Stefan-Boltzmann s Law under Relativistic Conditions

Size: px
Start display at page:

Download "Stefan-Boltzmann s Law under Relativistic Conditions"

Transcription

1 Psial Rviw & Rsar tratioal 4(): 7-, 4 SCENCEDOMAN itratioal Stfa-Boltzma s Law ur Rlativisti Coitios E. V. Vitsma * Vitsma s Si Projt, 8 Apartmt, 5 Klimaski Str., Mosow, 557, Russia. Autor s otributio ol autor prform t wol rsar work. Autor EVV wrot t first raft of t papr. Autor EVV ra a approv t fial mausript. Rsar Artil Riv 5 t Ma Apt t Sptmbr Publis 6 t Otobr ABSRAC A xprssio was obtai for t rg sit of t movig blak-bo raiatio, i.., t Stfa-Boltzma law vali i t itrval of objt vloitis from zro to t vloit of ligt i vauo. objt tmpratur is sow to ompris two parts. first o is a salar ivariat ur t Lortz trasformatios. so o is a vtor pig o t vloit of sstm motio. salar ompot of t tmpratur is a otratio of two tsor ompots of rak. Ur ormal oitios tis matmatial objt is a salar. akig aout of a tsor aratr of t tmpratur a w formulatio is giv for t so trmoamis law. rsults obtai ar of t grat pratial importa, i partiular, wil sigig vis to masur t raiatio tmpratur of movig osmi objts,.g., quasars. Kwors: Blak bo; raiatio; Stfa-Boltzma law; tmpratur; spial rlativit.. NRODUCON problm of t movig blak-bo raiatio aros i 97 almost immiatl aftr t ratio of Spial rlativit (SR). t is i tis ar tat Kur vo Mosgil s big artil was publis i r Aal r Psik []. is work suprvis b Max Plak urlis is rlativisti trmoamis []. grat sitist osir t tor of t blakbo raiatio to b wll-stui a t most suitabl for formulatig fouatios of * Corrspoig autor: v_vitsma@mail.ru;

2 Psial Rviw & Rsar tratioal, 4(): 7-, 4 trmoamis orrt ovr t tir wol itrval of objt vloitis v, i.., ragig from zro to t vloit of ligt i vauo. artil [] a sstm is stui omprisig a raiator of ltromagti wavs, rivr a rfltor (mirror). raiators ar rivrs at t sam tim. tr lmts ar movig uiforml a rtiliarl i spa wit a rlativisti vloit formig a aut agl wit o aotr. As a rsult, t tmpratur trasformatio law was obtai ur rlativisti oitios:, () wr is t tmpratur if v<< (r a blow ix mas tat t giv quatit ors ormal oitios); v /. For mor ta 5 ars formula () a ot b all i qustio util X.Ott s artil was publis [], i wi t rlativisti tmpratur was sow to trasform followig aotr law: /. () xprssio () was obtai b X.Ott for a varit of psial prosss iluig ltromagti raiatio. Howvr ulik Mosgil, X.Ott lt aotr approa for stuig t pross of ltromagti wav raiatio ur rlativisti oitios. H xami wav missio of iiviual atoms, wras Mosgil stui blak-bo raiatio, as w av oti abov. partiular, i [] Stfa-Boltzma s law was obtai: E ε, () 4 a V bas o t famous Plak formula riv first smimpiriall: (, ) 8 ρ, (4) wr E is t raiatio rg of t blak-bo; V is t volum; а is Boltzma s ostat (J/с gra 4 ); (, ) Stpa- ρ is t raiativ rg sit (J/с); k is Boltzma s ostat; is t frqu of osillator raiatio. 8

3 Psial Rviw & Rsar tratioal, 4(): 7-, 4 As kow, Stfa-Boltzma s ostat quals: 4 k a. (5) 5 X.Ott s artil as iu a log-trm polmi o t tmpratur trasformatio ur rlativisti oitios. Som rsarrs ar to Plak-Eisti s viwpoit; t otrs ar to X.Ott s. Som sitists osir t tmpratur to b a rlativisti ivariat [4]. r appar absolutl xoti opiios. For xampl, t autors of Rf. [5] arriv at a olusio of t tmpratur ur rlativisti oitios big ag bot aorig to Plak, a to Ott, a to Call a Horwitz as t abl situatio rquirs. Morovr, P. Lasbrg a G. Matsas av i to put to t log-tim isput [6,7]. partiular, t writ ( it): t propr tmpratur alo is lft as t ol tmpratur of uivrsal sigifia. is sms to omplt a stor start 9 ars ago [8] (mor ta ars toa E.V.) of ow usual tmpratur trasforms, a to olu a otrovrs [] of ars staig. (5 ars toa). Wat is autors opiio [6,7] bas o? ir basis is as follows. First of all, t autors us a Uru-D Witt ttor, i.., a two-lvl moopol, wit a uit itrval of t raiatio rg. t autors [6,7] suppos tat blak-bo raiatio wit t propr tmpratur is at rst i som irtial rfr fram S. xitatio rat of t ttor movig wit a ostat vloit v is fou from quatum fil tor. t is proportioal to t partil umbr sit (,, v). As a rsult, t followig formula was obtai: ( / )/ / v / v v, v l ( / ) v / v / 4 v (, ), (6) wi, as t autors of [6,7] ot, oul ot b ru at v to t wll-kow formula (, v), / / ( ). (7) opiio of P. Lasbrg a G. Matsas, formula (6) is absolutl orrt, tus it is ussar to spak about a uifi law of tmpratur trasformatio ur rlativisti oitios. Howvr it is ot ompltl t as. Bot t rsults obtai b Mosgil (a soo us b Plak), a t matmatial mostr (6) ar iorrt. t is ssar to amit tat t mai raso of su a ramati situatio wit a rlativisti tmpratur is a giat sitifi autorit of Max Plak first a Albrt Eisti. Naturall, aftr publisig X.Ott s artil tis work was arfull k. Errors a ot b fou. But obo ar k t works [,,8]. s artils wr arri out just aftr t ratio of Spial Rlativit (SR) w obo a kow o t Bos-Eisti istributio. As w av oti abov, Plak s wll-kow formula, orig blak-bo raiatio, was obtai b a smi mpirial wa witout ivolvig tis istributio. Aftr t isovr of tis istributio, i t twtis of last tur, Plak s formula was alra obtai wit its 9

4 Psial Rviw & Rsar tratioal, 4(): 7-, 4 lp. Howvr if t raiator of ltromagti wavs is movig wit a rlativisti vloit, t form of Bos-Eisti istributio ags it boms at last a futio of two variabls, wi immiatl follows from SR ltroamis. Fig.. X,X,X a X,X,X ar t laborator rfr fram a tat movig uiforml a rtiliarl wit t vloit v. is t obsrvr at rst; is t raiatig blak bo, xami t simplst as rprst i t Figur. As s, tr ar two rfr frams. O of tm (wit prims) is movig uiforml a rtiliarl wit t vloit v. A poto raiator is at rst i t movig rfr fram. A obsrvr is at rst i t laborator rfr fram. obsrvr is ttig potos. f t agl btw v a t obsrvr is zro, t t raiatio frqu of t osillator will b qual to. (8) f t agl wr /, so t formula for t frqu trasformatio woul av aotr form, aml:. (9) for t obsrvr i t laborator rfr fram.

5 Psial Rviw & Rsar tratioal, 4(): 7-, 4 us witout takig ito osiratio (8) a (9), w aot vitl us t wll-kow Bos-Eisti istributio for obtaiig t Stfa-Boltzma law w t objt ur stu is movig wit rlativisti vloitis. Hr w must a t followig. Attmpts av b ma to obtai t law otig t raiatio itsit wit t tmpratur w rlativisti ffts ar ivolv [,]. For xampl, i [] a ultrarlativisti plasma is xami otaiig ltros a positros. ir aiilatio grats ltromagti raiatio. ts itsit is fi, i partiular, wit t lp of a o-imsioal Bos-Eisti istributio. t is proportioal to t plasma tmpratur to t fourt powr, wit t vloit of t objt as a wol big qual to zro. t is plasma partils tat ar i motio. aforsai allows us to formulat a mai goal of our work obtaiig a raiatio law for t blak-bo movig wit a rlativisti vloit w t agl btw t movig vloit v a t obsrvr is zro (s Figur). A solutio of t problm will b prform b t mtos giv i [9].. ELECRODYNAMCS AND HERMODYNAMCS OF HE OBJEC UNDER SUDY. Dfiitio of t Numbr of Fil Osillators wit a Giv Frqu w t Agl is Zro (Fig. ) Assum tat w av a opaqu objt wit a ir lirial avit. ts surfa is a blak bo at up to som tmpratur. r is a trmoamial quilibrium i t avit btw its ir surfa a ltromagti raiatio. r is a vr small ol i t objt ovr, troug wi ltromagti wavs raiat out of t avit (Fig. ). objt is movig uiforml a rtiliar wit t vloit v togtr wit t rfr fram. raiatio from t avit is tt wit a vi big at rst i a laborator rfr fram. First of all, w will sow tat t Stfa-Boltzma law () is iorrt ovr t wol rag of objt motio vloitis, i.., from zro up to v., aorig to X. Ott [], t raiatio rg i t avit is qual to: E,,,.l () t t ltromagti rg sit ε V ( ) ( ) E V wr is a osillator srial umbr,,,, l, () is t frqu of its osillatios. No mattr ow t tmpratur of t sstm trasforms, i.., aorig to Plak or to Ott or to Call a Horwitz, w sall alwas arriv at t poit of absurit., lt t

6 Psial Rviw & Rsar tratioal, 4(): 7-, 4 tmpratur trasform,.g., aorig to Plak, i.., to (). tis as t rigt si of () a., as s from (), t rigt si of () appars to t to zro as v, wil t lft si of tis formula to iras ifiitl. is iiats a los otio btw t raiatio law of a movig blak bo a t tmpratur trasformatio ur rlativisti oitios. 4 will av t followig form Now fi t umbr of osillators g(, ) wit frquis i itrvals, a, a a giv polarizatio i t avit usig t wllkow prour [9]. followig fat soul b poit out at o. umbr of ts osillators is a futio of two variabls. raso for tat was xplai abov but r t followig soul b ot. f a sprial ooriat sstm is us for t as v<<, t i our as it is ovit to us a lirial o takig aout of formula (8) a (9). lassial approa to fiig t quatit g is bas o usig t umbr spa follow b trasitio to a sprial spa of t wav vtor k k, wr L is t L ormaliz ub g, a fiall to t sprial spa of frquis. t as stui w us a lirial spa rprstabl as two spas flat, irular a liar prpiular to o aotr. to fi t ssar quatit w sall us two ooriat sstms: polar a o-imsioal Eulia, i.., a straigt li. amout of umbrs witi t sprial lar of t sprial spa is 4 [9] (t sprial ooriat sstm). amout of umbrs i t irular lar is qual to (t polar ooriat sstm). As to i a liar itrval of o-imsio spa, it will b qual to. As a rsult, w av for t wol sstm: ) g(,. () urig from a umbr spa to a wav vtor spa a fiall to a frqu o, w sall av: k k k g (, ) L L L L V ( ). () as of ltromagti wavs, soul b tak ito aout two polarizatios, t w sall av: g (, ) V. (4)

7 Psial Rviw & Rsar tratioal, 4(): 7-, 4 Hr it is importat to mpasiz tat formula (4) is orrt for t obsrvr at rst i a ral spa moitorig, from t rfrrig fram, t objt movig t uiforml a rtiliarl wit t rlativisti vloit v. Si t raiatio is trmal t avrag volum of t osillators wit a giv polarizatio will almost b ipt of tim. tis as, it is ussar to fi osillator umbrs i Mikowski spa.. Rlativisti mpratur as itr a Vtor or a sor Now w soul mak a w attmpt to solv som problms ot wit t rlativisti tmpratur. First of all, w soul larif if tis trmoami paramtr is a salar or appars to b a vtor or a tsor. tis otio w soul first rall t formula for vloit aitio i SR. As kow, t ompots of t total vloit i t irtios X or X will t to zro for t obsrvr i t laborator rfr fram as v (Fig. ). tur, t ompot paralll to axs t X will ot o. is suggsts immiatl tat t tmpratur boms a matmatial objt iffrt from a salar. Wat is t objt? Util vr rtl t tmpratur i t abov as is osir to b itr a salar or a quatit formig a vtor wit otr quatitis. For xampl, i [] V. Hamit rprsts tis trmoamial paramtr as wr i.., α v µ v Θ µ,,,,, ˆ µ (5) µ v is a uit 4-vtor i Mikowski spa, morovr µ v [ v,v α v is a vloit vtor i Eulia spa; ], α,,, (6) v. (7) µ vµ Furtr, vlopig t ia of tmpratur vtor rprstatio, t autor of [] fiall oms to t followig xprssio: v /, (8) wit µ (,,, ), t µ µ /, µ δ µ ν δ µ. (9)

8 Psial Rviw & Rsar tratioal, 4(): 7-, 4 Otr autors,.g., [], also tri to rprst t rlativisti tmpratur xlusivl as a vtor. Howvr, i our opiio, tis approa to t problm is iorrt, si t poto gas i t avit is a otiuous mium. a xpa tsor approa is ssar to srib rg prosss i it. tis as t so trmoamis law a b rprst i Mikowski spa as ijk δq g jk δσ ; i, j, k,,,4; α,,,,4, iα g α () wr t at Q a t tmpratur ar tsors of rak, but fuamtal tsors. Formula () s a spial xplaatio. σ σ g jk, gα ar ovariat As kow, M.Plak assum tat (v), i.., t trop of t sstm varis xlusivl owig to trmoamial prosss i t objt ur stu a is ipt of its vloit rlativ to t obsrvr i t laborator rfr fram []. As will b sow blow, t law () agrs wit t Plak statmt. Furtr, t otratio of t at a tmpratur tsors wit t fuamtal tsors trasforms tm to t vtors multipli ito salar quatitis. lattr ar ivariat parts of t abov tsors tat o ot var w passig from o rfr fram to aotr. As to t vtors, tir ompots ar qual to uit w t movig sstm 4-vloit quals to zro, i..,, () i 4 4 4,,,, () wr i is imagiar uit; v /, t otratio i () of two vtor quatitis i iis i givs a salar quatit, wi is ivariat ur t Lortz trasformatios. As to at a t tmpratur, tir ivariat parts var xlusivl owig to purl trmoami rasos. tur, t vtor ompots var xlusivl, w passig from o rfr fram to aotr. bot ass itr t at or t tmpratur ar ivrsl proportioal to t quatit. t trop will ot ag i t abs of at iput ito t sstm. lattr is i a full aor wit t rsults obtai i works [,4, a 5] wr t tmpratur was sow to trasform ur rlativisti oitios i ivrs proportio to t quatit. w a rprst t tmpratur i Mikowski spa as 4

9 Psial Rviw & Rsar tratioal, 4(): 7-, 4 i iα g α Τ i Τ, () wr Τ is t ivariat part of t tsor magitu of rak, i..,. t ral spa formula () a () rmai uag wit t ol iffr tat, first, w ow us affi tsors, so, t ps () a () tak t form:, (4) iα,, (5) At v t spatial ompots of ompots i Mikowski spa. i oii i Eulia spa wit t sam spa-tim t ompots of squar sum of t vtor quatit Τ ra Τ x Τ Τ z Τ τ Τx Τ Τz Τ τ, (6) ivariat i all irtial rfr frams. O t otr a t ivariat of tis sort givs i Eulia spa Τ Τ Τ Τ Τ Τ Τx Τ Τz ivar, (7) takig ito osiratio tat (affi tsors), i.., t spatial part of t ivariat ot wit t tmpratur 4-tsor is ompltl itial to t ivariat ot wit t tmpratur -tsor. t is vr importat si it allows o to solv our problm irtl i Eulia spa. As to t ultrarlativisti plasma osir i [], t aforsai will b vali i tis as as wll, wi will b isuss blow.. HE RADAON OF HE MOVNG BLACK BODY. Gral Dp for t Raiatio tsit of t Movig Blak- Bo Bas o t aforsai as wll as o t lassial mtos of solvig t problm (i.., for v<<, s,.g., [9,6]) w a ow start its solvig. For tis purpos w sall writ ow a xprssio for t avrag total rg ε of t liar osillators as follows (lirial spa, zro osillatios ar glt): 5

10 Psial Rviw & Rsar tratioal, 4(): 7-, 4 6 [ ] ) (, ε ε ε, (8) wr a ar t frquis of osillators i t irtio prpiular a paralll to t vloit of t movig objt; a ar positiv (quatum) itgrs for t osillators i t first a so irtios. tis as, si potos ar bosos, t a b i o quatum stat;, ar t valus of t tmpratur tsor ompots. t avrag volum of t total rg ε of t ltromagti fil pr uit volum i t movig avit provs to qual ε V E. (9) t is t gral p for t raiatio itsit of t movig blak-bo. Obtaiig t p for Blak-Bo Raiatio ur Rlativisti Coitios As a rsult, w av obtai, i fat, four impropr itgrals, tr of tm ovrg. last two itgrals i (9) iffr ol b variabls. ar asil alulat usig variabl trasformatios as follows: () () () () (), ()

11 Psial Rviw & Rsar tratioal, 4(): 7-, a k, () wr a is t Stfa-Boltzma ostat, i.., 4 5 k a. (), () Γ ζ z z,5498., (4) wr z Γ is t gamma futio, z [7], k z K z ζ,5498;. ; Γ Γ Γ Γ z z [ ] l. (5) As s, t itgral (5) ivrgs a w tak aout of a ig frqu raiatio of t objt. Havig lt - from t omiator, w obtai; ) (. (6) As a rsult, w av for : 9.. a, (7)

12 Psial Rviw & Rsar tratioal, 4(): 7-, 4 a ε V E.8a for t rg sit of raiatio ur rlativisti oitios. Formula (8) will tak t followig form ur ormal oitios: 4 (8) ε.447a. (9) issimilarit of formula (9) from t Stfa-Boltzma law is quit atural, if o taks ito aout of t abov assumptio. o obtai a mor xat xprssio for t blak-bo raiatio ur rlativisti oitios, it is ssar to rormaliz t p (9). valu of t umrial offiit i (7) soul b su tat t w offiit plus t offiit from formula () woul giv uit. w av fiall: ε V E.8a.79a.8a.79a ( ) is is t raiatio law of t blak-bo big i a uiform a rtiliar motio w t agl btw t vloit vtor of t objt v a t obsrvr is qual to zro. 4. RESUL AND DSCUSSON law (4) is t mai rsult of t rsar. t soul b ot at o tat t p (4) os ot la to t poit of absurit a otraitios. t is, i fat, ol t first stp o t wa of obtaiig a mor gral a ivolv p btw t itsit of t blak-bo raiatio a its tmpratur. is p also taks aout of a ozro agl. Kowlg of tis ratio soul pla a importat rol i sigig t vis masurig t tmpratur of t raiatig sours movig wit rlativisti vloitis,.g., quasars. p (4) provis ratr a probabl aswr to t qustio orig t tmpratur trasformatio ur rlativisti oitios. t is vit tat t p () is iorrt a woul b rjt ma ars ago a witout all matmatial ivolvmts if it wr ot a giat autorit of Plak a Eisti. Rall, ow is t p () b follow if su osmi objts as quasars o xist, wos vloit v of motio a b qual,9 wit t lumiosit raig ormous valus? t most gral as t tmpratur is a omplx matmatial objt. t ompriss a ivariat part ipt of t motio vloit a a part pt o t vloit a orit i spa. Ur ormal oitios t tmpratur boms a salar, t sam os for t at. trop problm as ot b stui ompltl. t is ot improbabl. (4) 8

13 Psial Rviw & Rsar tratioal, 4(): 7-, 4 tat t trop a b a tsor objt i wi iis ar otrat wi rsults i a salar ipt of t sstm motio vloit. Evitl, it is for xprimt to solv tis problm. Howvr o xprimt as b prform si t birt of rlativisti trmoamis i 97. Of utmost itrst is to osir if t p () rmais vali for t as of a ultrarlativisti ig-tmpratur sprial plasma (firball) []. Aorig to t autor of (J/) u to t aiilatio of ε γ * [], t sptrum of its quilibrium raiatio ltros a positros is srib b t p ε i t firball, wr γ * * ( ) * * 4 * / f *, (4) is t imsiolss frqu; Т>>m is t rg, i.., appartl, (k is t Boltzma ostat, is ow t absolut tmpratur; ot to ofus wit t agl similarl sigat (s abov); p, rl / ; p, rl is t rlativisti frqu of t plasma osillatios; f is a imsiolss ostat. Formula () is vali for t as (4) wit t vtor part of t tmpratur pt o t total vloit of ltros a positros i t firball but ot o t vloit of its tr of mass. f tir vloitis ar vr ig, t w av t wll-kow as srib,.g., i [9]. is is t as of a sstm of partils big wil apart a movig wit vr ig vloitis. t soul b ot tat ts two ass ar ot full itial, si t miropartils i [9] ar ot itial bfor a aftr t ollisio. artil [], a ltropositro ollisio rsults i tir aiilatio. Howvr ts ass ar vr similar, tus t sstm rg ε ma b giv as wr m i ε ~, (4) i vi m i is t miroprtil mass, v i is its vloit. t vtor part of t tmpratur i t ultrarlativisti as will trasform i ivrs proportio of t roots v i /. Hr w immiatl arriv at t olusio tat t p (4) is vr oubtful, si t rigt si os ot trasform itiall to its lft si ur t rlativisti oitios. t soul b also ot tat t objt stui i [] is, i fat, a stabl firball. Evitl, w t sit of ltros a positros xs a rtai limit, t stabilit will b brok, a a xplosio will our. 5. CONCLUSON A law was obtai for t blak-bo raiatio i t tir itrval of its (blak-bo) movmt sp, i.., from zro up to t sp of ligt i vauum. 9

14 Psial Rviw & Rsar tratioal, 4(): 7-, 4 COMPENG NERESS Autor as lar tat o omptig itrsts xist. REFERENCES. Mosgil vo K. ori r statioar Stralug i im gliformig bwgt Holraum. Aal r Psik. 97;(5): Duts.. Plak M. Zur Diamik bwgtr Sstm. Aal r Psik. 98;6(6):-4. Duts.. Ott X. Lorz-rasformatio r Warm a r mpratur. Zitsrift f. Ps. 96;75():7-4. Duts. 4. Call H, Horwitz G. Rlativistik rmoamis. Am. J. Ps. 97;9(8): Cavallri G, Salgarlli G. Rvisio of t rlativisti amis wit variabl rst mass a appliatio to rlativisti trmoamis. t uovo imto. Orgao lla soita italiao i fisia. 969;sr.,A6(-4): Lasbrg P, Matsas GEA. Laig t gost of t rlativisti trasformatio. Psis Lttrs A. 996;: Lasbrg P, Matsas GEA. impossibl of a uivrsal rlativisti tmpratur trasformatig, Psia A. 4;4( ): Eisti A. Ubr as Rlativitatsprizip u i aus mslb gzog Folgrug, Jarbu uts Raioaktivitat u Elktroik. 97;4:4-46. Duts. 9. Lvi VG. Cours of ortial Psis, V.. Mosow: Fizmatgiz; 96. Russia.. Hamit VH. Rlativisti rmoamis. Ps. Rv. 969;87(5): Mvv MV. rmoamis of poto i rlativisti - γ plasma. Ps. Rviw, E. 999:59(5): Hakim R, Mag A. Rmarks o Rlativisti rmoamis. Lttr al Nuovo Cimto. Rvista itrazioal Soit lla italiaa Di Fisia, sria. 969;(9); Vitsma EV. Som Problms i Rlativisti rmoamis. J. Exprimtal a ortial Ps. 7;5(5): Vitsma EV. O Rlativistik Surfa sio. J. Colloi trfa Si. ;65(): Vitsma EV. Spifi trmoamial pottials o surfas ur rlativisti oitios. J Colloi trfa Si. 9;7(): rltsk YP. Statistial Psis. Mosow: Vissaa Skola; 966. Russia. 7. Pruikov AP, Brkov UA, Mariv O. tgrals a Sris, V. (Pag 77). Mosow: Fizmatgiz;. Russia. 4 Vitsma; is is a Op Ass artil istribut ur t trms of t Crativ Commos Attributio Lis (ttp://rativommos.org/liss/b/.), wi prmits urstrit us, istributio, a rproutio i a mium, provi t origial work is proprl it. Pr-rviw istor: pr rviw istor for tis papr a b ass r: ttp://

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation Ltur otts Dsity of stats Distributio futio Statisti of arrirs Itrisi trisi with o ompsatio ompsatio S 68 Ltur #7 Dsity of stats Problm: alulat umbr of stats pr uit rgy pr uit volum V() Larg 3D bo (L is

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

ELCE5180 Digital Signal Processing

ELCE5180 Digital Signal Processing ELCE580 Digital Sigal Prossig Assigmt : Disrt Fourir Trasform DFT am Class&Stut ID Aim. To stuy t Disrt Fourir Trasform.. Us DFT to aalyz t DTFT. 3. Us t FFT to imlmt t fast ovolutios. Itroutio Fast Fourir

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Carriers Concentration in Semiconductors - VI. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carriers Concentration in Semiconductors - VI. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carrirs Conntration in Smionutors - VI 1 Prof.P. Ravinran, Dpartmnt of Pysis, Cntral Univrsity of Tamil au, Inia ttp://folk.uio.no/ravi/smi01 P.Ravinran, PHY0 Smionutor Pysis, 17 January 014 : Carrirs

More information

Lecture contents. Semiconductor statistics. NNSE508 / NENG452 Lecture #12

Lecture contents. Semiconductor statistics. NNSE508 / NENG452 Lecture #12 Ltur otts Sioutor statistis S58 / G45 Ltur # illig th pty bas: Distributio futio ltro otratio at th rgy (Dsity of stats) (istributio futio): ( ) ( ) f ( ) Pauli lusio Priipl: o two ltros (frios) a hav

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

Kondo vs Fano resonances in Quantum Dot

Kondo vs Fano resonances in Quantum Dot ivrsita Frio II i Napoli Italy Koo vs Fao rsoas i Quatum Dot Capri Capri 4/5 4/5 P.tfasi, B.Bula (Poza) A.T., P.Luigao, A.Nao B.ouault (CNR Motpllir) D.Giuliao ( iv. Calabria, Italy) P.Luigao, B.ouault,

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

Module 5 - Thermal Radiation. A blackbody is an object that absorbs all radiation that is incident upon it.

Module 5 - Thermal Radiation. A blackbody is an object that absorbs all radiation that is incident upon it. I. History of Blabody Radiatio A. What is a blabody? Modul 5 - Thrmal Radiatio A blabody is a obt that absorbs all radiatio that is iidt upo it. Wh radiatio falls upo a obt, som of th radiatio may b absorbd,

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

AP Calculus BC AP Exam Problems Chapters 1 3

AP Calculus BC AP Exam Problems Chapters 1 3 AP Eam Problms Captrs Prcalculus Rviw. If f is a continuous function dfind for all ral numbrs and if t maimum valu of f() is 5 and t minimum valu of f() is 7, tn wic of t following must b tru? I. T maimum

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Rectangular Waveguides

Rectangular Waveguides Rtgulr Wvguids Wvguids tt://www.tllguid.o/wvguidlirit.tl Uss To rdu ttutio loss ig rquis ig owr C ort ol ov rti rquis Ats s ig-ss iltr Norll irulr or rtgulr W will ssu losslss rtgulr tt://www..surr..u/prsol/d.jris/wguid.tl

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017 DEARMEN OF MAEMAICS BI, MESRA, RANCI MA Advad Egg. Mathatis Sssio: S/ 7 MODULE I. Cosidr th two futios f utorial Sht No. -- ad g o th itrval [,] a Show that thir Wroskia W f, g vaishs idtially. b Show

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES oural of atatical Scics: Advacs ad Alicatios Volu 6 Nubr 00 Pas -6 DOPHANNE APPROAON WH FOUR SQUARES AND ONE -H POWER OF PRES Dartt of atatics ad foratio Scic Ha Uivrsit of Ecooics ad Law Zzou 000 P. R.

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

An Insight into Differentiation and Integration

An Insight into Differentiation and Integration Differetiatio A Isigt ito Differetiatio a Itegratio Differetiatio is basically a task to fi out ow oe variable is cagig i relatio to aoter variable, te latter is usually take as a cause of te cage. For

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06 Cas Study Qustion. A 3 yar old, 5 kg patint was brougt in for surgry and was givn a /kg iv bolus injction of a muscl rlaxant. T plasma concntrations wr masurd post injction and notd in t tabl blow: Tim

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor ad Maclauri Sris Taylor ad Maclauri Sris Thory sctio which dals with th followig topics: - Th Sigma otatio for summatio. - Dfiitio of Taylor sris. - Commo Maclauri sris. - Taylor sris ad Itrval

More information

CIVE322 BASIC HYDROLOGY Hydrologic Science and Engineering Civil and Environmental Engineering Department Fort Collins, CO (970)

CIVE322 BASIC HYDROLOGY Hydrologic Science and Engineering Civil and Environmental Engineering Department Fort Collins, CO (970) CVE322 BASC HYDROLOGY Hydrologic Scic ad Egirig Civil ad Evirotal Egirig Dpartt Fort Collis, CO 80523-1372 (970 491-7621 MDERM EXAM 1 NO. 1 Moday, Octobr 3, 2016 8:00-8:50 AM Haod Auditoriu You ay ot cosult

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information

5.1 The Nuclear Atom

5.1 The Nuclear Atom Sav My Exams! Th Hom of Rvisio For mor awsom GSE ad lvl rsourcs, visit us at www.savmyxams.co.uk/ 5.1 Th Nuclar tom Qustio Papr Lvl IGSE Subjct Physics (0625) Exam oard Topic Sub Topic ooklt ambridg Itratioal

More information

Computational Methods CMSC/AMSC/MAPL 460. Quadrature: Integration

Computational Methods CMSC/AMSC/MAPL 460. Quadrature: Integration Computatioal Metods CMSC/AMSC/MAPL 6 Quadrature: Itegratio Ramai Duraiswami, Dept. o Computer Siee Some material adapted rom te olie slides o Eri Sadt ad Diae O Leary Numerial Itegratio Idea is to do itegral

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

PHY 410. Final Examination, Spring May 4, 2009 (5:45-7:45 p.m.)

PHY 410. Final Examination, Spring May 4, 2009 (5:45-7:45 p.m.) PHY ina amination, Spring 9 May, 9 5:5-7:5 p.m. PLAS WAIT UTIL YOU AR TOLD TO BGI TH XAM. Wi waiting, carfuy fi in t information rqustd bow Your am: Your Studnt umbr: DO OT TUR THIS PAG UTIL TH XAM STARTS

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Exercises for lectures 23 Discrete systems

Exercises for lectures 23 Discrete systems Exrciss for lcturs 3 Discrt systms Michal Šbk Automatické říí 06 30-4-7 Stat-Spac a Iput-Output scriptios Automatické říí - Kybrtika a robotika Mols a trasfrs i CSTbx >> F=[ ; 3 4]; G=[ ;]; H=[ ]; J=0;

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

2. SIMPLE SOIL PROPETIES

2. SIMPLE SOIL PROPETIES 2. SIMPLE SOIL PROPETIES 2.1 EIGHT-OLUME RELATIONSHIPS It i oft rquir of th gotchical gir to collct, claify a ivtigat oil ampl. B it for ig of fouatio or i calculatio of arthork volum, trmiatio of oil

More information

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable auss of dadloks Four ssary oditios for dadlok to our ar: Exlusiv ass: prosss rquir xlusiv ass to a rsour Wait whil hold: prosss hold o prviously aquird rsours whil waitig for additioal rsours No prmptio:

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

AP Calculus Multiple-Choice Question Collection

AP Calculus Multiple-Choice Question Collection AP Calculus Multipl-Coic Qustion Collction 985 998 . f is a continuous function dfind for all ral numbrs and if t maimum valu of f () is 5 and t minimum valu of f () is 7, tn wic of t following must b

More information

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 500' CANADA

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1 = 500' CANADA TR ISL ROR UST 8 O. R-2,4-3 R-4 IX O VITIO IS STT PL ORPI OORITS POSITIO 27698 4-39'-" 88 69-6'-4."W 278248 4-4'-" 8968 69-6'-4"W 27973 4-4'-2" 88 69-6'-"W W MPSIR OOR UUST PORTL MI OR 27 8-OOT OR L -

More information

U8L1: Sec Equations of Lines in R 2

U8L1: Sec Equations of Lines in R 2 MCVU Thursda Ma, Review of Equatios of a Straight Lie (-D) U8L Sec. 8.9. Equatios of Lies i R Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio

More information

Physics 506 Winter 2006 Homework Assignment #12 Solutions. Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12

Physics 506 Winter 2006 Homework Assignment #12 Solutions. Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12 Physis 56 Wintr 6 Homwork Assignmnt # Solutions Ttbook problms: Ch. 4: 4., 4.4, 4.6, 4. 4. A partil of harg is moving in narly uniform nonrlativisti motion. For tims nar t = t, its vtorial position an

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

G-001 SACO SACO BAY BIDDEFORD INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 1000' CANADA MAINE STATE PLANE GEOGRAPHIC NO.

G-001 SACO SACO BAY BIDDEFORD INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1 = 1000' CANADA MAINE STATE PLANE GEOGRAPHIC NO. 2 3 6 7 8 9 0 2 3 20000 230000 220000 ST TORY M 8-OOT W ST 2880000 2880000 L ROOK RL OTS: UKI OR TUR RKWTR (TYP) U O ROOK. SOUIS R I T TTS. T RR PL IS M LOWR LOW WTR (MLLW) IS S O T 983-200 TIL PO. SOUIS

More information

U8L1: Sec Equations of Lines in R 2

U8L1: Sec Equations of Lines in R 2 MCVU U8L: Sec. 8.9. Equatios of Lies i R Review of Equatios of a Straight Lie (-D) Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio of the lie

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

ME260W Mid-Term Exam Instructor: Xinyu Huang Date: Mar

ME260W Mid-Term Exam Instructor: Xinyu Huang Date: Mar ME60W Mid-Term Exam Istrutor: Xiyu Huag Date: Mar-03-005 Name: Grade: /00 Problem. A atilever beam is to be used as a sale. The bedig momet M at the gage loatio is P*L ad the strais o the top ad the bottom

More information

7. Differentiation of Trigonometric Function

7. Differentiation of Trigonometric Function 7. Diffrtiatio of Trigootric Fctio RADIAN MEASURE. Lt s ot th lgth of arc AB itrcpt y th ctral agl AOB o a circl of rais r a lt S ot th ara of th sctor AOB. (If s is /60 of th circfrc, AOB = 0 ; if s =

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information