Flag Varieties. Matthew Goroff November 2, 2016

Size: px
Start display at page:

Download "Flag Varieties. Matthew Goroff November 2, 2016"

Transcription

1 Flag Varieties Matthew Goroff November 2, Grassmannian Variety Definition 1.1: Let V be a k-vector space of dimension n. The Grassmannian Grpr, V q is the set of r-dimensional subspaces of V. It is clear that Grp1, V q is equivalent to PpV q, and thus is a projective variety. We will show that all Grassmannians are in fact projective varieties. To do this we will use the Plücker embedding: rľpv φ: Grpr, V q Ñ P q where tu 1,..., u r u is a basis for U. U ÞÑ kpu 1 ^ u 2 ^ ^ u r q Proposition 1.2: Grpr, V q is a projective variety. Proof: First we show the Plücker embedding φ is well-defined. If tu 1 ^ ^ u r u, tu 1 1 ^ ^ u1 ru are two basis for U, then there exists a change of basis matrix M relating these two, and we have u 1 ^ ^ u r detpmqpu 1 1 ^ ^ u1 rq. These are equal in projective space, so φ is well-defined. Now we show that the Plücker embedding is in fact an embedding. Let W P Grpr, V q with basis tw 1,..., w r u, and set w w 1 ^ ^ w r. Define the map ϕ w : V Ñ Ź r`1 pv q by ϕ w pvq v ^ w. It is clear that ϕ w is a linear map, and that W Ď kerpϕ w q. To show the reverse inclusion we extend to the basis tw 1,..., w n u of V and consider v ř n i1 α iw i. v ^ w α i w i ^ w i1 ir`1 ir`1 ir`1 α i w i ^ w α i w i ^ w 1 ^ ^ w r p 1q r α i w 1 ^ ^ w r ^ w i As each w 1 ^ ^ w r ^ w i is unique for each i ą r, if v ^ w 0 then α i 0 for all i ą r. This implies that if v P kerpϕ w q then v ř r i1 α iw i, so v P W. So we have that W kerpϕ w q. Now let U P Grpr, V q with basis tu 1,..., u r u, set u u 1 ^ ^ u r. If φpw q φpuq then kw ku, thus kerpϕ w q kerpϕ u q. So from above we have that W U, making φ an embedding. 1

2 Aside: Notice that if we fix a basis tv 1,..., v n u for V, then we get a basis for Źr pv q. So given a W P Grpr, V q, we can use the Plücker embedding to find the coordinates of W in P N. Example 1.3: Let V have basis tv 1, v 2, v 3 u, and let W P Grp2, V q. Then W has some basis tw 1, w 2 u which we can write in terms of the basis of V : w 1 a 1 v 1 ` a 2 v 2 ` a 3 v 3 and w 2 b 1 v 1 ` b 2 v 2 ` b 3 v 3. So: w 1 ^ w 2 pa 1 v 1 ` a 2 v 2 ` a 3 v 3 q ^ pb 1 v 1 ` b 2 v 2 ` b 3 v 3 q pa 1 b 2 a 2 b 1 qv 1 ^ v 2 ` pa 1 b 3 a 3 b 1 qv 1 ^ v 3 ` pa 2 b 3 a 3 b 2 qv 2 ^ v 3 So the Plücker coordinates are: pa 1 b 2 a 2 b 1, a 1 b 3 a 3 b 1, a 2 b 3 a 3 b 2 q. If we let w w 1 ^ w 2 then we can express the map ϕ w in matrix form: `a2 b 3 a 3 b 2 pa 1 b 3 a 3 b 1 q a 1 b 2 a 2 b 1 Example 1.4: Let V have basis tv 1, v 2, v 3 u, and let W P Grp1, V q. Then W has some basis twu which we can write as w a 1 v 1 ` a 2 v 2 ` a 3 v 3. With Plücker coordinates: pa 1, a 2, a 3 q. We can express the map ϕ w in matrix form: a 1 0 a2 a 3 0 a 1 0 a 3 a 2 Now we prove that the image of the Plücker embedding is Zariski closed. Consider v P V and w P Źr pv q. We say that v divides w if w v ^ u for some u P Źr 1 pv q. Notice that v divides w implies that v ^ w 0 as then w must be the wedge product of some scale of v. We will show that v ^ w 0 implies that v divides w. Choose a basis for V that includes v, and write w in the induced basis on Źr pv q. Now when we take v ^ w, we see that each term either has two v s or is a basis element of Źr`1 pv q. As the basis elements cannot cancel with each other, if v ^ w 0 then the only terms of w that occur are those that contain a v. Thus v divides w. Now consider kerpϕ w q. We have just shown that if v P kerpϕ w q then there exists some u P Źr 1 pv q such that w v ^ u. So let w 1,..., w t P kerpϕ w q be linearly independent vectors in V. Then we have that w w 1 ^ ^ w t ^ u for some u P Źr t pv q. Thus t ď r, so dimpkerpϕ w qq ď r. So rankpϕ w q ě n r. But also notice that if w w 1 ^ ^ w r (i.e. w is a decomposable element) then by above we have that rankpϕ w q n r. This gives us that w is decomposable if and only if rankpϕ w q ď n r. Recall that the image we are concerned with are exactly the scalers of decomposable elements. Thus we have shown that an element kw is in the image if and only if rankpϕ w q ď n r. This is a polynomial condition on the matrix of ϕ w, and we know that the matrix is formed of (up to sign) the Plücker coordinates of w. Thus whether or not an element is in the image is a polynomial condition on it s coordinates, meaning that the image is Zariski closed. 2

3 2. Flag Varieties Definition 2.1: Let V be a finite dimensional vector space. A flag is a nested sequence of subspaces of V : V 1 Ă V 2 Ă Ă V r The signature of a flag is the set of dimensions of the subspaces: pdimpv 1 q,..., dimpv r qq. Definition 2.2: Let V be a finite dimensional vector space. A flag variety is the set of all flags of a particular signature. We write: FpV ; n 1,..., n r q tv 1 Ă Ă V r dimpv i q n i u A flag variety of the form FpV ; 1,..., nq is called a complete flag variety. Otherwise we say that FpV ; n 1,..., n r q is a partial flag variety. Proposition 2.3: Let V be a vector space and 0 ă n 1 ă ă n r ď n, then FpV ; n 1,..., n r q is a projective variety. Proof: There is an obvious embedding: Ψ: FpV ; n 1,..., n r q Ñ Grpn 1, V q ˆ ˆ Grpn r, V q We will show that the image is Zariski closed. Let π ij : Grpn 1, V q ˆ ˆ Grpn r, V q Ñ Grpn i, V q ˆ Grpn j, V q be the projection for i ă j. Notice that: ΨpFpV ; n 1,..., n r qq č π 1 ij pψpfpv ; n i, n j qqq iăj So it is sufficient to show that for all i ă j, ΨpFpV ; r, sqq is closed. Let tv 1,..., v n u be a basis for V and let pu, W q P Grpr, V q ˆ Grps, V q. Now let tu 1,..., u r u be a basis for U and tw 1,..., w s u be a basis for W. Now set u u 1 ^ ^ u r and w w 1 ^ ^ w s. We have the maps ϕ u and ϕ w from before, and we can construct the map: ϕ u ϕ w : V Ñ r`1 ľ ľs`1 pv q pv q From before we know that kerpϕ u q U and kerpϕ w q W, so it is clear that kerpϕ u ϕ w q U XW. So we have that: rankpϕ u ϕ w q dimpv q dimpkerpϕ u ϕ w qq dimpv q dimpu X W q ě dimpv q dimpuq n r This implies that U Ă W if and only if rankpϕ u ϕ w q n r if and only if rankpϕ u ϕ w q ď n r. As before, we can represent ϕ u ϕ w by a matrix with respect to a basis, and see that the entries are Plücker coordinates (up to sign) of u and w. rankpϕ u ϕ w q ď n r is a polynomial condition on this matrix, and thus on the coordinate of u and v, thus we have that U Ă W exactly at the zeros of a set of polynomials. So ΨpFpV ; r, sqq is Zariski closed. Example 2.4: Let V be a 3-dimensional vector space with basis tv 1, v 2, v 3 u. Let pu Ă W q P FpV ; 1, 2q with tuu a basis for U and tw 1, w 2 u a basis for W. We see that: U Ă W ðñ kerpϕ u ϕ w q U 3

4 So if we let t t 1 v 1 ` t 2 v 2 ` t 3 v 3 then we have that: U Ă W ðñ t 1 b 23 t 2 b 13 ` t 3 b 12 0 A homogeneous polynomial. 3. Algebraic Groups Definition 3.1: Let G be a group with the structure of an affine algebraic variety such that the multiplication map G ˆ G Ñ G and the inverse map G Ñ G are regular maps of algebraic varieties. Then G is a linear algebraic group. Example 3.2: Glpn, kq is an algebraic group. It is the complement of the zero set of the determinant, a single polynomial. Thus it is an affine variety. The formulas for matrix multiplication and inverse can easily be seen as polynomial equations (as det 0). Definition 3.3: If G is an algebraic group, then we call any maximal connected solvable closed subgroup a Borel subgroup. Example 3.4: Consider T pn, kq, the set of upper-triangular invertible matrices. T pn, kq is the zero set of the polynomials x ij 0 for i ą j in Glpn, kq. So it is also an algebraic group, thus it is Zariski closed. T pn, kq is also connected and solvable, so if it were the maximal such subgroup in Glpn, kq then it would be a Borel subgroup. The Lie-Kolchin theorem tells us that if H is a connected solvable subgroup of Glpn, kq, then H is conjugate to a subgroup of T pn, kq. Thus T pn, kq is maximal among connected solvable subgroups of Glpn, kq so it is a Borel subgroup. Definition 3.5: Let G be an algebraic group and V a variety. we say that G acts on V if there is a group action G ˆ V Ñ V that is also a regular map of algebraic varieties. Just as we can study orbits and stabilizers of group actions, we can study them on algebraic group actions as well. Consider the group action of Glpn, kq where A P Glpn, kq Proposition 3.6: Glpn, kq acts transitively on flag varieties. Proof: Let pu n1 Ă Ă U nr q, pw n1 Ă Ă W nr q P FpV ; n 1,..., n r q. Choose basis tu 1,..., u n u and tw 1,..., w n u of V such that tu 1,..., u ni u is a basis for U ni and tw 1,..., w ni u is a basis for W ni. We can pick an A P Glpn, kq such that Apu i q w i, a change of basis matrix. Proposition 3.7: T pn, kq stabilizes complete flags. 4

5 Definition 3.8: Let G be an algebraic group. If P is a closed subgroup of G where G{P is a projective variety then we call P a parabolic subgroup. Notice that P contains a Borel subgroup. Proposition 3.9: Every parabolic subgroup of Glpn, kq is the stabilizer of some flag. Proof: Let P be a parabolic subgroup. A calculation shows that P is in block matrix form with r blocks. Let FpV ; n 1,..., n r q be the flag variety with subscripts the same as for P. Let te 1,..., e n u be a basis for V, and set F to be the flag pv n1 Ă Ă V nr q where V ni is the span of the first n i of the e s. It is clear that P stabilizes F. References: 1) Letz, Janina Flag Varieties ) Morandi, Patrick Algebraic Groups, Grassmannians, and Flag Varieties

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS J. WARNER SUMMARY OF A PAPER BY J. CARLSON, E. FRIEDLANDER, AND J. PEVTSOVA, AND FURTHER OBSERVATIONS 1. The Nullcone and Restricted Nullcone We will need

More information

Some multilinear algebra

Some multilinear algebra Some multilinear algera Multilinear forms Let V e a finite dimensional R-vector space, dim V n. For k P N 0, we denote y T k V the vector space of k-linear forms Then T 1 V V and, y convention, T 0 V R.

More information

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS 1 SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS HUAJUN HUANG AND HONGYU HE Abstract. Let G be the group preserving a nondegenerate sesquilinear form B on a vector space V, and H a symmetric subgroup

More information

Parameterizing orbits in flag varieties

Parameterizing orbits in flag varieties Parameterizing orbits in flag varieties W. Ethan Duckworth April 2008 Abstract In this document we parameterize the orbits of certain groups acting on partial flag varieties with finitely many orbits.

More information

Parabolic subgroups Montreal-Toronto 2018

Parabolic subgroups Montreal-Toronto 2018 Parabolic subgroups Montreal-Toronto 2018 Alice Pozzi January 13, 2018 Alice Pozzi Parabolic subgroups Montreal-Toronto 2018 January 13, 2018 1 / 1 Overview Alice Pozzi Parabolic subgroups Montreal-Toronto

More information

Local behaviour of Galois representations

Local behaviour of Galois representations Local behaviour of Galois representations Devika Sharma Weizmann Institute of Science, Israel 23rd June, 2017 Devika Sharma (Weizmann) 23rd June, 2017 1 / 14 The question Let p be a prime. Let f ř 8 ně1

More information

LINEAR ALGEBRAIC GROUPS: LECTURE Parabolic Subgroups and Flag Varieties

LINEAR ALGEBRAIC GROUPS: LECTURE Parabolic Subgroups and Flag Varieties LINEAR ALGERAI GROUPS LETURE 7 JOHN SIMANYI. Parabolic Subgroups and Flag Varieties So far, we ve been studying Klein geometry, in particular projective geometry with symmetry group GL(n). Here, the figures

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

For example, p12q p2x 1 x 2 ` 5x 2 x 2 3 q 2x 2 x 1 ` 5x 1 x 2 3. (a) Let p 12x 5 1x 7 2x 4 18x 6 2x 3 ` 11x 1 x 2 x 3 x 4,

For example, p12q p2x 1 x 2 ` 5x 2 x 2 3 q 2x 2 x 1 ` 5x 1 x 2 3. (a) Let p 12x 5 1x 7 2x 4 18x 6 2x 3 ` 11x 1 x 2 x 3 x 4, SOLUTIONS Math A4900 Homework 5 10/4/2017 1. (DF 2.2.12(a)-(d)+) Symmetric polynomials. The group S n acts on the set tx 1, x 2,..., x n u by σ x i x σpiq. That action extends to a function S n ˆ A Ñ A,

More information

MATH Linear Algebra

MATH Linear Algebra MATH 304 - Linear Algebra In the previous note we learned an important algorithm to produce orthogonal sequences of vectors called the Gramm-Schmidt orthogonalization process. Gramm-Schmidt orthogonalization

More information

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle Vector bundles in Algebraic Geometry Enrique Arrondo Notes(* prepared for the First Summer School on Complex Geometry (Villarrica, Chile 7-9 December 2010 1 The notion of vector bundle In affine geometry,

More information

UC Berkeley Summer Undergraduate Research Program 2015 July 8 Lecture

UC Berkeley Summer Undergraduate Research Program 2015 July 8 Lecture UC Berkeley Summer Undergraduate Research Program 25 July 8 Lecture This lecture is intended to tie up some (potential) loose ends that we have encountered on the road during the past couple of weeks We

More information

DS-GA 3001: PROBLEM SESSION 2 SOLUTIONS VLADIMIR KOBZAR

DS-GA 3001: PROBLEM SESSION 2 SOLUTIONS VLADIMIR KOBZAR DS-GA 3: PROBLEM SESSION SOLUTIONS VLADIMIR KOBZAR Note: In this discussion we allude to the fact the dimension of a vector space is given by the number of basis vectors. We will shortly establish this

More information

ALGEBRAIC GEOMETRY I - FINAL PROJECT

ALGEBRAIC GEOMETRY I - FINAL PROJECT ALGEBRAIC GEOMETRY I - FINAL PROJECT ADAM KAYE Abstract This paper begins with a description of the Schubert varieties of a Grassmannian variety Gr(k, n) over C Following the technique of Ryan [3] for

More information

Free Loop Cohomology of Complete Flag Manifolds

Free Loop Cohomology of Complete Flag Manifolds June 12, 2015 Lie Groups Recall that a Lie group is a space with a group structure where inversion and group multiplication are smooth. Lie Groups Recall that a Lie group is a space with a group structure

More information

Proposition (D& F, Thm )

Proposition (D& F, Thm ) Proposition (D& F, Thm 10.5.33) Let Q be an R-module. The following are equivalent. (1) If 0 ãñ A ' Ñ B Ñ C Ñ 0 is exact, then so is 0 ãñ Hom R pc, Qq Ñ '1 1 Hom R pb,qq Ñ Hom R pa, Qq Ñ0. (2) For any

More information

REPRESENTATIONS OF GROUP ALGEBRAS. Contents. 1. Maschke s theorem: every submodule is a direct summand. References 6

REPRESENTATIONS OF GROUP ALGEBRAS. Contents. 1. Maschke s theorem: every submodule is a direct summand. References 6 REPRESENTATIONS OF GROUP ALGEBRAS ZAJJ DAUGHERTY MARCH 27, 28 Contents. Maschke s theorem: every submodule is a direct summand References 6 See [DF, Ch. 8] for proofs and more examples. Jumping back into

More information

Online Exercises for Linear Algebra XM511

Online Exercises for Linear Algebra XM511 This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

More information

Draft. Lecture 01 Introduction & Matrix-Vector Multiplication. MATH 562 Numerical Analysis II. Songting Luo

Draft. Lecture 01 Introduction & Matrix-Vector Multiplication. MATH 562 Numerical Analysis II. Songting Luo Lecture 01 Introduction & Matrix-Vector Multiplication Songting Luo Department of Mathematics Iowa State University MATH 562 Numerical Analysis II Songting Luo ( Department of Mathematics Iowa State University[0.5in]

More information

HOMEWORK 4 MATH B4900 DUE: 2/28/ Annihilators. Let R be a ring with 1, and let M be an R-module. The annihilator of M in R is

HOMEWORK 4 MATH B4900 DUE: 2/28/ Annihilators. Let R be a ring with 1, and let M be an R-module. The annihilator of M in R is HOMEWORK 4 MATH B4900 DUE: 2/28/2018 SOLUTIONS Math B4900 Homework 4 2/28/2018 1. Annihilators. Let R be a ring with 1, and let M be an R-module. The annihilator of M in R is (a) Show that AnnpMq is an

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

Introduction to Applied Algebraic Topology

Introduction to Applied Algebraic Topology Introduction to Applied Algebraic Topology Tom Needham Last Updated: December 10, 2017 These are lecture notes for the course MATH 4570 at the Ohio State University. They are a work in progress and certainly

More information

Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative

Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative notation: H tx l l P Zu xxy, Additive notation: H tlx

More information

Chapter 2: Linear Independence and Bases

Chapter 2: Linear Independence and Bases MATH20300: Linear Algebra 2 (2016 Chapter 2: Linear Independence and Bases 1 Linear Combinations and Spans Example 11 Consider the vector v (1, 1 R 2 What is the smallest subspace of (the real vector space

More information

Subgroups of Linear Algebraic Groups

Subgroups of Linear Algebraic Groups Subgroups of Linear Algebraic Groups Subgroups of Linear Algebraic Groups Contents Introduction 1 Acknowledgements 4 1. Basic definitions and examples 5 1.1. Introduction to Linear Algebraic Groups 5 1.2.

More information

On exceptional completions of symmetric varieties

On exceptional completions of symmetric varieties Journal of Lie Theory Volume 16 (2006) 39 46 c 2006 Heldermann Verlag On exceptional completions of symmetric varieties Rocco Chirivì and Andrea Maffei Communicated by E. B. Vinberg Abstract. Let G be

More information

L E C T U R E 2 1 : P R O P E RT I E S O F M AT R I X T R A N S F O R M AT I O N S I I. Wednesday, November 30

L E C T U R E 2 1 : P R O P E RT I E S O F M AT R I X T R A N S F O R M AT I O N S I I. Wednesday, November 30 L E C T U R E 2 1 : P R O P E RT I E S O F M AT R I X T R A N S F O R M AT I O N S I I Wednesday, November 30 1 the range of a linear transformation Let s begin by defining the range of a linear transformation.

More information

MATH 387 ASSIGNMENT 2

MATH 387 ASSIGNMENT 2 MATH 387 ASSIGMET 2 SAMPLE SOLUTIOS BY IBRAHIM AL BALUSHI Problem 4 A matrix A ra ik s P R nˆn is called symmetric if a ik a ki for all i, k, and is called positive definite if x T Ax ě 0 for all x P R

More information

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N 74 16. Lecture 16: Springer Representations 16.1. The flag manifold. Let G = SL n (C). It acts transitively on the set F of complete flags 0 F 1 F n 1 C n and the stabilizer of the standard flag is the

More information

Solutions of exercise sheet 3

Solutions of exercise sheet 3 Topology D-MATH, FS 2013 Damen Calaque Solutons o exercse sheet 3 1. (a) Let U Ă Y be open. Snce s contnuous, 1 puq s open n X. Then p A q 1 puq 1 puq X A s open n the subspace topology on A. (b) I s contnuous,

More information

NOTES WEEK 04 DAY 1 SCOT ADAMS

NOTES WEEK 04 DAY 1 SCOT ADAMS NOTES WEEK 0 DAY 1 SCOT ADAMS DEFINITION 01 Let m, n P N, B P BpR m, R n q Let e 1,, e m be the standard basis of R m Let f 1,, f n be the standard basis of R n Then we define rbs P R nˆm by rbs ji Bpe

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Lecture 4 Orthonormal vectors and QR factorization

Lecture 4 Orthonormal vectors and QR factorization Orthonormal vectors and QR factorization 4 1 Lecture 4 Orthonormal vectors and QR factorization EE263 Autumn 2004 orthonormal vectors Gram-Schmidt procedure, QR factorization orthogonal decomposition induced

More information

Geometry of Schubert Varieties RepNet Workshop

Geometry of Schubert Varieties RepNet Workshop Geometry of Schubert Varieties RepNet Workshop Chris Spencer Ulrich Thiel University of Edinburgh University of Kaiserslautern 24 May 2010 Flag Varieties Throughout, let k be a fixed algebraically closed

More information

The Riemann Roch theorem for metric graphs

The Riemann Roch theorem for metric graphs The Riemann Roch theorem for metric graphs R. van Dobben de Bruyn 1 Preface These are the notes of a talk I gave at the graduate student algebraic geometry seminar at Columbia University. I present a short

More information

Lecture 24 Properties of deals

Lecture 24 Properties of deals Lecture 24 Properties of deals Aside: Representation theory of finite groups Let G be a finite group, and let R C, R, or Q (any commutative ring). Aside: Representation theory of finite groups Let G be

More information

L E C T U R E 2 1 : M AT R I X T R A N S F O R M AT I O N S. Monday, November 14

L E C T U R E 2 1 : M AT R I X T R A N S F O R M AT I O N S. Monday, November 14 L E C T U R E 2 1 : M AT R I X T R A N S F O R M AT I O N S Monday, November 14 In this lecture we want to consider functions between vector spaces. Recall that a function is simply a rule that takes an

More information

ADVANCE TOPICS IN ANALYSIS - REAL. 8 September September 2011

ADVANCE TOPICS IN ANALYSIS - REAL. 8 September September 2011 ADVANCE TOPICS IN ANALYSIS - REAL NOTES COMPILED BY KATO LA Introductions 8 September 011 15 September 011 Nested Interval Theorem: If A 1 ra 1, b 1 s, A ra, b s,, A n ra n, b n s, and A 1 Ě A Ě Ě A n

More information

This MUST hold matrix multiplication satisfies the distributive property.

This MUST hold matrix multiplication satisfies the distributive property. The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients

More information

5 Linear Transformations

5 Linear Transformations Lecture 13 5 Linear Transformations 5.1 Basic Definitions and Examples We have already come across with the notion of linear transformations on euclidean spaces. We shall now see that this notion readily

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

Regular N-orbits in the nilradical of a parabolic subalgebra

Regular N-orbits in the nilradical of a parabolic subalgebra Regular N-orbits in the nilradical of a parabolic subalgebra arxiv:1203.2754v2 [math.rt] 14 May 2012 A. N. Panov V. V. Sevostyanova Abstract. In the present paper the adjoint action of the unitriangular

More information

Some notes on linear algebra

Some notes on linear algebra Some notes on linear algebra Throughout these notes, k denotes a field (often called the scalars in this context). Recall that this means that there are two binary operations on k, denoted + and, that

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

TOPOLOGY OF LINE ARRANGEMENTS. Alex Suciu. Northeastern University. Workshop on Configuration Spaces Il Palazzone di Cortona September 1, 2014

TOPOLOGY OF LINE ARRANGEMENTS. Alex Suciu. Northeastern University. Workshop on Configuration Spaces Il Palazzone di Cortona September 1, 2014 TOPOLOGY OF LINE ARRANGEMENTS Alex Suciu Northeastern University Workshop on Configuration Spaces Il Palazzone di Cortona September 1, 2014 ALEX SUCIU (NORTHEASTERN) TOPOLOGY OF LINE ARRANGEMENTS CORTONA,

More information

ALGEBRAIC GROUPS: PART IV

ALGEBRAIC GROUPS: PART IV ALGEBRAIC GROUPS: PART IV EYAL Z. GOREN, MCGILL UNIVERSITY Contents 11. Quotients 60 11.1. Some general comments 60 11.2. The quotient of a linear group by a subgroup 61 12. Parabolic subgroups, Borel

More information

Math 249B. Nilpotence of connected solvable groups

Math 249B. Nilpotence of connected solvable groups Math 249B. Nilpotence of connected solvable groups 1. Motivation and examples In abstract group theory, the descending central series {C i (G)} of a group G is defined recursively by C 0 (G) = G and C

More information

PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS

PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS Contents 1. Regular elements in semisimple Lie algebras 1 2. The flag variety and the Bruhat decomposition 3 3. The Grothendieck-Springer resolution 6 4. The

More information

Counting matrices over finite fields

Counting matrices over finite fields Counting matrices over finite fields Steven Sam Massachusetts Institute of Technology September 30, 2011 1/19 Invertible matrices F q is a finite field with q = p r elements. [n] = 1 qn 1 q = qn 1 +q n

More information

Algebraic Geometry (Math 6130)

Algebraic Geometry (Math 6130) Algebraic Geometry (Math 6130) Utah/Fall 2016. 2. Projective Varieties. Classically, projective space was obtained by adding points at infinity to n. Here we start with projective space and remove a hyperplane,

More information

What is A + B? What is A B? What is AB? What is BA? What is A 2? and B = QUESTION 2. What is the reduced row echelon matrix of A =

What is A + B? What is A B? What is AB? What is BA? What is A 2? and B = QUESTION 2. What is the reduced row echelon matrix of A = STUDENT S COMPANIONS IN BASIC MATH: THE ELEVENTH Matrix Reloaded by Block Buster Presumably you know the first part of matrix story, including its basic operations (addition and multiplication) and row

More information

SOLUTIONS Math B4900 Homework 9 4/18/2018

SOLUTIONS Math B4900 Homework 9 4/18/2018 SOLUTIONS Math B4900 Homework 9 4/18/2018 1. Show that if G is a finite group and F is a field, then any simple F G-modules is finitedimensional. [This is not a consequence of Maschke s theorem; it s just

More information

Markov Chains. Andreas Klappenecker by Andreas Klappenecker. All rights reserved. Texas A&M University

Markov Chains. Andreas Klappenecker by Andreas Klappenecker. All rights reserved. Texas A&M University Markov Chains Andreas Klappenecker Texas A&M University 208 by Andreas Klappenecker. All rights reserved. / 58 Stochastic Processes A stochastic process X tx ptq: t P T u is a collection of random variables.

More information

Linear algebra comments. Sophie Marques

Linear algebra comments. Sophie Marques Linear algebra comments Sophie Marques Friday 9 th October, 2015 2 Of course this does not cover all the class notes and it is not enough to do the midterm. It is just a way to extract the very very important

More information

t-deformations of Grothendieck rings as quantum cluster algebras

t-deformations of Grothendieck rings as quantum cluster algebras as quantum cluster algebras Universite Paris-Diderot June 7, 2018 Motivation U q pĝq : untwisted quantum Kac-Moody affine algebra of simply laced type, where q P C is not a root of unity, C : the category

More information

Toshiaki Shoji (Nagoya University) Character sheaves on a symmetric space and Kostka polynomials July 27, 2012, Osaka 1 / 1

Toshiaki Shoji (Nagoya University) Character sheaves on a symmetric space and Kostka polynomials July 27, 2012, Osaka 1 / 1 Character sheaves on a symmetric space and Kostka polynomials Toshiaki Shoji Nagoya University July 27, 2012, Osaka Character sheaves on a symmetric space and Kostka polynomials July 27, 2012, Osaka 1

More information

The Spinor Representation

The Spinor Representation The Spinor Representation Math G4344, Spring 2012 As we have seen, the groups Spin(n) have a representation on R n given by identifying v R n as an element of the Clifford algebra C(n) and having g Spin(n)

More information

Smooth models for Suzuki and Ree Curves

Smooth models for Suzuki and Ree Curves Smooth models for Suzuki and Ree Curves Abdulla Eid RICAM Workshop Algebraic curves over finite fields Linz, Austria, November 11-15, 2013 DL curves 1 / 35 Introduction Three important examples of algebraic

More information

Grassmann Coordinates

Grassmann Coordinates Grassmann Coordinates and tableaux Matthew Junge Autumn 2012 Goals 1 Describe the classical embedding G(k, n) P N. 2 Characterize the image of the embedding quadratic relations. vanishing polynomials.

More information

1. Examples. We did most of the following in class in passing. Now compile all that data.

1. Examples. We did most of the following in class in passing. Now compile all that data. SOLUTIONS Math A4900 Homework 12 11/22/2017 1. Examples. We did most of the following in class in passing. Now compile all that data. (a) Favorite examples: Let R tr, Z, Z{3Z, Z{6Z, M 2 prq, Rrxs, Zrxs,

More information

3.1. Derivations. Let A be a commutative k-algebra. Let M be a left A-module. A derivation of A in M is a linear map D : A M such that

3.1. Derivations. Let A be a commutative k-algebra. Let M be a left A-module. A derivation of A in M is a linear map D : A M such that ALGEBRAIC GROUPS 33 3. Lie algebras Now we introduce the Lie algebra of an algebraic group. First, we need to do some more algebraic geometry to understand the tangent space to an algebraic variety at

More information

arxiv: v1 [math.ag] 17 Apr 2015

arxiv: v1 [math.ag] 17 Apr 2015 FREE RESOLUTIONS OF SOME SCHUBERT SINGULARITIES. MANOJ KUMMINI, V. LAKSHMIBAI, PRAMATHANATH SASTRY, AND C. S. SESHADRI arxiv:1504.04415v1 [math.ag] 17 Apr 2015 Abstract. In this paper we construct free

More information

MODEL ANSWERS TO HWK #3

MODEL ANSWERS TO HWK #3 MODEL ANSWERS TO HWK #3 1. Suppose that the point p = [v] and that the plane H corresponds to W V. Then a line l containing p, contained in H is spanned by the vector v and a vector w W, so that as a point

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Symmetric Spaces. Andrew Fiori. Sept McGill University

Symmetric Spaces. Andrew Fiori. Sept McGill University McGill University Sept 2010 What are Hermitian? A Riemannian manifold M is called a Riemannian symmetric space if for each point x M there exists an involution s x which is an isometry of M and a neighbourhood

More information

MATH 260 Homework 2 solutions. 7. (a) Compute the dimension of the intersection of the following two planes in R 3 : x 2y z 0, 3x 3y z 0.

MATH 260 Homework 2 solutions. 7. (a) Compute the dimension of the intersection of the following two planes in R 3 : x 2y z 0, 3x 3y z 0. MATH 6 Homework solutions Problems from Dr Kazdan s collection 7 (a) Compute the dimension of the intersection of the following two planes in R 3 : x y z, 3x 3y z (b) A map L: R 3 R is defined by the matrix

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Canonical Projective Embeddings of the Deligne-Lusztig Curves Associated to 2 A 2, 2 B 2 and 2 G 2

Canonical Projective Embeddings of the Deligne-Lusztig Curves Associated to 2 A 2, 2 B 2 and 2 G 2 Canonical Projective Embeddings of the Deligne-Lusztig Curves Associated to 2 A 2, 2 B 2 and 2 G 2 Daniel M. Kane May 27, 2015 Abstract The Deligne-Lusztig varieties associated to the Coxeter classes of

More information

MOTIVES ASSOCIATED TO SUMS OF GRAPHS

MOTIVES ASSOCIATED TO SUMS OF GRAPHS MOTIVES ASSOCIATED TO SUMS OF GRAPHS SPENCER BLOCH 1. Introduction In quantum field theory, the path integral is interpreted perturbatively as a sum indexed by graphs. The coefficient (Feynman amplitude)

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

Degeneration of Bethe subalgebras in the Yangian

Degeneration of Bethe subalgebras in the Yangian Degeneration of Bethe subalgebras in the Yangian National Research University Higher School of Economics Faculty of Mathematics Moscow, Russia Washington, 2018 Yangian for gl n Let V C n, Rpuq 1 P u 1

More information

c Igor Zelenko, Fall

c Igor Zelenko, Fall c Igor Zelenko, Fall 2017 1 18: Repeated Eigenvalues: algebraic and geometric multiplicities of eigenvalues, generalized eigenvectors, and solution for systems of differential equation with repeated eigenvalues

More information

Review++ of linear algebra continues

Review++ of linear algebra continues Review++ of linear algebra continues Recall a matrix A P M m,n pf q is an array 1 1 2 1 1 n A p j i q 1 2 2 2 2 n...... 1 m n m This encodes a map ' P HompF n,f m q via the images of basis vectors of F

More information

Lecture 10 - Eigenvalues problem

Lecture 10 - Eigenvalues problem Lecture 10 - Eigenvalues problem Department of Computer Science University of Houston February 28, 2008 1 Lecture 10 - Eigenvalues problem Introduction Eigenvalue problems form an important class of problems

More information

Chapter 7. Linear Algebra: Matrices, Vectors,

Chapter 7. Linear Algebra: Matrices, Vectors, Chapter 7. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems Linear algebra includes the theory and application of linear systems of equations, linear transformations, and eigenvalue problems.

More information

NEW REALIZATIONS OF THE MAXIMAL SATAKE COMPACTIFICATIONS OF RIEMANNIAN SYMMETRIC SPACES OF NON-COMPACT TYPE. 1. Introduction and the main results

NEW REALIZATIONS OF THE MAXIMAL SATAKE COMPACTIFICATIONS OF RIEMANNIAN SYMMETRIC SPACES OF NON-COMPACT TYPE. 1. Introduction and the main results NEW REALIZATIONS OF THE MAXIMAL SATAKE COMPACTIFICATIONS OF RIEMANNIAN SYMMETRIC SPACES OF NON-COMPACT TYPE LIZHEN JI AND JIANG-HUA LU Abstract. We give new realizations of the maximal Satake compactifications

More information

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY ADVANCED TOPICS IN ALGEBRAIC GEOMETRY DAVID WHITE Outline of talk: My goal is to introduce a few more advanced topics in algebraic geometry but not to go into too much detail. This will be a survey of

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Throughout these notes, F denotes a field (often called the scalars in this context). 1 Definition of a vector space Definition 1.1. A F -vector space or simply a vector space

More information

Rings and groups. Ya. Sysak

Rings and groups. Ya. Sysak Rings and groups. Ya. Sysak 1 Noetherian rings Let R be a ring. A (right) R -module M is called noetherian if it satisfies the maximum condition for its submodules. In other words, if M 1... M i M i+1...

More information

Lecture 11: Clifford algebras

Lecture 11: Clifford algebras Lecture 11: Clifford algebras In this lecture we introduce Clifford algebras, which will play an important role in the rest of the class. The link with K-theory is the Atiyah-Bott-Shapiro construction

More information

MATH 22A: LINEAR ALGEBRA Chapter 4

MATH 22A: LINEAR ALGEBRA Chapter 4 MATH 22A: LINEAR ALGEBRA Chapter 4 Jesús De Loera, UC Davis November 30, 2012 Orthogonality and Least Squares Approximation QUESTION: Suppose Ax = b has no solution!! Then what to do? Can we find an Approximate

More information

1.4 Solvable Lie algebras

1.4 Solvable Lie algebras 1.4. SOLVABLE LIE ALGEBRAS 17 1.4 Solvable Lie algebras 1.4.1 Derived series and solvable Lie algebras The derived series of a Lie algebra L is given by: L (0) = L, L (1) = [L, L],, L (2) = [L (1), L (1)

More information

Schubert Varieties. P. Littelmann. May 21, 2012

Schubert Varieties. P. Littelmann. May 21, 2012 Schubert Varieties P. Littelmann May 21, 2012 Contents Preface 1 1 SMT for Graßmann varieties 3 1.1 The Plücker embedding.................... 4 1.2 Monomials and tableaux.................... 12 1.3 Straightening

More information

arxiv: v1 [math.gt] 10 Dec 2018

arxiv: v1 [math.gt] 10 Dec 2018 AFFINE ACTIONS WITH HITCHIN LINEAR PART JEFFREY DANCIGER AND TENGREN ZHANG arxiv:1812.03930v1 [math.gt] 10 Dec 2018 Abstract. Properly discontinuous actions of a surface group by affine automorphisms of

More information

MATH 260 Class notes/questions January 10, 2013

MATH 260 Class notes/questions January 10, 2013 MATH 26 Class notes/questions January, 2 Linear transformations Last semester, you studied vector spaces (linear spaces) their bases, dimension, the ideas of linear dependence and linear independence Now

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Synopsis of Numerical Linear Algebra

Synopsis of Numerical Linear Algebra Synopsis of Numerical Linear Algebra Eric de Sturler Department of Mathematics, Virginia Tech sturler@vt.edu http://www.math.vt.edu/people/sturler Iterative Methods for Linear Systems: Basics to Research

More information

Schur s Triangularization Theorem. Math 422

Schur s Triangularization Theorem. Math 422 Schur s Triangularization Theorem Math 4 The characteristic polynomial p (t) of a square complex matrix A splits as a product of linear factors of the form (t λ) m Of course, finding these factors is a

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Cell decompositions and flag manifolds

Cell decompositions and flag manifolds Cell decompositions and flag manifolds Jens Hemelaer October 30, 2014 The main goal of these notes is to give a description of the cohomology of a Grassmannian (as an abelian group), and generalise this

More information

JORDAN NORMAL FORM. Contents Introduction 1 Jordan Normal Form 1 Conclusion 5 References 5

JORDAN NORMAL FORM. Contents Introduction 1 Jordan Normal Form 1 Conclusion 5 References 5 JORDAN NORMAL FORM KATAYUN KAMDIN Abstract. This paper outlines a proof of the Jordan Normal Form Theorem. First we show that a complex, finite dimensional vector space can be decomposed into a direct

More information

REPRESENTATION THEORY OF S n

REPRESENTATION THEORY OF S n REPRESENTATION THEORY OF S n EVAN JENKINS Abstract. These are notes from three lectures given in MATH 26700, Introduction to Representation Theory of Finite Groups, at the University of Chicago in November

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

EKT of Some Wonderful Compactifications

EKT of Some Wonderful Compactifications EKT of Some Wonderful Compactifications and recent results on Complete Quadrics. (Based on joint works with Soumya Banerjee and Michael Joyce) Mahir Bilen Can April 16, 2016 Mahir Bilen Can EKT of Some

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain Section Exercise : We are given the following augumented matrix 3 7 6 3 We have to bring it to the diagonal form The entries below the diagonal are already zero, so we work from bottom to top Adding the

More information

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms De La Fuente notes that, if an n n matrix has n distinct eigenvalues, it can be diagonalized. In this supplement, we will provide

More information

LINES IN P 3. Date: December 12,

LINES IN P 3. Date: December 12, LINES IN P 3 Points in P 3 correspond to (projective equivalence classes) of nonzero vectors in R 4. That is, the point in P 3 with homogeneous coordinates [X : Y : Z : W ] is the line [v] spanned by the

More information