilonian H ( ) = H + V( ) where we know he eigenkes for H H n = En n we ofen wan o calculae changes in he ampliudes of n induced by V( ) : where ψ ( ) = c n ( ) n n

More information

Phase Noise in CMOS Differential LC Oscillators

Phase Noise in CMOS Differential LC Oscillators Phase Noise in CMOS Differenial LC Oscillaors Ali Hajimiri Thomas H. Lee Sanford Universiy, Sanford, CA 94305 Ouline Inroducion and Definiions Tank Volage Noise Sources Effec of Tail Curren Source Measuremen

More information

Lecture 5 Frequency Response of FIR Systems (III)

Lecture 5 Frequency Response of FIR Systems (III) EE3054 Signal and Sytem Lecture 5 Frequency Repone of FIR Sytem (III Yao Wang Polytechnic Univerity Mot of the lide included are extracted from lecture preentation prepared by McClellan and Schafer Licene

More information

SVD-BASED TRANSMIT BEAMFORMING FOR VARIOUS MODULATIONS WITH CONVOLUTION ENCODING

SVD-BASED TRANSMIT BEAMFORMING FOR VARIOUS MODULATIONS WITH CONVOLUTION ENCODING SVD-BASED TRASIT BEAFORIG FOR VARIOUS ODULATIOS WIT COVOLUTIO ECODIG. Raja and. uhuchidamaranahan Deparmen of Eecronic and Communicaion Engineering, aiona Iniue of Technoogy, Tiruchirappai, India E-mai:

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Lecure 7 April 8, 6.3: Signals and Sysems C Fourier ransform C Fourier ransform Represening signals by heir frequency conen. X(j)= x()e j d ( analysis equaion) x()= π X(j)e j d

More information

τ /2π S, ρ < ρ <... generate Dirac distribution δ ( τ ). Spectral density

τ /2π S, ρ < ρ <... generate Dirac distribution δ ( τ ). Spectral density IOM and ession of e Commission of Acousics, Bucares 5-6 May COMPARATIVE ANALYI OF THREE IMULATION METHOD FOR BAND LIMITED WHITE NOIE AMPLE Ovidiu OLOMON, Carles W. TAMMER, Tudor IRETEANU 3 *Corresponding

More information

Outline Chapter 2: Signals and Systems

Outline Chapter 2: Signals and Systems Ouline Chaper 2: Signals and Sysems Signals Basics abou Signal Descripion Fourier Transform Harmonic Decomposiion of Periodic Waveforms (Fourier Analysis) Definiion and Properies of Fourier Transform Imporan

More information

A First Course in Digital Communications

A First Course in Digital Communications A Firs Course in Digial Communicaions Ha H. Nguyen and E. Shwedyk February 9 A Firs Course in Digial Communicaions /58 Block Diagram of Binary Communicaion Sysems m { b k } bk = s b = s k m ˆ { bˆ } k

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015)

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) 4th National Conference on Electrical, Electronic and Computer Engineering (NCEECE 25) The Reearch on Anti-interference Performance of Ambiguity Function Baed Digital Communication Sytem Xiaodong Han,

More information

Kyung-Kuk Lee. Orthotron Co., Ltd.

Kyung-Kuk Lee. Orthotron Co., Ltd. Kyung-Kuk Lee Orhoron Co., Ld. Sandardizaion & Marke 2 82.5.4a al PHY for 82.5.4 Addresses he following Globally deployable Compaible / ineroperable wih 82.5.4 Longer range Higher reliabiliy Ranging/localizaion

More information

Chapter 5 Optimum Receivers for the Additive White Gaussian Noise Channel

Chapter 5 Optimum Receivers for the Additive White Gaussian Noise Channel Chapter 5 Optimum Receiver for the Additive White Gauian Noie Channel Table of Content 5.1 Optimum Receiver for Signal Corrupted by Additive White Noie 5.1.1 Correlation Demodulator 5.1. Matched-Filter

More information

6.003: Signals and Systems Lecture 20 November 17, 2011

6.003: Signals and Systems Lecture 20 November 17, 2011 6.3: Signals and Sysems Lecure November 7, 6.3: Signals and Sysems Applicaions of Fourier ransforms Filering Noion of a filer. LI sysems canno creae new frequencies. can only scale magniudes and shif phases

More information

Amplify-and-Forward in Wireless Relay Networks

Amplify-and-Forward in Wireless Relay Networks Amplify-and-Forward in Wirele Relay Nework Samar Agnihori, Sidharh Jaggi, and Minghua Chen Deparmen of Informaion Engineering, The Chinee Univeriy of Hong Kong, Hong Kong Email: {amar, jaggi, minghua}@ie.cuhk.edu.hk

More information

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time EE 477 Digital Signal Proceing 4 Sampling; Dicrete-Time Sampling a Continuou Signal Obtain a equence of ignal ample uing a periodic intantaneou ampler: x [ n] = x( nt ) Often plot dicrete ignal a dot or

More information

EE6604 Personal & Mobile Communications. Week 12a. Power Spectrum of Digitally Modulated Signals

EE6604 Personal & Mobile Communications. Week 12a. Power Spectrum of Digitally Modulated Signals EE6604 Personal & Mobile Communications Week 12a Power Spectrum of Digitally Modulated Signals 1 POWER SPECTRUM OF BANDPASS SIGNALS A bandpass modulated signal can be written in the form s(t) = R { s(t)e

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Commuicaio heory 7. Represeaio of Digially Modulaed Sigals II Z. Aliyazicioglu Elecrical ad Compuer Egieerig Deparme Cal Poly Pomoa Represeaio of Digial Modulaio wih Memory Liear Digial Modulaio

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

COMPARISON OF THE DIFFERENCING PARAMETER ESTIMATION FROM ARFIMA MODEL BY SPECTRAL REGRESSION METHODS. By Gumgum Darmawan, Nur Iriawan, Suhartono

COMPARISON OF THE DIFFERENCING PARAMETER ESTIMATION FROM ARFIMA MODEL BY SPECTRAL REGRESSION METHODS. By Gumgum Darmawan, Nur Iriawan, Suhartono COMPARISON OF THE DIFFERENCING PARAMETER ESTIMATION FROM ARFIMA MODEL BY SPECTRAL REGRESSION METHODS By Gumgum Darmawan, Nur Iriawan, Suharono INTRODUCTION (1) TIME SERIES MODELS BASED ON VALUE OF DIFFERENCING

More information

INTER-CELL INTERFERENCE ANALYSIS FOR OFDM/FBMC SYSTEMS

INTER-CELL INTERFERENCE ANALYSIS FOR OFDM/FBMC SYSTEMS IERCELL IERFERECE AALYSIS FOR /FBMC SYSEMS Y. Medjahdi*, M. erré*, D. Le Ruye*, D. Rovira*, J.A. oe and L. Balar * Elecronic and Communicaion Laboraory, CAM, Pari, France. Iniue for Circui heory and Signal

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

PHYS463 Electricity& Magnetism III ( ) Problems Solutions (assignment #3) r n+1

PHYS463 Electricity& Magnetism III ( ) Problems Solutions (assignment #3) r n+1 . (Problem 3.38, p.6) Solution: Use equation (3.95) PHYS463 Electricity& Magnetism (3-4) Problems Solutions (assignment #3) Φ 4π² X n ³ r n Pn ³cos ³ ϑ ρ r dτ r n+ Now λ Q/a a

More information

Joint Transmitter-Reciever Optimization for Multiple Input Multiple Output (MIMO) Systems

Joint Transmitter-Reciever Optimization for Multiple Input Multiple Output (MIMO) Systems Join Transmier-Reciever Opimizaion for Muliple Inpu Muliple Oupu (MIMO Sysems eun Chul WANG and wang Bo (Ed LEE School of Elecrical Engineering, Seoul Naional Universiy, OREA Absrac Muliple ransmi (Tx

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Lecture 12. Aperture and Noise. Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University

Lecture 12. Aperture and Noise. Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University Lecure. Aperure and Noie Analyi of locked omparaor Jaeha Kim Mixed-Signal I and Syem Group MIS Seoul Naional Univeriy jaeha@ieee.org locked omparaor a.k.a. regeneraive amplifier, ene-amplifier, flip-flop,

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Coninuous-Time Fourier Transform Definiion Examples Properies Relaion o Fourier Series Sepember 5, 08 Quiz Thursday, Ocober 4, from 3pm o 5pm. No lecure on Ocober 4. The exam is

More information

Research Article A Chaos-Based Secure Direct-Sequence/Spread-Spectrum Communication System

Research Article A Chaos-Based Secure Direct-Sequence/Spread-Spectrum Communication System Absrac and Applied Analysis Volume 23, Aricle ID 76434, pages hp://dx.doi.org/.55/23/76434 Research Aricle A Chaos-Based Secure Direc-Sequence/Spread-Specrum Communicaion Sysem Nguyen Xuan Quyen, Vu Van

More information

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS ch03.qxd 1/9/03 09:14 AM Page 35 CHAPTER 3 MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS 3.1 INTRODUCTION The study of digital wireless transmission is in large measure the study of (a) the conversion

More information

Phase and Frequency Modulation

Phase and Frequency Modulation Angle Modulaion Phase and Frequency Modulaion Consider a signal of he form x c = A c cos 2π f c + φ θ i ( ) where A c and f c are consans. The envelope is a consan so he message canno be in he envelope.

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Suboptimal MIMO Detector based on Viterbi Algorithm

Suboptimal MIMO Detector based on Viterbi Algorithm Proceedings of he 7h WSEAS Inernaional Conference on ulimedia Sysems & Signal Processing, Hangzhou, China, April 5-7, 007 9 Subopimal IO Deecor based on Vierbi Algorihm Jin Lee and Sin-Chong Park Sysem

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

EE 435 Lecture 42. Phased Locked Loops and VCOs

EE 435 Lecture 42. Phased Locked Loops and VCOs EE 435 Lecure 42 d Locked Loops and VCOs Basis PLL Archiecure Loop Filer (LF) Volage Conrolled Oscillaor (VCO) Frequency Divider N Applicaions include: Frequency Demodulaion Frequency Synhesis Clock Synchronizaion

More information

Impacts of both Tx and Rx IQ Imbalances on OFDM Systems - Analytical Approach

Impacts of both Tx and Rx IQ Imbalances on OFDM Systems - Analytical Approach mpacs of boh Tx and Rx Q mbalances on OFD Sysems - Analyical Approach Hassan Zareian, Vahid Tabaaba Vakili ran Universiy of Science and Technology UST, Tehran, ran Faculy of he slamic Republic of ran Broadcasing

More information

RF Phase Modulation of Optical Signals and Optical/Electrical Signal Processing. Nikolaos I. Andrikogiannopoulos

RF Phase Modulation of Optical Signals and Optical/Electrical Signal Processing. Nikolaos I. Andrikogiannopoulos RF Phae Modulaion of Opical Signal and Opical/Elecrical Signal Proceing by Nikolao I. Andrikogiannopoulo Dipl., Naional Technical Univeriy of Ahen (004) Submied o he Deparmen of Elecrical Engineering and

More information

Digital Signal Processing

Digital Signal Processing Digial Signal Processing by Andreas Spanias, Ph.D Professor and SenSIP Cener Co- direcor Deparmen Elecrical Engineering Arizona Sae Universiy Tempe AZ 85287-576 spanias@asu.edu February 27 for Universiy

More information

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors Deerminaion of he Sampling Period Required for a Fas Dynamic Response of DC-Moors J. A. GA'EB, Deparmen of Elecrical and Compuer Eng, The Hashemie Universiy, P.O.Box 15459, Posal code 13115, Zerka, JORDAN

More information

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn MIT Deparmen of Chemisry 5.74, Spring 4: Inroducory Quanum Mechanics II p. 33 Insrucor: Prof. Andrei Tokmakoff PERTURBATION THEORY Given a Hamilonian H ( ) = H + V ( ) where we know he eigenkes for H H

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

Detection of Tire Lateral Force Based on a Resolver Mechanism

Detection of Tire Lateral Force Based on a Resolver Mechanism 4 Special Issue Esimaion and Conrol of Vehicle Dynamics for Acive Safey Research Repor Deecion of Tire Laeral Force Based on a Resolver Mechanism Takaji Umeno To observe he fricional sae of a ire and improve

More information

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt Specral Analysis Asignalx may be represened as a funcion of ime as x() or as a funcion of frequency X(f). This is due o relaionships developed by a French mahemaician, physicis, and Egypologis, Joseph

More information

Digital Modulation Schemes

Digital Modulation Schemes Digial Modulaio cheme Digial ramiio chai igal repreeaio ime domai Frequecy domai igal pace Liear modulaio cheme Ampliude hi Keyig (AK) Phae hi Keyig (PK) Combiaio (APK, QAM) Pule hapig Coiuou Phae Modulaio

More information

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University Communication Systems Lecture 1, Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University 1 Outline Linear Systems with WSS Inputs Noise White noise, Gaussian noise, White Gaussian noise

More information