Solutions of exercise sheet 3

Size: px
Start display at page:

Download "Solutions of exercise sheet 3"

Transcription

1 Topology D-MATH, FS 2013 Damen Calaque Solutons o exercse sheet 3 1. (a) Let U Ă Y be open. Snce s contnuous, 1 puq s open n X. Then p A q 1 puq 1 puq X A s open n the subspace topology on A. (b) I s contnuous, A, B are contnuous by (a). Conversely, let A, B be contnuous. Assume that A, B both are closed (replace closed by open n the ollowng or the other case). Let C Ă Y be closed. Then, snce A, B are contnuous, p q 1 A pcq, p q 1 B pcq are closed n A, B, respectvely, and snce A, B are closed n X, p q 1 A pcq C X A, p q 1 B pcq C X B are also closed n X. Then, 1 pcq pc X Aq Y pc X Bq s closed n X as the unon o two closed sets. 2. Frst, note that ϕ : C Ñ t0, 1u N, 8ÿ a n 3 n ÞÑ p1 2 a nq s a bjecton between C and the set o t0, 1u-sequences. Now we have to show that ths s both open and contnuous. Observe that the sets B n ppa k qq tpb k q : a k b k, 1 ď k ď nu orm a bass o the product topology on t0, 1u N. To show that ϕ 1 s contnuous, let ε ą 0 and choose an m P N such that 3 m ă ε. Let a pa k q kpn P t0, 1u N. Then or every b pb k q kpn P B m ppa k qq, ϕ 1 pbq ϕ 1 paq ď ÿ 2 3 k 3 m ă ε, so ϕ 1 pb m paqq Ď B ε pϕ 1 paqq. kąm To see that ϕ s contnuous, consder x, y P C such that x y ă 3 r. Then, ϕpxq a pa k q kpn, ϕpyq b pb k q kpn, let N be the smallest ndex such that a N b N. Then, 3 r ą x y ϕ 1 paq ϕ 1 pbq ě 2 3 N ÿ b k a 3 k k so r ă N and thereore b P B r paq. ě kąn 2 3 N 2 ÿ kąn 3 k 3 N, 3. (a) I T 1 s a topology on Y, then all : py, T 1 q Ñ px, T q are contnuous or every, 1 pt q Ď T 1 Ť PI 1 pt q Ď T 1. Snce Ť PI 1 pt q tsel s a subbass, the topology T t generates s the coarsest such that all are contnuous.

2 Let : pz, Vq Ñ py, T q be contnuous. Then all are contnuous as compostons o contnuous maps (exercse 4 (b) on sheet 2). Conversely, let all be contnuous,.e. or every, V Ě p q 1 pt q 1 p 1 pt qq, so 1 p Ť PI 1 pt qq Ď V. Snce Ť PI 1 pt q s a subbass or the topology T, s contnuous. Now assume that T s a topology on Y satsyng ths property. Then consder the map d : py, T q Ñ py, T q. All d : py, T q Ñ px, T q are contnuous, so, snce T satses the property, d s contnuous. By exercse 6 (a) on sheet 2, T Ď T. Conversely, consder the map d : py, T q Ñ py, T q. It s contnuous, so by the property, all d : py, T q Ñ px, T q are contnuous, so agan by exercse 6 (a) on sheet 2, 1 pt q Ď T so thereore, by the constructon o T, T Ď T. So T T. (b) The ntal topology on A wth respect to the map 0 : A ãñ X s generated by the subbass 0 1 pt q, whch s precsely the denton o the subspace topology (c) The ntal topology on X 1 ˆ X 2 wth respect to the projectons 1 : X 1 ˆ X 2 ÝÑ X 1, 2 : X 1 ˆ X 2 ÝÑ X 2 s the topology generated by 1 1 pt 1q Y 1 2 pt 2q and 1 1 pt 1q tu ˆ X 2 : U P T 1 u, 2 1 pt 2q tx 1 ˆ V : V P T 2 u. Thus, the ntal topology s contaned n the product topology. Moreover, U ˆ V pu ˆ X 2 q X px 1 ˆ V q, so actually, the topologes are equal. For an arbtrary amly on topologcal spaces, the ntal topology on ś PI X s generated by ď 1 pt q ď tu ˆ ź X j : U P T u, PI PI jpi,j whch gves the product topology on ś PI X. (d) I the topology on ś 8 X were dscrete, then all sngletons tpx nq 8 u would be open. However, all basc open sets are o the orm ś 8 X n, wth X n Ă X and X n X or all but ntely many n; n partcular, they are nnte (even uncountable) sets, so any unon o basc open sets wll be nnte, and thereore no open set consts o only ntely many ponts (let alone just one). However, we take the box topology, tpx n q 8 u ś 8 tx nu s open because or every n, tx n u s open n X. 4. (a) Snce 1 phq H, 1 py q X, and 1 po 1 X... X O n q 1 po 1 q X... X 1 po n q, 1 ` ď ď O j 1 po j q, jpj jpj T to Ď P I : 1 poq P T u s a topology on Y.

3 By denton, 1 pt q Ď T, so all : px, T q Ñ py, T q are contnuous. Moreover, let T 1 be another topology on Y such that all : px, T q Ñ py, T 1 q are contnuous. Then or every O P T 1, 1 poq P T, so O P T and T 1 Ď T. Thereore T s the nest such topology. Let : py, T q Ñ pz, Vq be contnuous. Then s contnuous as a composton o contnuous maps (exercse 4 (b) on sheet 2). Conversely, let all be contnuous,.e. or every, T Ě p q 1 pvq 1 p 1 pvqq and thus, by denton o T, 1 pvq Ď T, so s contnuous. Now assume that T s a topology on Y satsyng ths property. Then the map d : py, T q Ñ py, T q s contnuous, so all d : px T q Ñ py, T q are contnuous. We saw above that ths mples that T Ď T. Conversely, the maps d : px, T q ÝÑ py, T q ÝÑ d py, T q are contnuous, so by the property or T, d : py, T q Ñ py, T q s contnuous, so by exercse 6 (a) on sheet 2, T Ď T. Thereore T T. (b) The nal topology on X wth respect to the maps d : px, T q Ñ X s T to Ď P I : O P T u č PI T. (c) The nal topology on Y X 1 \ X 2 wth respect to the nclusons 1, 2 s T to Ď X and 2 1 2u to Ď X O X X 1 P T 1 and O X X 2 P T 2 u to 1 \ O 2 Ă X O 1 P T 1, O 2 P T 2 u. Smlary, or arbtrary amles o topologcal spaces px q PI, open sets o š PI X are o the orm š PI O, where O P T. (d) To remember the ndces, we wrte elements as px, jq P š X, where x P X. Then # 1 txu, j ptpx, jquq H j. Snce X s dscrete, all 1 ptpx, jquq are open, so by denton o the nal topology, all sngletons tpx, jqu are open. They orm a bass or the dscrete topology, so X s dscrete. š 5. (a) Recall that the gven topologes have the ollowng respectve bases:! ź 8 ) B prod : U nˇˇˇun Ă R open, U n R or almost all n, and! ź 8 B box : ) U nˇˇˇun Ă R open B u : tpy n q P R N sup y n x n ă ru r ą 0 and px n q P R N(.

4 To see whether a map s contnuous, we have to check the premages o all basc open sets are open n R. The premage o a set ś 8 U n s Ş 8 U n. In B prod, all but ntely many U n are equal to R, so Ş 8 U n Ş m k 1 U n k, whch s open, so the map s contnuous wth respect to O prod. The set ś 8 p 1 n, 1 n q s open n O box, but ts premage s Ş 8 p 1 n, 1 n q t0u, whch s not open, so the map s not contnuous wth respect to O box. The premage o a basc open set U tpy n q P R N sup y n x n ă ru s 1 puq ty P R Dɛ ą 0 : sup y x n r ɛu. Let y P 1 puq and let ɛ r sup y x n. Then or any t P py ɛ, y ` ɛq, we have sup t x n sup t y ` y x n ď t y ` sup y x n ă ɛ ` r ɛ r, hence t P 1 puq. Ths shows that py ɛ, y ` ɛq Ă 1 puq,.e. every pont y P 1 puq has an open neghborhood contaned n 1 puq; so 1 puq s open, and thereore s contnuous wth respect to O u. (b) I pa n q converges to a, then every open neghborhood o a contans all but ntely many elements o pa n q. In partcular, U Ă X s an open neghborhood o a, then the basc open set U ˆ śjpiztu X j contans all but ntely many elements o pa n q, and thereore, U contans all but ntely many elements o `pan q. Hence `pan q converges to a n X. On the other P I : `pa n q converges to a, then or any, any open neghborhood U Ă X o a wll contan all but ntely many elements o `pa n q. Let N U : tn P N pa n q R U u Ă N. Now let U be a basc open neghborhood o a,.e. U ś PI U, wth U Ă X open, and U X or all but ntely many. Note that N U : tn P N a n R Uu ď PI N U. But snce all N U are nte, and N U or all but ntely many, ths unon s actually a nte unon o nte sets, so N U s nte; so U contans all but ntely many elements o pa n q,.e. pa n q converges to a. Makng the topology ner makes t harder or sequences to converge, so a sequence n R N converges wth respect to the unorm or box topology, then t also converges n the product topology and hence t converges n all coordnates (.e. the and only mplcaton also holds or the unorm and box topology). We gve a counterexample or the other mplcaton: For P N, let pa n q : δ n. Clearly, lm nñ8 pa n q 0. However, 0 ă r ă 1, because or all n P N we have sup PN pa n q 1, the open set tpy q P R N sup PN y n ă ru contans no pont o the sequence pa n q. Thereore, pa n q does not converge wth respect to the unorm topology and, snce the box topology s ner than the unorm topology, t does not converge wth respect to the box topology ether. (c) Let B : XzA tpx n q P R N x n 0 or nntely many nu. Let U Ă X be a basc open subset,.e. U ś m k 1 U n k ˆ śn n 1,...,n m R, wth U n Ă R non-empty open. For 1 ď k ď m choose x nk P U nk, and put x n : 0 or n n 1,..., n m. Then px n q 8 P U, and x n 0 or all but ntely many n,.e. px n q 8 R B. Ths shows that there s no basc open set U wth U Ă B, and thereore B. Consequently, A XzB X.

5 (d) Let ś kpn O k be open n the box topology, so all O k are open n R. Then ` ź nź O k ι 1 n kpn k 1 s open n R n by the denton o the standard topology T n on R n (whch s the product topology). So T box Ď T nal. To see that the nal topology s strctly ner than the box topology, we nd two examples o sets whch are open n the nal topology, but not n the box topology: () (Example gven by Danel Robert-Ncoud) Consder the set O k O tpt, t, t,...q : t P Rzt0uu. Then or every n, ι 1 n poq H, so O s open n the nal topology. However, O cannot be wrtten as ś PI O, so t s not open n the box topology. () (Example gven by Ljun Dng) Consder the set nÿ O tpx k q kpn P N, x 2 k ă π2 6 u. k 1 Then or every n, ι 1 n poq tpx k q n k 1 : ř n k 1 x2 k ă π2 6 u, so O s open n the nal topology. Now observe that, snce ř kpn 1 π2 k 2 6 and the summands are postve, p 1 k q kpn P O. However, O were open or the box topology, there would be a basc open set p 1 k q kpn P ź kpnpa k, b k q Ă O. Ths s not possble snce or any p 1 k q kpn px k q kpn P ś kpn pa k, b k q, x k ě 1 n, there s an ndex k 0 such that x k0 ą 1 k 0, and then ε x k0 1 k 0 ą 0. By the convergence o ř kpn 1, there s an ndex K such that π2 k 2 6 řk k 1 1 ă ε 2, k 2 so ÿ k q kpnpx 2 ą ÿ 1 k 2 ` ε2 ą π2 6. kpn Remark. The mstake n the prevous (wrong) soluton was to assume that an arbtrary subset o R N s o the orm O ś kpn O k. However, as you can see n the examples above, ths s not always the case!

Math 205A Homework #2 Edward Burkard. Assume each composition with a projection is continuous. Let U Y Y be an open set.

Math 205A Homework #2 Edward Burkard. Assume each composition with a projection is continuous. Let U Y Y be an open set. Math 205A Homework #2 Edward Burkard Problem - Determne whether the topology T = fx;?; fcg ; fa; bg ; fa; b; cg ; fa; b; c; dgg s Hausdor. Choose the two ponts a; b 2 X. Snce there s no two dsjont open

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

= s j Ui U j. i, j, then s F(U) with s Ui F(U) G(U) F(V ) G(V )

= s j Ui U j. i, j, then s F(U) with s Ui F(U) G(U) F(V ) G(V ) 1 Lecture 2 Recap Last tme we talked about presheaves and sheaves. Preshea: F on a topologcal space X, wth groups (resp. rngs, sets, etc.) F(U) or each open set U X, wth restrcton homs ρ UV : F(U) F(V

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

REAL ANALYSIS II TAKE HOME EXAM. T. Tao s Lecture Notes Set 5

REAL ANALYSIS II TAKE HOME EXAM. T. Tao s Lecture Notes Set 5 REAL ANALYSIS II TAKE HOME EXAM CİHAN BAHRAN T. Tao s Lecture Notes Set 5 1. Suppose that te 1, e 2, e 3,... u is a countable orthonormal system in a complex Hilbert space H, and c 1, c 2,... is a sequence

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Random Variables. Andreas Klappenecker. Texas A&M University

Random Variables. Andreas Klappenecker. Texas A&M University Random Variables Andreas Klappenecker Texas A&M University 1 / 29 What is a Random Variable? Random variables are functions that associate a numerical value to each outcome of an experiment. For instance,

More information

NOTES ON SOME EXERCISES OF LECTURE 5, MODULE 2

NOTES ON SOME EXERCISES OF LECTURE 5, MODULE 2 NOTES ON SOME EXERCISES OF LECTURE 5, MODULE 2 MARCO VITTURI Contents 1. Solution to exercise 5-2 1 2. Solution to exercise 5-3 2 3. Solution to exercise 5-7 4 4. Solution to exercise 5-8 6 5. Solution

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

MAT 578 Functional Analysis

MAT 578 Functional Analysis MAT 578 Functonal Analyss John Qugg Fall 2008 Locally convex spaces revsed September 6, 2008 Ths secton establshes the fundamental propertes of locally convex spaces. Acknowledgment: although I wrote these

More information

Entropy and Ergodic Theory Notes 22: The Kolmogorov Sinai entropy of a measure-preserving system

Entropy and Ergodic Theory Notes 22: The Kolmogorov Sinai entropy of a measure-preserving system Entropy and Ergodic Theory Notes 22: The Kolmogorov Sinai entropy of a measure-preserving system 1 Joinings and channels 1.1 Joinings Definition 1. If px, µ, T q and py, ν, Sq are MPSs, then a joining

More information

Math 702 Midterm Exam Solutions

Math 702 Midterm Exam Solutions Math 702 Mdterm xam Solutons The terms measurable, measure, ntegrable, and almost everywhere (a.e.) n a ucldean space always refer to Lebesgue measure m. Problem. [6 pts] In each case, prove the statement

More information

ADVANCE TOPICS IN ANALYSIS - REAL. 8 September September 2011

ADVANCE TOPICS IN ANALYSIS - REAL. 8 September September 2011 ADVANCE TOPICS IN ANALYSIS - REAL NOTES COMPILED BY KATO LA Introductions 8 September 011 15 September 011 Nested Interval Theorem: If A 1 ra 1, b 1 s, A ra, b s,, A n ra n, b n s, and A 1 Ě A Ě Ě A n

More information

Approximation in the Zygmund Class

Approximation in the Zygmund Class Approximation in the Zygmund Class Odí Soler i Gibert Joint work with Artur Nicolau Universitat Autònoma de Barcelona New Developments in Complex Analysis and Function Theory, 02 July 2018 Approximation

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative

Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative notation: H tx l l P Zu xxy, Additive notation: H tlx

More information

Flag Varieties. Matthew Goroff November 2, 2016

Flag Varieties. Matthew Goroff November 2, 2016 Flag Varieties Matthew Goroff November 2, 2016 1. Grassmannian Variety Definition 1.1: Let V be a k-vector space of dimension n. The Grassmannian Grpr, V q is the set of r-dimensional subspaces of V. It

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Entropy and Ergodic Theory Lecture 27: Sinai s factor theorem

Entropy and Ergodic Theory Lecture 27: Sinai s factor theorem Entropy and Ergodic Theory Lecture 27: Sinai s factor theorem What is special about Bernoulli shifts? Our main result in Lecture 26 is weak containment with retention of entropy. If ra Z, µs and rb Z,

More information

DS-GA 1002: PREREQUISITES REVIEW SOLUTIONS VLADIMIR KOBZAR

DS-GA 1002: PREREQUISITES REVIEW SOLUTIONS VLADIMIR KOBZAR DS-GA 2: PEEQUISIES EVIEW SOLUIONS VLADIMI KOBZA he following is a selection of questions (drawn from Mr. Bernstein s notes) for reviewing the prerequisites for DS-GA 2. Questions from Ch, 8, 9 and 2 of

More information

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets 5. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

On Borel maps, calibrated σ-ideals and homogeneity

On Borel maps, calibrated σ-ideals and homogeneity On Borel maps, calibrated σ-ideals and homogeneity Institute of Mathematics University of Warsaw Ideals and exceptional sets in Polish spaces, Lausanne, 4-8 June 2018 The results come from a joint paper

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Local behaviour of Galois representations

Local behaviour of Galois representations Local behaviour of Galois representations Devika Sharma Weizmann Institute of Science, Israel 23rd June, 2017 Devika Sharma (Weizmann) 23rd June, 2017 1 / 14 The question Let p be a prime. Let f ř 8 ně1

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Math 261 Exercise sheet 2

Math 261 Exercise sheet 2 Math 261 Exercse sheet 2 http://staff.aub.edu.lb/~nm116/teachng/2017/math261/ndex.html Verson: September 25, 2017 Answers are due for Monday 25 September, 11AM. The use of calculators s allowed. Exercse

More information

Extensive Form Abstract Economies and Generalized Perfect Recall

Extensive Form Abstract Economies and Generalized Perfect Recall Extensive Form Abstract Economies and Generalized Perfect Recall Nicholas Butler Princeton University July 30, 2015 Nicholas Butler (Princeton) EFAE and Generalized Perfect Recall July 30, 2015 1 / 1 Motivation

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

DIFFERENTIAL SCHEMES

DIFFERENTIAL SCHEMES DIFFERENTIAL SCHEMES RAYMOND T. HOOBLER Dedcated to the memory o Jerry Kovacc 1. schemes All rngs contan Q and are commutatve. We x a d erental rng A throughout ths secton. 1.1. The topologcal space. Let

More information

For example, p12q p2x 1 x 2 ` 5x 2 x 2 3 q 2x 2 x 1 ` 5x 1 x 2 3. (a) Let p 12x 5 1x 7 2x 4 18x 6 2x 3 ` 11x 1 x 2 x 3 x 4,

For example, p12q p2x 1 x 2 ` 5x 2 x 2 3 q 2x 2 x 1 ` 5x 1 x 2 3. (a) Let p 12x 5 1x 7 2x 4 18x 6 2x 3 ` 11x 1 x 2 x 3 x 4, SOLUTIONS Math A4900 Homework 5 10/4/2017 1. (DF 2.2.12(a)-(d)+) Symmetric polynomials. The group S n acts on the set tx 1, x 2,..., x n u by σ x i x σpiq. That action extends to a function S n ˆ A Ñ A,

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1].

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1]. REDUCTION MODULO p. IAN KIMING We wll prove the reducton modulo p theorem n the general form as gven by exercse 4.12, p. 143, of [1]. We consder an ellptc curve E defned over Q and gven by a Weerstraß

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

42. Mon, Dec. 8 Last time, we were discussing CW complexes, and we considered two di erent CW structures on S n. We continue with more examples.

42. Mon, Dec. 8 Last time, we were discussing CW complexes, and we considered two di erent CW structures on S n. We continue with more examples. 42. Mon, Dec. 8 Last tme, we were dscussng CW complexes, and we consdered two d erent CW structures on S n. We contnue wth more examples. (2) RP n. Let s start wth RP 2. Recall that one model for ths space

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

arxiv: v2 [math.ca] 13 May 2015

arxiv: v2 [math.ca] 13 May 2015 ON THE CLOSURE OF TRANSLATION-DILATION INVARIANT LINEAR SPACES OF POLYNOMIALS arxiv:1505.02370v2 [math.ca] 13 May 2015 J. M. ALMIRA AND L. SZÉKELYHIDI Abstract. Assume that a linear space of real polynomials

More information

SOLUTIONS Math B4900 Homework 9 4/18/2018

SOLUTIONS Math B4900 Homework 9 4/18/2018 SOLUTIONS Math B4900 Homework 9 4/18/2018 1. Show that if G is a finite group and F is a field, then any simple F G-modules is finitedimensional. [This is not a consequence of Maschke s theorem; it s just

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

MATH 387 ASSIGNMENT 2

MATH 387 ASSIGNMENT 2 MATH 387 ASSIGMET 2 SAMPLE SOLUTIOS BY IBRAHIM AL BALUSHI Problem 4 A matrix A ra ik s P R nˆn is called symmetric if a ik a ki for all i, k, and is called positive definite if x T Ax ě 0 for all x P R

More information

Erdinç Dündar, Celal Çakan

Erdinç Dündar, Celal Çakan DEMONSTRATIO MATHEMATICA Vol. XLVII No 3 2014 Erdinç Dündar, Celal Çakan ROUGH I-CONVERGENCE Abstract. In this work, using the concept of I-convergence and using the concept of rough convergence, we introduced

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Genericity of Critical Types

Genericity of Critical Types Genercty of Crtcal Types Y-Chun Chen Alfredo D Tllo Eduardo Fangold Syang Xong September 2008 Abstract Ely and Pesk 2008 offers an nsghtful characterzaton of crtcal types: a type s crtcal f and only f

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

Intuitionistic Fuzzy G δ -e-locally Continuous and Irresolute Functions

Intuitionistic Fuzzy G δ -e-locally Continuous and Irresolute Functions Intern J Fuzzy Mathematcal rchve Vol 14, No 2, 2017, 313-325 ISSN 2320 3242 (P), 2320 3250 (onlne) Publshed on 11 December 2017 wwwresearchmathscorg DOI http//dxdoorg/1022457/jmav14n2a14 Internatonal Journal

More information

EXPANSIVE MAPPINGS. by W. R. Utz

EXPANSIVE MAPPINGS. by W. R. Utz Volume 3, 978 Pages 6 http://topology.auburn.edu/tp/ EXPANSIVE MAPPINGS by W. R. Utz Topology Proceedngs Web: http://topology.auburn.edu/tp/ Mal: Topology Proceedngs Department of Mathematcs & Statstcs

More information

Ground States are generically a periodic orbit

Ground States are generically a periodic orbit Gonzalo Contreras CIMAT Guanajuato, Mexico Ergodic Optimization and related topics USP, Sao Paulo December 11, 2013 Expanding map X compact metric space. T : X Ñ X an expanding map i.e. T P C 0, Dd P Z`,

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences Tutoral Letter 06//018 Specal Relatvty and Reannan Geoetry APM3713 Seester Departent of Matheatcal Scences IMPORTANT INFORMATION: Ths tutoral letter contans the solutons to Assgnent 06. BAR CODE Learn

More information

Lecture 7: Gluing prevarieties; products

Lecture 7: Gluing prevarieties; products Lecture 7: Glung prevaretes; products 1 The category of algebrac prevaretes Proposton 1. Let (f,ϕ) : (X,O X ) (Y,O Y ) be a morphsm of algebrac prevaretes. If U X and V Y are affne open subvaretes wth

More information

Entropy and Ergodic Theory Lecture 28: Sinai s and Ornstein s theorems, II

Entropy and Ergodic Theory Lecture 28: Sinai s and Ornstein s theorems, II Entropy and Ergodic Theory Lecture 28: Sinai s and Ornstein s theorems, II 1 Proof of the update proposition Consider again an ergodic and atomless source ra Z, µs and a Bernoulli source rb Z, pˆz s such

More information

Week 2. This week, we covered operations on sets and cardinality.

Week 2. This week, we covered operations on sets and cardinality. Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

More information

THE FUNDAMENTAL THEOREM OF CALCULUS FOR MULTIDIMENSIONAL BANACH SPACE-VALUED HENSTOCK VECTOR INTEGRALS

THE FUNDAMENTAL THEOREM OF CALCULUS FOR MULTIDIMENSIONAL BANACH SPACE-VALUED HENSTOCK VECTOR INTEGRALS Real Analyss Exchange Vol.,, pp. 469 480 Márca Federson, Insttuto de Matemátca e Estatístca, Unversdade de São Paulo, R. do Matão 1010, SP, Brazl, 05315-970. e-mal: marca@me.usp.br THE FUNDAMENTAL THEOREM

More information

DISTRIBUTIONAL BOUNDARY VALUES : SOME NEW PERSPECTIVES

DISTRIBUTIONAL BOUNDARY VALUES : SOME NEW PERSPECTIVES DISTRIBUTIONAL BOUNDARY VALUES : SOME NEW PERSPECTIVES DEBRAJ CHAKRABARTI AND RASUL SHAFIKOV 1. Boundary values of holomorphic functions as currents Given a domain in a complex space, it is a fundamental

More information

Mathematische Methoden der Unsicherheitsquantifizierung

Mathematische Methoden der Unsicherheitsquantifizierung Mathematische Methoden der Unsicherheitsquantifizierung Oliver Ernst Professur Numerische Mathematik Sommersemester 2014 Contents 1 Introduction 1.1 What is Uncertainty Quantification? 1.2 A Case Study:

More information

Math 101 Fall 2013 Homework #7 Due Friday, November 15, 2013

Math 101 Fall 2013 Homework #7 Due Friday, November 15, 2013 Math 101 Fall 2013 Homework #7 Due Frday, November 15, 2013 1. Let R be a untal subrng of E. Show that E R R s somorphc to E. ANS: The map (s,r) sr s a R-balanced map of E R to E. Hence there s a group

More information

NOTES WEEK 13 DAY 2 SCOT ADAMS

NOTES WEEK 13 DAY 2 SCOT ADAMS NOTES WEEK 13 DAY 2 SCOT ADAMS Recall: Let px, dq be a metric space. Then, for all S Ď X, we have p S is sequentially compact q ñ p S is closed and bounded q. DEFINITION 0.1. Let px, dq be a metric space.

More information

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION PROCDINGS OF TH AMRICAN MATHMATICAL SOCITY Volume 125, Number 7, July 1997, Pages 2119{2125 S 0002-9939(97)03816-1 TH STRONG OPN ST CONDITION IN TH RANDOM CAS NORBRT PATZSCHK (Communcated by Palle. T.

More information

APPROXIMATE HOMOMORPHISMS BETWEEN THE BOOLEAN CUBE AND GROUPS OF PRIME ORDER

APPROXIMATE HOMOMORPHISMS BETWEEN THE BOOLEAN CUBE AND GROUPS OF PRIME ORDER APPROXIMATE HOMOMORPHISMS BETWEEN THE BOOLEAN CUBE AND GROUPS OF PRIME ORDER TOM SANDERS The purpose of this note is to highlight a question raised by Shachar Lovett [Lov], and to offer some motivation

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

Partial Differential Equations and Semigroups of Bounded Linear Operators

Partial Differential Equations and Semigroups of Bounded Linear Operators Partial Differential Equations and Semigroups of Bounded Linear Operators (Currently under construction!) Arnulf Jentzen December 23, 216 2 Preface These lecture notes are based on the lecture notes Stochastic

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

LECTURE V. 1. More on the Chinese Remainder Theorem We begin by recalling this theorem, proven in the preceeding lecture.

LECTURE V. 1. More on the Chinese Remainder Theorem We begin by recalling this theorem, proven in the preceeding lecture. LECTURE V EDWIN SPARK 1. More on the Chnese Remander Theorem We begn by recallng ths theorem, proven n the preceedng lecture. Theorem 1.1 (Chnese Remander Theorem). Let R be a rng wth deals I 1, I 2,...,

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N)

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N) SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) S.BOUCKSOM Abstract. The goal of ths note s to present a remarably smple proof, due to Hen, of a result prevously obtaned by Gllet-Soulé,

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

NOTES WEEK 02 DAY 1. THEOREM 0.3. Let A, B and C be sets. Then

NOTES WEEK 02 DAY 1. THEOREM 0.3. Let A, B and C be sets. Then NOTES WEEK 02 DAY 1 SCOT ADAMS LEMMA 0.1. @propositions P, Q, R, rp or pq&rqs rp p or Qq&pP or Rqs. THEOREM 0.2. Let A and B be sets. Then (i) A X B B X A, and (ii) A Y B B Y A THEOREM 0.3. Let A, B and

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

n-strongly Ding Projective, Injective and Flat Modules

n-strongly Ding Projective, Injective and Flat Modules Internatonal Mathematcal Forum, Vol. 7, 2012, no. 42, 2093-2098 n-strongly Dng Projectve, Injectve and Flat Modules Janmn Xng College o Mathematc and Physcs Qngdao Unversty o Scence and Technology Qngdao

More information

DECOUPLING THEORY HW2

DECOUPLING THEORY HW2 8.8 DECOUPLIG THEORY HW2 DOGHAO WAG DATE:OCT. 3 207 Problem We shall start by reformulatng the problem. Denote by δ S n the delta functon that s evenly dstrbuted at the n ) dmensonal unt sphere. As a temporal

More information

On the smoothness and the totally strong properties for nearness frames

On the smoothness and the totally strong properties for nearness frames Int. Sc. Technol. J. Namba Vol 1, Issue 1, 2013 On the smoothness and the totally strong propertes for nearness frames Martn. M. Mugoch Department of Mathematcs, Unversty of Namba 340 Mandume Ndemufayo

More information

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen omplex Varables hapter 8 Integraton n the omplex Plane March, Lecturer: Shh-Yuan hen Except where otherwse noted, content s lcensed under a BY-N-SA. TW Lcense. ontents ontour ntegrals auchy-goursat theorem

More information

Some multilinear algebra

Some multilinear algebra Some multilinear algera Multilinear forms Let V e a finite dimensional R-vector space, dim V n. For k P N 0, we denote y T k V the vector space of k-linear forms Then T 1 V V and, y convention, T 0 V R.

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

COUNTABLE-CODIMENSIONAL SUBSPACES OF LOCALLY CONVEX SPACES

COUNTABLE-CODIMENSIONAL SUBSPACES OF LOCALLY CONVEX SPACES COUNTABLE-CODIMENSIONAL SUBSPACES OF LOCALLY CONVEX SPACES by J. H. WEBB (Receved 9th December 1971) A barrel n a locally convex Hausdorff space E[x] s a closed absolutely convex absorbent set. A a-barrel

More information

On principal eigenpair of temporal-joined adjacency matrix for spreading phenomenon Abstract. Keywords: 1 Introduction

On principal eigenpair of temporal-joined adjacency matrix for spreading phenomenon Abstract. Keywords: 1 Introduction 1,3 1,2 1 2 3 r A ptq pxq p0q 0 pxq 1 x P N S i r A ptq r A ÝÑH ptq i i ÝÑH t ptq i N t1 ÝÑ ź H ptq θ1 t 1 0 i `t1 ri ` A r ÝÑ H p0q ra ptq t ra ptq i,j 1 i j t A r ptq i,j 0 I r ś N ˆ N mś ĂA l A Ą m...

More information

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan.

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan. THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY Wllam A. Pearlman 2002 References: S. Armoto - IEEE Trans. Inform. Thy., Jan. 1972 R. Blahut - IEEE Trans. Inform. Thy., July 1972 Recall

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1) Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For

More information

Exotic Crossed Products

Exotic Crossed Products Exotic Crossed Products Rufus Willett (joint with Alcides Buss and Siegfried Echterhoff, and with Paul Baum and Erik Guentner) University of Hawai i WCOAS, University of Denver, November 2014 1 / 15 G

More information

Singular integral operators and the Riesz transform

Singular integral operators and the Riesz transform Singular integral operators and the Riesz transform Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto November 17, 017 1 Calderón-Zygmund kernels Let ω n 1 be the measure

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information