Department of Applied Mathematics, Tsinghua University Beijing , People's Republic of China Received 17 August 1998; accepted 10 December 1998

Size: px
Start display at page:

Download "Department of Applied Mathematics, Tsinghua University Beijing , People's Republic of China Received 17 August 1998; accepted 10 December 1998"

Transcription

1 Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 The dscrete art cal bndary cndtn n a plygnal art cal bndary fr the exterr prblem f Pssn equatn by usng the drect methd f lnes q Hde Han *, Wezhu Ba Department f Appled Mathematcs, Tsnghua Unversty Bejng 00084, Peple's Republc f Chna Receved 7 August 998; accepted 0 December 998 Abstract The numercal smulatn fr the exterr prblem f Pssn equatn s cnsdered. We ntrduced a plygnal art cal bndary C e and desgned a dscrete art cal bndary cndtn n t by usng the drect methd f lnes. Then the rgnal prblem s reduced t a bndary value prblem de ned n a bnded cmputatnal dman wth a plygnal bndary. The nte element apprxmatn f ths reduced bndary value prblem s cnsdered and t s prved that the nte element apprxmate prblem s well psed. Furthermre numercal examples shw that the dscrete art cal bndary cndtn s very e ectve and mre accurate than the Neumann bndary cndtn whch s ften used n engneerng lteratures. Ó 999 Elsever Scence S.A. All rghts reserved. Keywrds: Pssn equatn; Plygnal art cal bndary; Dscrete art cal bndary cndtn; Fnte element apprxmatn. Intrductn When cmputng the numercal slutn f a bndary value prblem f partal d erental equatns n an unbnded dman, ne ften ntrduces an art cal bndary t cut the unbnded part f the dman and sets up an art cal bndary cndtn at the art cal bndary. Then the rgnal prblem s reduced t a bndary value prblem de ned n a bnded cmputatnal dman. In rder t lmt the cmputatnal cst, the bnded cmputatnal dman must nt be t large. Then the art cal bndary cndtn must be a gd apprxmatn f the exact bndary cndtn n the art cal bndary. Thus the accuracy f the art cal bndary cndtn and the cmputatnal cst are clsely related. Therefre desgnng an art cal bndary cndtn wth hgh accuracy n a gven art cal bndary has becme an e ectve and mprtant methd fr slvng partal d erental equatns n an unbnded dman whch arses n vars elds f engneerng, such as ud w arnd bstacles, cplng f structures wth fndatn, wave prpagatn and s n. There are many authrs wh have wrked n ths subject fr vars prblems by d erent technques. Fr nstance, Engqust and Majda [] desgned absrbng bndary cndtns fr the wave equatn. Gldsten [2] presented the exact bndary cndtn and a sequence f ts apprxmatns at an art cal bndary fr Helmhltz-type equatn n wavegudes. Feng [3] prpsed the asympttc radatn q Ths wrk was supprted partly by the Clmbng Prgram f Natnal Key Prject f Fndatn, Dctral Prgram fndatn f Insttutn f Hgher Educatn and the Natnal Natural Scence Fndatn f Chna. Cmputatn was supprted by the State Key Lab. f Scent c and Engneerng Cmputng n Chna. * Crrespndng authr. E-mal address: hanwu@sun.hep.ac.cn (H. Han) /99/$ - see frnt matter Ó 999 Elsever Scence S.A. All rghts reserved. PII: S ( 9 9 )

2 346 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 cndtns fr the reduced wave equatn by usng the asympttc apprxmatn f Hankel functns. Han and Wu [4,5] btaned the exact bndary cndtns and a seres f ther apprxmatns at an art cal bndary fr the Laplace equatn and the lnear elastc system. The exact bndary cndtn at an art cal bndary fr partal d erental equatns n an n nte cylnder was prpsed by Hagstrm and Keller [6,7]. Shrtly after, they used ths technque t slve nnlnear prblems. A famly f art cal bndary cndtns fr unsteady Oseen equatns n the velcty pressure frmulatn wth small vscsty was develped by Halpern and Schatzman [8], whch was then appled t unsteady Naver±Stkes equatns. Nataf [9] desgned an pen bndary cndtn fr a steady Oseen equatn n streamfunctn vrtcty frmulatn, whch s appled t vscs ncmpressble ud w arnd a bdy n a at channel wth slp bndary cndtns n the wall. Hagstrm [0,] prpsed asympttc bndary cndtns at an art cal bndary fr the smulatn f tme-dependent ud ws. Han et al. [2] desgned dscrete art cal bndary cndtns fr ncmpressble vscs ws n an n nte channel by usng a fast teratve methd. Han and Ba [3,4] prpsed dscrete art cal bndary cndtns fr ncmpressble vscs ws n a channel by usng the methd f lnes. Han et al. [5] develped art cal bndary cndtns fr the prblem f n nte elastc fndatn. Recently Ben-Prat and Gvl [6] cnsdered an ellptc art- cal bndary fr the Laplace equatn. One can nd mre references n Ref. [7]. Because f the restrctn f the technques they used, many authrs manly cnsder the regular art cal bndares, such as crcumferences, straght lnes r a segment, as art cal bndares n slvng tw-dmensnal prblems. As we knw, t s very easy t mplement dscretzng a bndary value prblem n a bnded dman wth a plygnal bndary by usng the nte element methd [8]. Thus frm the engneerng pnt f vew, t s natural t ntrduce a plygnal bndary as an art cal bndary fr the prblem n an unbnded dman. Thus hw t desgn an art cal bndary cndtn wth hgh accuracy at a gven plygnal art cal bndary becmes an nterestng pen prblem. In ths paper, we prpse a methd t desgn a dscrete art cal bndary cndtn at a gven plygnal art cal bndary fr the exterr prblem f Pssn equatn by usng the drect methd f lnes. Then the prblem s reduced t a bndary value prblem de ned n a bnded cmputatnal dman. Fnte element apprxmatn f the reduced prblem s als cnsdered. Furthermre numercal examples shw that the dscrete art cal bndary cndtn presented n ths paper s very e ectve. 2. The dscrete art cal bndary cndtn at a plygnal art cal bndary Let C be a bnded, smple and clsed curve n R 2 and X be the unbnded dman wth bndary C. We cnsder the fllwng mdel prblem, the exterr prblem f Pssn equatn: Du ˆ f n X; 2: uj C ˆ g; u s bnded when r! ; 2:2 2:3 where g s a gven functn n C, f s a gven functn n X and we assume that ts supprt s cmpact. Ths prblem s de ned n the unbnded dman X. In Ref. [4], ths prblem was cnsdered. They ntrduced a crcumference as an art cal bndary and desgned a seres f art cal bndary cndtns n t. Then the rgnal prblem (2.)±(2.3) was reduced t a seres f bndary value prblems wth dfferent accuracy n a bnded cmputatnal dman. In ths paper we ntrduce a plygnal art cal bndary C e n X, then X s dvded nt tw parts, the bnded part X and the unbnded part X e ˆ X n X (see Fg. ). C e s gven by r ˆ e h 0 6 h 6 2p 2:4 and such that supp f X. If a sutable bndary cndtn f u at C e s gven, then we can cnsder the bndary value prblem n the bnded dman X. The gal f ths sectn s t desgn the dscrete art cal bndary cndtn at the

3 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345± Fg.. gven plygnal art cal bndary C e. We nw cnsder the restrctn f u, the slutn f prblem (2.)± (2.3), n X e. Then we have that Du ˆ 0 n X e ; 2:5 uj Ce ˆ u e h ; h u 0 h ; 2:6 u s bnded when r! : 2:7 Snce the value uj Ce s unknwn, the prblem (2.5)±(2.7) cannt be slved ndependently. If uj Ce 2 H =2 C e s gven, then the prblem (2.5)±(2.7) has a unque slutn u and we knw =nj Ce 2 H =2 C e [20], where H a C e dentes the usual Sblv space n C e wth real number a [8]. On the ther hand, fr any gven u 0 2 H =2 C e, we knw that the prblem (2.5)±(2.7) has a unque slutn ~u [20]. By usng the trace therem [9], we knw ~u=nj Ce 2 H =2 C e. Hence f we de ne ~u=nj Ce as an mage f u 0 frm the space H =2 C e t H =2 C e, we btan a bnded peratr K : H =2 C e! H =2 C e, namely n ˆ K uj Ce : 2:8 Ce In fact the cndtn (2.8) s an exact bndary cndtn sats ed by the slutn f the rgnal prblem (2.)±(2.3). Hence the restrctn f the slutn f the prblem (2.)±(2.3) n X sats es Du ˆ f n X ; 2:9 uj C ˆ g; n ˆ K uj Ce : Ce 2:0 2: Unfrtunately the bnded peratr K s unknwn, thus the prblem (2.9)±(2.) cannt be slved drectly. We nw return t the prblem (2.5)±(2.7) under the assumptn uj Ce s gven. As shwn n Fg., we assume that the plygnal art cal bndary C e has n vertexes fa ˆ x ; x 2 ; ˆ ; 2;... ; n g wth x ˆ R cs h x 2 ˆ R sn h 6 6 n : 2:2

4 348 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 Furthermre a n dentes the same vertex as a, but wth the ple crdnate R n ˆ R ; h n ˆ h 2p. Fr the ease f expstn, we assume that h ˆ 0. Then the rays fh ˆ h ; 6 6 n g dvde X e nt n parts X e ˆ fx ˆ x ; x 2 j x 2 X e ; h < h < h g 6 6 n : In the fllwng r am s t map the dman X e nt a strp and ts bndary t a segment by a crdnate transfrmatn. Thus n each subdman X e, we ntrduce the mappng x ˆ qe q cs / sn / a x 2 ˆ qe q sn / sn / a h 6 / 6 h 0 6 q < 6 6 n ; h 6 / 6 h 0 6 q < 6 6 n ; 2:3 wth q ˆ x x 2 x x 2 ja a j x x 2 x x 2 q ; 2:4 x x 2 x 2 x 2 2 sn a ˆ x 2 x 2 ja a j x 2 x 2 q ; 2:5 x x 2 x 2 x 2 2 cs a ˆ x x ja a j x x q : 2:6 x x 2 x 2 x 2 2 It s straghtfrward t check that the transfrmatn (2.3) maps X e nt a sem-n nte strp (see Fg. 2): ~X e ˆ f q; / j h < / < h ; 0 < q < g ˆ ; 2;... ; n : Then X e s mapped nt Xe ~ ˆ f q; / j 0 6 / 6 2p; 0 < q < g and C e s mapped nt ~C e ˆ f 0; / j 0 6 / 6 2pg. Mrever, n X e 6 6 n, we have that Fg. 2.

5 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345± q ˆ q e q cs / sn / a q e q sn / x sn / a x 2 ; ˆ q e q cs a q e q sn a ; sn 2 / a x sn 2 / a x 2 ˆ q e q sn a x q sn / sn / a ˆ q e q cs a x 2 q cs / sn / a 2 x 2 2 x 2 2 ˆ q 2 e 2q sn 2 2 a sn 2/ sn 2 / a q 2 sn 2 / sn 2 / a 2 2 ; ; 2:7 2:8 sn2 a q 2 sn a 2 sn / sn / a q ; 2:9 ˆ q 2 e 2q cs 2 2 a sn 2/ sn 2 / a q 2 cs2 a q 2 cs a 2 cs / sn / a q cs 2 / sn 2 / a 2 ; 2:20 2 D ˆ 2 2 x 2 x 2 2 ˆ q 2 e 2q 2 q 2 q sn 2 / a 2 q sn2 / a 2 2 ; 2:2 q 2 e2q dx ˆ sn 2 / a dq d/: 2:22 Furthermre we have that n sn a cs a ˆ q Ce x x 2 qˆ0 q n /ˆh sn h x ˆ R e q ctg h n sn h /ˆh x ˆ R e q ctg h cs h x 2 /ˆh a q cs h x 2 /ˆh 2 sn 2 / a qˆ0 h 6 / 6 h : 2:23 ˆ q e q cs h a q sn h a /ˆh : 2:24 /ˆh a q /ˆh : 2:25 In the new crdnate q; /, the prblem (2.5)±(2.7) s reduced t the fllwng dscntnus ce cent prblem n the sem-n nte strp X ~ e. 2 u sn 2 / a q ctg / a 2 u 2 q ctg / a ˆ 0 q

6 350 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 h < / < h 6 6 n; 2:26 u q; h ˆ u q; h 0 6 q < 6 6 n ; 2:27 ctg h a q ˆ ctg h q;h a q q;h 0 6 q < ; 6 6 n ; 2:28 uj qˆ0 ˆ u 0 / ; 2:29 u s bnded when q! ; 2:30 where h ˆ h n, a 0 ˆ a n. We ntce that the ce cents f Eq. (2.26) are ndependent n the varable q. Ths fact wll play an mprtant rle n cnsderng the numercal slutn f the prblem (2.26)±(2.30). Let H 0; 2p dente the usual Sblv space n the nterval 0; 2p [9]. Furthermre we suppse that V ˆ v / j v / 2 H 0; 2p ; v 0 ˆ v 2p ; U ˆ u q; / j fr fxed q 2 0; ; u; q ; 2 u q 2 V : 2 Then the dscntnus ce cent prblem (2.26)±(2.30) s equvalent t the fllwng varatnal±d erental prblem: Fnd u q; / 2 U such that d 2 dq 2 A 2 u; v d dq A u; v A 0 u; v ˆ 0 8v 2 V ; 2:3 uj qˆ0 ˆ u 0 / ; 2:32 where u s bnded when q! ; 2:33 A 2 u; v ˆ Xn ˆ A u; v ˆ Xn ˆ Z h u q; / v / d/; h sn 2 / a 2:34 ctg / a q; / v / h Z h u q; / dv / d/; d/ 2:35 Z 2p dv / A 0 u; v ˆ q; / d/: 2:36 0 d/ We nw cnsder a sem-dscrete apprxmatn f the prblem (2.3)±(2.33). Suppse that 0 ˆ / < / 2 < < / M ˆ 2p s a parttn f the nterval 0; 2pŠ, such that each f fh ; ˆ ; 2;... ; n g s a nde f ths parttn, namely fr every h ˆ ; 2;... ; n there s a / j ˆ h. Let h ˆ max 6 j 6 M / j / j and n V h ˆ v h / j v h / 2 V ; v h j /j ;/ j Š 2 P / j ; / j Š ; j ˆ ; 2;... ; M ;

7 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345± U h ˆ u h q; / j fr fxed q P 0; u h ; h q ; 2 u h q 2 V 2 h ; where P m / j ; / j Š dentes the space f plynmals f degree nt grsater that m. Then we get the numercal apprxmatn f the prblem (2.3)±(2.33): Fnd u h q; / 2 U h such that d 2 dq 2 A 2 u h ; v h d dq A u h ; v h A 0 u h ; v h ˆ 0 8v h 2 V h ; 2:37 u h j qˆ0 ˆ u 0;h / ; u h s bnded when q! ; 2:38 where u 0;h / 2 V h such that u 0;h / j ˆ u 0 / j fr j ˆ ; 2;... ; M. Assume that fn j / ; j ˆ ; 2;... ; Mg s a bass f the nte dmensnal space V h such that N j / ˆ d j, 6 ; j 6 M. Let N / ˆ N / ; N 2 / ;... ; N M / Š T and U q ˆ u h q; / ; u h q; / 2 ;... ; u h q; / M Š T fr u h q; / 2 U h. Then we have that u h q; / ˆ N / T U q ; 2:39 u 0;h / ˆ N / T U 0 wth U 0 ˆ u 0 / ; u 0 / 2 ;... ; u 0 / M Š T : 2:40 Thus the dscrete varatnal±d erental prblem (2.37) and (2.38) s equvalent t the fllwng bndary value prblem f a system f rdnary d erental equatns: B 2 U 00 q B U 0 q B 0 U q ˆ 0 0 < q < ; 2:4 where U 0 ˆ U 0 ; U q s bnded when q! ; 2:42 B 2 ˆ Xn ˆ Z h h sn 2 / a N / N / T d/; 2:43 B ˆ Xn ˆ Z h h ctg / a N / N 0 / T N 0 / N / T Š d/; 2:44 B 0 ˆ Z 2p 0 N 0 / N 0 / T d/: 2:45 It s straghtfrward t check that B 2 s a pstve de nte symmetrc matrx, B s an antsymmetrc matrx and B 0 s a sem-negatve de nte symmetrc matrx. We use a drect methd fr slvng the prblem (2.4)± (2.42). Let U q ˆ e kq n; 2:46 where k s a cnstant, n 2 C M t be determned. Substtutng Eq. (2.46) nt the Eqs. (2.4) and (2.42), we get the fllwng generalzed egenvalue prblem k 2 B 2 kb B 0 Š n ˆ 0: 2:47 Let g ˆ kn, then the egenvalue prblem (2.47) s equvalent t the fllwng standard egenvalue prblem: 0 I M n ˆ k I M 0 n ; 2:48 B 0 B g 0 B 2 g

8 352 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 where I M dentes the M M unt matrx. After slvng the egenvalue prblem (2.48), we btan the egenvalues k j j ˆ ; 2;... ; M wth nn-pstve real part crrespndng t the egenvalues n j j ˆ ; 2; ; M g j and k ˆ 0, n ˆ ; ;... ; T 2 R M, g ˆ 0 2 R M. Partcularly we assume that k j 6 j 6 r are real egenvalues and k j r 6 j 6 M are cmplex egenvalues wth nnzer magnary parts satsfyng k 2l ˆ k r 2l 6 l 6 M=2 2. Wtht lsng the generalty, we suppse that M s an even number. Thus we btan U q ˆ Xr jˆ b j e qkj n j XM=2 jˆr=2 b 2j R e qk 2j n 2j b 2j I e qk 2j n 2j ; 2:49 where R k and I k dente the real and magnary parts f the cmplex number k, respectvely. Thus U q sats es the rdnary equatns n Eq. (2.4) and the bndary cndtn: U q s bnded, when q!. By usng the cndtn U 0 ˆ U 0, we have that U 0 ˆ Xr jˆ b j n j XM=2 jˆr=2 b 2j R n 2j b 2j I n 2j Š: 2:50 Intrducng matrces D q ˆ e qk n ;... ; e qkr n r ; R e qk r 2 n r 2 ; I e qk r 2 n r 2 ;... ; R e qk M n M ; I e qk M n M ; D 0 D 0 ˆ n ;... ; n r ; R n r 2 ; I n r 2 ;... ; R n M ; I n M Š; B ˆ b ; b 2 ;... ; b M Š T : Frm Eq. (2.50) we btan B ˆ D 0 U 0: 2:5 Substtutng Eq. (2.5) nt Eq. (2.49), we have that U q ˆ D q D 0 U 0: 2:52 Fnally we get the sem-dscrete apprxmate slutn f prblem (2.5)±(2.7) fr gven u 0 h : u h q; / ˆ N / T D q D 0 U 0: 2:53 Ntng Eqs. (2.53) and (2.23), we have that h n ˆ q N / T D 0 0 D 0 Ce 2 sn 2 / a N 0 / U T 0 h < / < h ; 6 6 n : 2:54 In fact the equalty (2.54) s a dscrete art cal bndary cndtn fr the exterr prblem f Pssn equatn n the gven plygnal bndary C e, whch s an apprxmatn f the exact bndary cndtn (2.8). 3. The numercal slutn f the prblem (2.)±(2.3) On the bnded cmputatnal dman X, we nw cnsder the numercal slutn f the prblem (2.)±(2.3). As we knw that the restrctn f u, the slutn f the prblem (2.)±(2.3), sats es the bndary value prblem (2.9)±(2.). Let H X dente the usual Sblv space n X [9] and assume that

9 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345± T g ˆ fv 2 H X j v j Cˆ gg; T 0 ˆ fv 2 H X j v j Cˆ 0g: Then the bndary value prblem (2.9)±(2.) s equvalent t the fllwng varatnal prblem: Fnd u 2 T g such that wth a u; v b u; v ˆ f v 8v 2 T 0 ; 3: Z a u; v ˆ ru rv dx; X Z b u; v ˆ Ku v ds; C e Z f v ˆ fv dx: 3:4 X Fr the smplcty, we suppse that C s a plygnal lne n R 2. Let T h be a regular trangulatn such that the ndes n the bndary C e are mapped nt the pnts 0; / j, fr j ˆ ; 2;... ; M by the mappng (2.3). Furthermre let T h ˆ fv h 2 C 0 X jv h j K 2 P K ; 8K 2 T h g; T h g ˆ fv h 2 T h jv h d j ˆ g d j ; fr the nde d j 2 C g; T h 0 ˆ fv h 2 T h jv h j C ˆ 0g: Thus we btan the dscrete frm f the prblem (3.): Fnd u h 2 T h g such that a u h ; v h b u h ; v h ˆ f v h 8v h 2 T h 0 : 3:5 Snce the bnded peratr K s unknwn, we cannt slve the prblem (3.5) drectly. But we have had the dscrete art cal bndary cndtn (2.54). Thus fr u h ; v h 2 T h, let Z b h u h ; v h ˆ Xn h q v h N / T D 0 0 D 0 ˆ h 2 sn 2 / a N 0 / U T 0 ds X n ˆ V T 0 ˆ Z h h sn 2 / a N / N / T D 0 0 D 0 3:2 3:3 2 sn 2 / a N / N 0 / T U 0 d/ wth U 0 ˆ u h 0; / ;... ; u h 0; / M Š T and V 0 ˆ v h 0; / ;... ; v h 0; / M Š T. Usng the blnear frm b h u h ; v h nstead f b u h ; v h n the prblem (3.5) we btan the apprxmatn f the rgnal prblem (3.) (say (2.)±(2.3)): 3:6 Fnd u h 2 T h g such that a u h ; v h b h u h ; v h ˆ f v h 8v h 2 T h 0 : 3:7 After slvng the prblem (3.7), the slutn u h 2 Tg h n the bnded cmputatnal dman X. s an apprxmatn f the rgnal prblem (2.)±(2.3)

10 354 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 Fr the blnear frm b h u h ; v h, we have that Lemma 3.. The blnear frm b h u h ; v h s bnded and symmetrc n T h T h. Furthermre b h v h ; v h P 0 fr all v h 2 T h. Prf. Fr any gven u h ; v h 2 T h, ntng Eqs. (2.39) and (3. 6), we have that u h j ~ C e ˆ N / T U 0 ; v h j ~ C e ˆ N / T V 0 : 3:8 3:9 On the dman ~ X e, let u h ˆ N / T D q D 0 U 0; 3:0 v h ˆ N / T D q D 0 V 0; Thus we get the cntnusly extensns f u h and v h n the dman X e. A cmputatn shws ZXe ru h rv h dx ˆ Xn ˆ Z Z h 0 h sn 2 / a ˆ sn a h sn / sn / a h q v h sn a sn / sn / a v h h cs a q q v h cs a cs / sn / a v h d/ dq Z ˆ b h u h ; v h Xn Z h 2 u h A 2 0 h q ; v 2 h ˆ b h u h ; v h : cs / sn / a h h A q ; v h A 0 u h ; v h d/ dq 3: 3:2 Hence Z b h u h ; v h ˆ ru h rv h dx ˆ b h v h ; u h X e 8u h ; v h 2 T h ; 3:3 b h v h ; v h ˆ Z jrv h j 2 dx P 0 X e 8v h 2 T h : 3:4 Frm the Lemma 3. t s straght frward t check that the prblem (3.7) s a well-psed prblem. 4. Numercal mplementatn and examples Let X dente the exterr dman f the unt square, namely X ˆ fx ˆ x ; x 2 j jx j > r jx 2 j > g: We cnsder the numercal slutn f the rgnal prblem (2.)±(2.3) wth gven f and g. We take the art cal bndary C e ˆ f x ; x 2 j x ˆ 2; 2 6 x 2 6 2g [ f x ; x 2 j x 2 ˆ 2; 2 6 x 6 2g. Hence X e ˆ f x ; x 2 j jx j > 2 r jx 2 j > 2g and X ˆ X n X e. Snce the slutn f each example, u x ; x 2, s symmetrc abt x 2 axes and antsymmetrc abt x axes, respectvely, the dman f cmputatn s taken t be the part f X lyng n the rst quadrant. The symmetrc and antsymmetrc bndary cndtns are used alng x ˆ 0 and x 2 ˆ 0, respectvely 0; x 2 x ˆ 0 6 x 2 6 2; 4:

11 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345± u x ; 0 ˆ 0 6 x 6 2: 4:2 Three meshes were used n the cmputatn. Fg. 3 shws the trangulatn fr mesh A. On each trangle n mesh A, we cnnected the mdpnts f every tw sdes, thus ths trangle was dvded nt fr small trangles. Then we btaned the re ned mesh B. Mesh C was smlarly generated frm mesh B. Lnear nte element was used n r cmputatn. Example. An unbnded membrane wth a square hle. Let f ˆ 0 n X; 4:3 g x ; x 2 ˆ 2 ln x2 x 2 0:5 2 x 2 x n C 2 0:5 2 : 4:4 Then the rgnal prblem (2.)±(2.3) wth the gven f n (4.3) and g n (4.4) has a unque slutn u x ; x 2 : u x ; x 2 ˆ 2 ln x2 x 2 0:5 2 x 2 x n X: 4:5 2 0:5 2 Let u h dente the nte element apprxmatn by usng the dscrete art cal bndary cndtn (2.54). Table shws the maxmum f the errrs u u h ver the mesh pnts fr meshes A, B and C. Furthermre Table 2 shws the errrs f ku u h k 0;2;X, ju u h j ;2;X and ku u h k ;2;X fr meshes A, B and C. Fr cmparsn we als cmpute the nte element apprxmatn u N h wth Neumann bndary cndtn n the art cal bndary C e fr meshes A, B and C. The maxmum f the errr u u N h ver the mesh pnts s gven n Table 3 and errrs f ku u N h k 0;2;X, ju u N h j ;2;X and ku u N h k ;2;X fr meshes A, B and C are gven n Table 4. Furthermre Fg. 4 shws the related errrs ju u h j=juj 00 n the art cal bndary C e. Fr cmparsn Fg. 5 shws the related errrs ju u N h j=juj 00 n the art cal bndary C e. Fg. 6 shws the cntr plt f the apprxmate slutn u h n mesh C. Example 2. A tw-dmensnal deal (ptental) w arnd a square bstacle (see Fg. 7). In ths example, the unknwn u dentes the streamfunctn f the ud. It s a slutn f the fllwng bndary value prblem: Du ˆ 0 n X; 4:6 uj C ˆ 0; 4:7 Fg. 3. Mesh A.

12 356 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 Table Maxmum errr f u u h ver mesh pnts Mesh A B C max ju u h j 2: : : Table 2 Errr f u u h Mesh A B C ku u h k 0;2;X : : : ju u h j ;2;X.03 5: : ku u h k ;2;X : :747 0 Table 3 Maxmum errr f u u N h ver mesh pnts Mesh A B C max ju u N h j Table 4 Errr f u u N h Mesh A B C ku u N h k 0;2;X 8: : : ju u N h j ;2;X ku u N h k ;2;X ru! 0; V T when r! : 4:8 we chse V ˆ :0. Fg. 8 shws the cntr plt f the apprxmate streamfunctn u h n the mesh C. Example 3. A tw-dmensnal ncmpressble w arnd a square bstacle. In ths example, the unknwn u als dentes the streamfunctn f the ud. It s a slutn f the fllwng bndary value prblem: Du ˆ f n X; uj C ˆ 0; 4:9 4:0 ru! 0; V T when r! ; 4:

13 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345± Fg. 4. Fg. 5.

14 358 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 Fg. 6. Fg. 7. where f x s the gven vrtcty f the ud: ( f x ; x 2 ˆ 4x 2 3x 2 4 x x x x 2 X ; 0 x 2 X e : 4:2 we chse V ˆ :0. Fg. 9 shws the cntr plt f the apprxmate streamfunctn u h n the mesh C. The examples shw that the dscrete art cal bndary cndtn presented n ths paper s very e ectve fr Pssn equatn n exterr dman and mre accurate that Neumann bndary cndtn whch s ften used n engneerng lteratures. Furthermre ths apprach can be appled t slve sme realstc physcs prblems, such as cmputatn f a membrane, a ptental w, an ncmpressble w r a statc electrmagetc eld n an unbnded dman.

15 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345± Fg. 8. Fg. 9. References [] B. Engqust, A. Majda, Absrbng bndary cndtns fr the numercal smulatn f waves, Math. Cmp. 3 (977) 629±65. [2] C.I. Gldsten, A nte element methd fr slvng Helmhltz type equatns n wavegudes and ther unbnded dmans, Math. Cmp. 39 (982) 309±324. [3] K. Feng, Asympttc radatn cndtns fr reduced wave equatns, J. Cmput. Math. 2 (984) 30±38. [4] H. Han, X. Wu, Apprxmatn f n nte bndary cndtn and ts applcatn t nte element methd, J. Cmput. Math. 3 (985) 79±92.

16 360 H. Han, W. Ba / Cmput. Methds Appl. Mech. Engrg. 79 (999) 345±360 [5] H. Han, X. Wu, The apprxmatn f exact bndary cndtn at an art cal bndary fr lnear elastc equatn and ts applcatn, Math. Cmp. 59 (992) 2±27. [6] T.M. Hagstrm, H.B. Keller, Exact bndary cndtns at art cal bndary fr partal d erental equatns n cylnders, SIAM J. Math. Anal. 7 (986) 322±34. [7] T.M. Hagstrm, H.B. Keller, Asympttc bndary cndtns and numercal methds fr nnlnear ellptc prblems n unbnded dmans, Math. Cmp. 48 (987) 449±470. [8] L. Halpern, M. Schatzman, Art cal bndary cndtns fr ncmpressble vscs ws, SIAM J. Math. Anal. 20 (989) 308± 353. [9] F. Nataf, An pen bndary cndtn fr the cmputatn f the steady ncmpressble Naver-Stkes equatns, J. Cmput. Phys. 85 (989) 04±29. [0] T. Hagstrm, Asympttc bndary cndtns fr dsspatve waves: general thery, Math. Cmp. 56 (99) 589±606. [] T. Hagstrm, Cndtns at dwnstream bndary fr smulatns f vscs ncmpressble w, SIAM J. Sc. Stat. Cmp. 2 (99) 843±858. [2] H. Han, J. Lu, W. Ba, A dscrete art cal bndary cndtn fr steady ncmpressble vscs ws n a n-slp channel usng a fast teratve methd, J. Cmput. Phys. 4 (994) 20±208. [3] H, Han, W. Ba, An art cal bndary cndtn fr the ncmpressble vscs ws n a n-slp channel, J. Cmput. Math. 3 (995) 5±63. [4] H. Han, W. Ba, An art cal bndary cndtn fr tw-dmensnal ncmpressble vscs ws usng the methd f lnes, Int. J. Numer. Methds Fluds 22 (996) 483±493. [5] H. Han, W. Ba, T. Wang, Numercal smulatn fr the prblem f n nte elastc fndatn, Cmput. Methds Appl. Mech. Engrg. 47 (997) 369±385. [6] G. Ben-Prat, D. Gvl, Slutns f unbnded dman prblems usng ellptc art cal bndares, Cmmun. Numer. Methds Engrg. (995) 735±74. [7] D. Gvl, Numercal Methds fr Prblems n In nte Dmans, Elsever, Amsterdam, 992. [8] P.G. Carlet, The Fnte Element Methd fr Ellptc Prblems, Nrth-Hlland, Amsterdam, 978. [9] R.A. Adams, Sblev Spaces, 975. [20] D. Glbarg, N.S. Trudnger, Ellptc Partal D erental Equatns, Sprnger, Berln, 977.

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables Appled Mathematcal Scences, Vl. 4, 00, n. 0, 997-004 A New Methd fr Slvng Integer Lnear Prgrammng Prblems wth Fuzzy Varables P. Pandan and M. Jayalakshm Department f Mathematcs, Schl f Advanced Scences,

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Transient Conduction: Spatial Effects and the Role of Analytical Solutions Transent Cnductn: Spatal Effects and the Rle f Analytcal Slutns Slutn t the Heat Equatn fr a Plane Wall wth Symmetrcal Cnvectn Cndtns If the lumped capactance apprxmatn can nt be made, cnsderatn must be

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Exploiting vector space properties for the global optimization of process networks

Exploiting vector space properties for the global optimization of process networks Exptng vectr space prpertes fr the gbal ptmzatn f prcess netwrks Juan ab Ruz Ignac Grssmann Enterprse Wde Optmzatn Meetng March 00 Mtvatn - The ptmzatn f prcess netwrks s ne f the mst frequent prblems

More information

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES Mhammadreza Dlatan Alreza Jallan Department f Electrcal Engneerng, Iran Unversty f scence & Technlgy (IUST) e-mal:

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatnal Data Assmlatn (4D-Var) 4DVAR, accrdng t the name, s a fur-dmensnal varatnal methd. 4D-Var s actually a smple generalzatn f 3D-Var fr bservatns that are dstrbuted n tme. he equatns are the same,

More information

2 Analysis of the non-linear aerodynamic loads of hypersonic flow. 1 General Introduction

2 Analysis of the non-linear aerodynamic loads of hypersonic flow. 1 General Introduction 4 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES PRELIMINARY STUDY OF NON-LINEAR AEROELASTIC PHENOMENA IN HYPERSONIC FLOW Zhang Wewe, Ye Zhengyn, Yang Yngnan Cllege f Aernautcs, Nrthwestern Plytechncal

More information

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS rnat. J. Math. & Math. S. Vl. 6 N. (983) 33534 335 ON THE RADUS OF UNVALENCE OF CONVEX COMBNATONS OF ANALYTC FUNCTONS KHALDA. NOOR, FATMA M. ALOBOUD and NAEELA ALDHAN Mathematcs Department Scence Cllege

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electrnc Crcuts Feedback & Stablty Sectns f Chapter 2. Kruger Feedback & Stablty Cnfguratn f Feedback mplfer S S S S fb Negate feedback S S S fb S S S S S β s the feedback transfer functn Implct

More information

Analytical Modeling of Natural Convection in Horizontal Annuli

Analytical Modeling of Natural Convection in Horizontal Annuli Analytcal Mdelng f Natural Cnvectn n Hrzntal Annul Peter Teertstra, M. Mchael Yvanvch, J. Rchard Culham Mcrelectrncs Heat Transfer Labratry Department f Mechancal Engneerng Unversty f Waterl Waterl, Ontar,

More information

XXIX CILAMCE November 4 th to 7 th, 2008 Maceió - Brazil

XXIX CILAMCE November 4 th to 7 th, 2008 Maceió - Brazil XXIX CILAMCE Nvember 4 th t 7 th, 8 Maceó - Bral ELECTROMAGNETIC SCATTERING PROBLEM SOLVED BY BOTH NODAL AND GALERKIN FEM-BEM APPROACHES M. M. Afns M. O. Schreder T. A. S. Olvera marcmatas@des.cefetmg.br

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

State-Space Model Based Generalized Predictive Control for Networked Control Systems

State-Space Model Based Generalized Predictive Control for Networked Control Systems Prceedngs f the 7th Wrld Cngress he Internatnal Federatn f Autmatc Cntrl State-Space Mdel Based Generalzed Predctve Cntrl fr Netwred Cntrl Systems Bn ang* Gu-Png Lu** We-Hua Gu*** and Ya-Ln Wang**** *Schl

More information

Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017)

Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017) Secnd Internatnal Cnference n Mechancs, Materals and Structural Engneerng (ICMMSE 2017) Materal Selectn and Analyss f Ol Flm Pressure fr the Flatng Rng Bearng f Turbcharger Lqang PENG1, 2, a*, Hupng ZHENG2,

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

Linear Plus Linear Fractional Capacitated Transportation Problem with Restricted Flow

Linear Plus Linear Fractional Capacitated Transportation Problem with Restricted Flow Amercan urnal f Operatns Research,,, 58-588 Publshed Onlne Nvember (http://www.scrp.rg/urnal/ar) http://dx.d.rg/.46/ar..655 Lnear Plus Lnear Fractnal Capactated Transprtatn Prblem wth Restrcted Flw Kavta

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

Faculty of Engineering

Faculty of Engineering Faculty f Engneerng DEPARTMENT f ELECTRICAL AND ELECTRONIC ENGINEERING EEE 223 Crcut Thery I Instructrs: M. K. Uygurğlu E. Erdl Fnal EXAMINATION June 20, 2003 Duratn : 120 mnutes Number f Prblems: 6 Gd

More information

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = +

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = + MATH sectn 7. Vlumes (Washer Methd) Page f 8 6) = = 5 ; abut x-axs x x x = 5 x 5 ( x+ )( x ) = 5 x 5= x+ = x = 5 x= x= ( x ) = nterval: x r = (5 x ) + = (5 x ) r = x + = x A = (5 x ) = (5 x + x ) A = x

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

Natural Convection in a Horizontal Annulus with Oscillating Inner Cylinder Using Lagrangian-Eulerian Kinematics

Natural Convection in a Horizontal Annulus with Oscillating Inner Cylinder Using Lagrangian-Eulerian Kinematics Natural Cnvectn n a Hrzntal Annulus wth Oscllatng Inner Cylnder Usng Lagrangan-Euleran Knematcs Esam M. Alawadh Kuwat Unversty Mechancal Engneerng Department P. O. Bx # 5969, Safat, 3060 KUWAIT Abstract

More information

Chalcogenide Letters Vol. 11, No. 7, July 2014, p THE QUANTUM MECHANICAL STUDY OF CADMIUM SULFUR NANOPARTICLES IN BASIS OF STO s

Chalcogenide Letters Vol. 11, No. 7, July 2014, p THE QUANTUM MECHANICAL STUDY OF CADMIUM SULFUR NANOPARTICLES IN BASIS OF STO s Chalcgende Letters Vl. 11, N. 7, July 014, p. 35-364 THE QUNTUM MECHNICL STUDY OF CDMIUM SULFUR NNOPRTICLES IN BSIS OF STO s M.. RMZNOV *, F. G. PSHEV,. G. GSNOV,. MHRRMOV,. T. MHMOOD Baku State Unversty,

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

Reproducing kernel Hilbert spaces. Nuno Vasconcelos ECE Department, UCSD

Reproducing kernel Hilbert spaces. Nuno Vasconcelos ECE Department, UCSD Reprucng ernel Hlbert spaces Nun Vascncels ECE Department UCSD Classfcatn a classfcatn prblem has tw tpes f varables X -vectr f bservatns features n the wrl Y - state class f the wrl Perceptrn: classfer

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

Fall 2010 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. (n.b. for now, we do not require that k. vectors as a k 1 matrix: ( )

Fall 2010 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. (n.b. for now, we do not require that k. vectors as a k 1 matrix: ( ) Fall 00 Analyss f Epermental Measrements B. Esensten/rev. S. Errede Let s nvestgate the effect f a change f varables n the real & symmetrc cvarance matr aa the varance matr aa the errr matr V [ ] ( )(

More information

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

V. Electrostatics Lecture 27a: Diffuse charge at electrodes V. Electrstatcs Lecture 27a: Dffuse charge at electrdes Ntes by MIT tudent We have talked abut the electrc duble structures and crrespndng mdels descrbng the n and ptental dstrbutn n the duble layer. Nw

More information

EE 221 Practice Problems for the Final Exam

EE 221 Practice Problems for the Final Exam EE 1 Practce Prblems fr the Fnal Exam 1. The netwrk functn f a crcut s 1.5 H. ω 1+ j 500 Ths table recrds frequency respnse data fr ths crcut. Fll n the blanks n the table:. The netwrk functn f a crcut

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Bsystems Mdeln and Cntrl Cell Electrcal Actvty: In Mvement acrss Cell Membrane and Membrane Ptental Dr. Zv Rth (FAU) 1 References Hppensteadt-Peskn, Ch. 3 Dr. Rbert Farley s lecture ntes Inc Equlbra

More information

Section 10 Regression with Stochastic Regressors

Section 10 Regression with Stochastic Regressors Sectn 10 Regressn wth Stchastc Regressrs Meanng f randm regressrs Untl nw, we have assumed (aganst all reasn) that the values f x have been cntrlled by the expermenter. Ecnmsts almst never actually cntrl

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

Regression with Stochastic Regressors

Regression with Stochastic Regressors Sectn 9 Regressn wth Stchastc Regressrs Meanng f randm regressrs Untl nw, we have assumed (aganst all reasn) that the values f x have been cntrlled by the expermenter. Ecnmsts almst never actually cntrl

More information

Monin Obukhov Similarity and Local-Free-Convection Scaling in the Atmospheric Boundary Layer Using Matched Asymptotic Expansions

Monin Obukhov Similarity and Local-Free-Convection Scaling in the Atmospheric Boundary Layer Using Matched Asymptotic Expansions OCTOBER 08 T O N G A N D D I N G 369 Mnn Obukhv Smlarty cal-free-cnvectn Scalng n the Atmspherc Bundary ayer Usng Matched Asympttc Expansns CHENNING TONG AND MENGJIE DING Department f Mechancal Engneerng

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

A Note on the Linear Programming Sensitivity. Analysis of Specification Constraints. in Blending Problems

A Note on the Linear Programming Sensitivity. Analysis of Specification Constraints. in Blending Problems Aled Mathematcal Scences, Vl. 2, 2008, n. 5, 241-248 A Nte n the Lnear Prgrammng Senstvty Analyss f Secfcatn Cnstrants n Blendng Prblems Umt Anc Callway Schl f Busness and Accuntancy Wae Frest Unversty,

More information

Mode-Frequency Analysis of Laminated Spherical Shell

Mode-Frequency Analysis of Laminated Spherical Shell Mde-Frequency Analyss f Lamnated Sphercal Shell Umut Tpal Department f Cvl Engneerng Karadenz Techncal Unversty 080, Trabzn, Turkey umut@ktu.edu.tr Sessn ENG P50-00 Abstract Ths paper deals wth mde-frequency

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

Problem Set 5 Solutions - McQuarrie Problems 3.20 MIT Dr. Anton Van Der Ven

Problem Set 5 Solutions - McQuarrie Problems 3.20 MIT Dr. Anton Van Der Ven Prblem Set 5 Slutns - McQuarre Prblems 3.0 MIT Dr. Antn Van Der Ven Fall Fall 003 001 Prblem 3-4 We have t derve the thermdynamc prpertes f an deal mnatmc gas frm the fllwng: = e q 3 m = e and q = V s

More information

14 The Boole/Stone algebra of sets

14 The Boole/Stone algebra of sets 14 The Ble/Stne algebra f sets 14.1. Lattces and Blean algebras. Gven a set A, the subsets f A admt the fllwng smple and famlar peratns n them: (ntersectn), (unn) and - (cmplementatn). If X, Y A, then

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem Fndng he Rghtmost Egenvalues of Large Sparse Non-Symmetrc Parameterzed Egenvalue Problem Mnghao Wu AMSC Program mwu@math.umd.edu Advsor: Professor Howard Elman Department of Computer Scences elman@cs.umd.edu

More information

Discrete Mathematics. Laplacian spectral characterization of some graphs obtained by product operation

Discrete Mathematics. Laplacian spectral characterization of some graphs obtained by product operation Dscrete Mathematcs 31 (01) 1591 1595 Contents lsts avalable at ScVerse ScenceDrect Dscrete Mathematcs journal homepage: www.elsever.com/locate/dsc Laplacan spectral characterzaton of some graphs obtaned

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

TRANSPORT MOMENTS. beyond the leading order. arxiv: Jack Kuipers. University of Regensburg. with. Gregory Berkolaiko.

TRANSPORT MOMENTS. beyond the leading order. arxiv: Jack Kuipers. University of Regensburg. with. Gregory Berkolaiko. TRANSPORT MOMENTS beynd the leadng rder arxv:1012.3526 Jack Kupers Unversty f Regensburg wth Gregry Berklak Texas A&M Transprt mments p.1/24 OUTLINE Open systems mments crrelatn functns semclasscal expressn

More information

ENGI 4421 Probability & Statistics

ENGI 4421 Probability & Statistics Lecture Ntes fr ENGI 441 Prbablty & Statstcs by Dr. G.H. Gerge Asscate Prfessr, Faculty f Engneerng and Appled Scence Seventh Edtn, reprnted 018 Sprng http://www.engr.mun.ca/~ggerge/441/ Table f Cntents

More information

Lucas Imperfect Information Model

Lucas Imperfect Information Model Lucas Imerfect Infrmatn Mdel 93 Lucas Imerfect Infrmatn Mdel The Lucas mdel was the frst f the mdern, mcrfundatns mdels f aggregate suly and macrecnmcs It bult drectly n the Fredman-Phels analyss f the

More information

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback PHYSICS 536 Experment : Applcatns f the Glden Rules fr Negatve Feedback The purpse f ths experment s t llustrate the glden rules f negatve feedback fr a varety f crcuts. These cncepts permt yu t create

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Conservation of Energy

Conservation of Energy Cnservatn f Energy Equpment DataStud, ruler 2 meters lng, 6 n ruler, heavy duty bench clamp at crner f lab bench, 90 cm rd clamped vertcally t bench clamp, 2 duble clamps, 40 cm rd clamped hrzntally t

More information

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC LEAP FOG TEHNQUE Opeatnal Smulatn f L Ladde Fltes L pttype lw senstvty One fm f ths technque s called Leapf Technque Fundamental Buldn Blcks ae - nteats - Secnd-de ealzatns Fltes cnsdeed - LP - BP - HP

More information

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31 Bg Data Analytcs! Specal Tpcs fr Cmputer Scence CSE 4095-001 CSE 5095-005! Mar 31 Fe Wang Asscate Prfessr Department f Cmputer Scence and Engneerng fe_wang@ucnn.edu Intrductn t Deep Learnng Perceptrn In

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California Vlume Change fr a Unaxal Stress Istrpc lastcty n 3D Istrpc = same n all drectns The cmplete stress-stran relatns fr an strpc elastc Stresses actng n a dfferental vlume element sld n 3D: (.e., a generalzed

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Module B3. VLoad = = V S V LN

Module B3. VLoad = = V S V LN Mdule B Prblem The -hase lads are cnnected n arallel. One s a urely resste lad cnnected n wye. t cnsumes 00kW. The secnd s a urely nducte 00kR lad cnnected n wye. The thrd s a urely caacte 00kR lad cnnected

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

Int. J. of Applied Mechanics and Engineering, 2014, vol.19, No.3, pp DOI: /ijame

Int. J. of Applied Mechanics and Engineering, 2014, vol.19, No.3, pp DOI: /ijame Int. J. f Appled Mechancs and Engneerng, 2014, vl.19, N.3, pp.539-548 DOI: 10.2478/jame-2014-0036 APPLICATION OF MULTI-VALUED WEIGHTING LOGICAL FUNCTIONS IN THE ANALYSIS OF A DEGREE OF IMPORTANCE OF CONSTRUCTION

More information

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F.

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F. Hmewrk- Capter 25 4. REASONING Te bject stance ( = cm) s srter tan te cal lengt ( = 8 cm) te mrrr, s we expect te mage t be vrtual, appearng ben te mrrr. Takng Fgure 25.8a as ur mel, we wll trace ut: tree

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH)

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH) Chapter 1 Samplng wth Unequal Probabltes Notaton: Populaton element: 1 2 N varable of nterest Y : y1 y2 y N Let s be a sample of elements drawn by a gven samplng method. In other words, s s a subset of

More information

MULTISTAGE LOT SIZING PROBLEMS VIA RANDOMIZED ROUNDING

MULTISTAGE LOT SIZING PROBLEMS VIA RANDOMIZED ROUNDING MULTISTGE LOT SIZING PROBLEMS VI RNDOMIZED ROUNDING CHUNG-PIW TEO Department f Decsn Scences, Faculty f Busness dmnstratn, Natnal Unversty f Sngapre, fbatecp@nus.edu.sg DIMITRIS BERTSIMS Slan Schl f Management

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

Control of Program Motion of Dynamic Systems Using Relative Motions

Control of Program Motion of Dynamic Systems Using Relative Motions TECHNISCHE MECHANIK, Band 8, Heft 3-4, (8), - 8 Manuskrptengang: 5. Oktber 7 Cntrl f Prgram Mtn f Dynamc Systems Usng Relatve Mtns D Sanh, Dnh Van Phng, D Dang Kha, Tran Duc In ths paper, the prblem f

More information

Finite Wing Theory. Wing Span, b the length of the wing in the z-direction. Wing Chord, c equivalent to the airfoil chord length

Finite Wing Theory. Wing Span, b the length of the wing in the z-direction. Wing Chord, c equivalent to the airfoil chord length 4 Fnte Wng Thery T date we have cnsdered arfl thery, r sad anther way, the thery f nfnte wngs. Real wngs are, f curse, fnte wth a defned length n the z-drectn. Basc Wng Nmenclature Wng Span, the length

More information

Final Exam Spring 2014 SOLUTION

Final Exam Spring 2014 SOLUTION Appled Opts H-464/564 C 594 rtland State nverst A. La Rsa Fnal am Sprng 14 SOLTION Name There are tw questns 1%) plus an ptnal bnus questn 1%) 1. Quarter wave plates and half wave plates The fgures belw

More information

COMPACT FINITE DIFFERENCE SCHEMES FOR POISSON EQUATION USING DIRECT SOLVER

COMPACT FINITE DIFFERENCE SCHEMES FOR POISSON EQUATION USING DIRECT SOLVER Jrnal Matematcs and Tecnlg ISSN: 078-07 N Agst 00 COMPACT FINITE DIFFERENCE SCHEMES FOR POISSON EQATION SING DIRECT SOLVER Fel M Or Alred E Owl* Department Matematcs Cvenant nverst Ota Ogn State (NIGERIA)

More information

The Operational Amplifier and Application

The Operational Amplifier and Application Intrductn t Electrnc Crcuts: A Desgn Apprach Jse Sla-Martnez and Marn Onabaj The Operatnal Amplfer and Applcatn The peratnal ltage amplfer (mre cmmnly referred t as peratnal amplfer) s ne f the mst useful

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

A new Type of Fuzzy Functions in Fuzzy Topological Spaces IOSR Jurnal f Mathematics (IOSR-JM e-issn: 78-578, p-issn: 39-765X Vlume, Issue 5 Ver I (Sep - Oct06, PP 8-4 wwwisrjurnalsrg A new Type f Fuzzy Functins in Fuzzy Tplgical Spaces Assist Prf Dr Munir Abdul

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

A Proposal of Heating Load Calculation considering Stack Effect in High-rise Buildings

A Proposal of Heating Load Calculation considering Stack Effect in High-rise Buildings A Prpsal f Heatng Lad Calculatn cnsderng Stack Effect n Hgh-rse Buldngs *Dsam Sng 1) and Tae-Hyuk Kang 2) 1) Department f Archtectural Engneerng, Sungkyunkwan Unversty, 2066 Sebu-r, Jangan-gu, Suwn, 440-746,

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

III. Operational Amplifiers

III. Operational Amplifiers III. Operatnal Amplfers Amplfers are tw-prt netwrks n whch the utput vltage r current s drectly prprtnal t ether nput vltage r current. Fur dfferent knds f amplfers ext: ltage amplfer: Current amplfer:

More information

arxiv: v1 [math.co] 12 Sep 2014

arxiv: v1 [math.co] 12 Sep 2014 arxv:1409.3707v1 [math.co] 12 Sep 2014 On the bnomal sums of Horadam sequence Nazmye Ylmaz and Necat Taskara Department of Mathematcs, Scence Faculty, Selcuk Unversty, 42075, Campus, Konya, Turkey March

More information

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION talan journal of pure appled mathematcs n. 33 2014 (63 70) 63 SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION M.R. Farhangdoost Department of Mathematcs College of Scences Shraz Unversty Shraz, 71457-44776

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

A Note on \Modules, Comodules, and Cotensor Products over Frobenius Algebras"

A Note on \Modules, Comodules, and Cotensor Products over Frobenius Algebras Chn. Ann. Math. 27B(4), 2006, 419{424 DOI: 10.1007/s11401-005-0025-z Chnese Annals of Mathematcs, Seres B c The Edtoral Oce of CAM and Sprnger-Verlag Berln Hedelberg 2006 A Note on \Modules, Comodules,

More information