Principles of soil water and heat transfer in JULES

Size: px
Start display at page:

Download "Principles of soil water and heat transfer in JULES"

Transcription

1 Principles of soil water and heat transfer in JULES Anne Verhoef 1, Pier Luigi Vidale 2, Raquel Garcia- Gonzalez 1,2, and Marie-Estelle Demory 2 1. Soil Research Centre, Reading (UK); 2. NCAS-Climate, Reading (UK) 1

2 Overview of presentation Summary of theory Calculation of water and heat flow Parameterisation of water retention curve Parameterisation of thermal soil properties Importance of texture maps Examples of some research in this area 2

3 JULES Schematic Schematic of JULES model (Blyth et al.; 2006)

4 JULES Soil hydrology and thermodynamics Within-soil transfer R n LE G H Ψ 2 Ψ 3 T 2 T 3 Ψ 4 T 4 Layers (1-4): 0.10, 0.25, 0.65, 2.0 m W = K ψ z +1 G = λ T z Plus advective heat transfer 4

5 How does JULES simulate soil hydrology and heat transfer? M = ρ w zθ s S u + S { f } W = K ψ z +1 Darcy s law surface E n n layer W n-1 Capillary capacity W n dm n dt = W n 1 W n E n (as in JULES documentation) (standard Richard s equation) Some models consider coupled heatand water movement in the soil Diffusive flux, Fourier s law Advective flux Apparent volumetric heat capacity 5

6 Recent addition of vapourtransport.. Due to soil water potential (isothermal) and thermal gradients Isothermal vapour conductivity Thermal vapour diffusivity C A T n t = z λ n T n z + ρ w LD ψ,v,n ψ n z c W T n w z These gradients will induce soil moisture transport and affect soil moisture distribution, which in turn will affect heat flow Milly, et. 1982,

7 Water retention curve How tightly is water held in the soil? Soil matric potential, Ψ (kpa) WP CRIT Soil moisture content, θ (%)

8 How do we get Ψ and K?? ( ) ψ = ψ θ / θ b ( ) 2b+ 3 K = θ / θ s Clapp & Hornberger (1978): s K s s log Ψ (m) WP CRIT 0 Loamy sand Loam Clay 10 log K (mm day -1 ) Loamy sand Loam Clay θ 0.0 w θ 0.1 c θ s 0.5 θ (m3 m -3 ) θ (m3 m -3 ) Soil texture f sand (%) f silt (%) f clay (%) Loamy sand Loam Clay

9 How do we get Ψ and K?? Van Genuchten (1981): ( ψ = Θ 1/m 1) 1/n α K = K s 1 αψ { } m ( ) n 1 1+ ( αψ) n 1+ αψ ( ) n m/2 2 Θ = θ θ r θ s θ r m =1 1 n When using van Genuchten soil hydraulics, the UM/JULES only stores the free soil water θ-θ r and uses the approximation Θ = θ θ r θ s θ r 9

10 Soil Hydraulic parameters Clapp and Hornberger parameters Cosby et al. (1984) parameters Soil texture b θ s ψ s QC K s (-) (m 3 m -3 ) (m) (-) (cm/min) Sand Loamy sand Sandy loam Silt loam Loam Sandy clay loam Silty clay loam Clay loam Sandy clay Silty clay Clay

11 Pedotransfer functions Cosby pedotransfer functions (PTFs) based on MLRA (multiple linear regression analysis) dependent on percentages of sand, silt and clay b = f clay f sand θ s = ( f f )/ sand clay ψ s = 0.01e f sand f silt ψ s = f sand f silt K s = a e f clay f sand K s = a f clay f sand

12 Pedotransfer functions Van Genuchten pedotransfer functions (PTFs) Wosten et al. (1999) Geoderma 90,

13 Global soils distribution, effect of soil map IGBP-DIS map has a higher resolution than Wilson-Henderson- Sellers map and retains more heterogeneity in soil types. ( ) ψ = ψ θ / θ b ( ) 2b+ 3 K = θ / θ s s K s s

14 Importance of using the right PTFs θ c θ w Ψ s K s

15 JULES soil physical parameters Original table courtesy of Jon Finch 15

16 Role of key moisture contents g soil = θ1 θ c 2 Affects soil evaporation g soil (m s -1 ) sandy loam (PTF: ln) loam (PTF: ln) clay (PTF: ln) sandy loam (PTF: 10 log) loam (PTF: 10 log) clay (PTF: 10 log) 0.00 β (-) θ w θ w θ c θ c θ (m 3 m -3 ) sandy loam (PTF: ln) loam (PTF: ln) clay (PTF: ln) sandy loam (PTF: 10 log) loam (PTF: 10 log) clay (PTF: 10 log) β = Θ Θ w Θ c Θ w 0 θ (m 3 m -3 ) Affects photosynthesis, g c and transpiration A = ' A β ( θ )

17 Thermal conductivity parameterisation Original JULES model x θ λ = + θ s ( λ ) sat λ dry λdry Lu et al. model λ = ( λ λ K + λ sat dry ) e dry K = exp α e 1 θ θ s α 1. 33

18 Theoretical background Thermal soil property values of soil components at 10 C C h λ MJ m -3 K -1 W m -1 K -1 quartz clay minerals organic matter water ice (0 C) air (saturated with water vapour)

19 Thermal conductivity JULES versus Lu et al.

20 Theoretical background Standard soils: Cosby et al. (1986), thermal conductivity λ = ( λ K + λ K e = exp α 1 θ sat λdry ) e dry θ sat α 1.33 Original Jules λ 20

21 Theoretical background Standard soils: Cosby et al. (1986), heat capacity C h = ( 1 θ sat )C h,s +θc h,w Associated with phase changes C A = C s + ρ w c w θ u + ρ i c i θ f + ρ w {( c w c i )T + L f } θ u T 21

22 Timeseries comparison

23 Timeseries comparison

24 Timeseries comparison

25 HadGAM1 AGCM runs, soil temperature Average JJA Soil temperature difference (deg C) Layer 1 ( m) Layer 4 ( m) Average DJF Soil temperature difference (deg C) Layer 1 ( m) Layer 4 ( m)

26 HadGAM1 AGCM runs, soil moisture content Average JJA Soil moisture difference (mm) Layer 1 ( m) Layer 4 ( m) Average DJF Soil moisture difference (mm) Layer 1 ( m) Layer 4 ( m)

27 Reduction of UM 2m Temp cold bias UKMO R&D Technical report 528, New soil physical properties implemented in the Unified Model at PS18 by Dharssi et al.

28 Reduction of UM winter 2m Temp RMSE

29 Final remarks Other processes that require further testing/development Infiltration Parameterisation of groundwater table Within/below canopy aerodynamic transfer Soil gas transfer

New soil physical properties implemented in the Unified Model

New soil physical properties implemented in the Unified Model New soil physical properties implemented in the Unified Model Imtiaz Dharssi 1, Pier Luigi Vidale 3, Anne Verhoef 3, Bruce Macpherson 1, Clive Jones 1 and Martin Best 2 1 Met Office (Exeter, UK) 2 Met

More information

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

Assimilation of satellite derived soil moisture for weather forecasting

Assimilation of satellite derived soil moisture for weather forecasting Assimilation of satellite derived soil moisture for weather forecasting www.cawcr.gov.au Imtiaz Dharssi and Peter Steinle February 2011 SMOS/SMAP workshop, Monash University Summary In preparation of the

More information

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay.

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay. Contents 1 Infiltration 1 1a Hydrologic soil horizons...................... 1 1b Infiltration Process......................... 2 1c Measurement............................ 2 1d Richard s Equation.........................

More information

Ju Hyoung, Lee, B. Candy, R. Renshaw Met Office, UK

Ju Hyoung, Lee, B. Candy, R. Renshaw Met Office, UK the FAO/ ESA/ GWSP Workshop on Earth Observations and the Water-Energy-Food Nexus 25-27 March 2014 in Rome, Italy Ju Hyoung, Lee, B. Candy, R. Renshaw Met Office, UK 1 1. Agriculture needs, current methods,

More information

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Reinder A.Feddes Jos van Dam Joop Kroes Angel Utset, Main processes Rain fall / irrigation Transpiration Soil evaporation

More information

Assimilation of ASCAT soil wetness

Assimilation of ASCAT soil wetness EWGLAM, October 2010 Assimilation of ASCAT soil wetness Bruce Macpherson, on behalf of Imtiaz Dharssi, Keir Bovis and Clive Jones Contents This presentation covers the following areas ASCAT soil wetness

More information

THEORY. Water flow. Air flow

THEORY. Water flow. Air flow THEORY Water flow Air flow Does Suction Gradient Cause Flow? Coarse stone Fine ceramic Suction gradient to the right No suction gradient but still flow Does water content gradient cause Flow? Suction gradient

More information

METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance. Spring Semester 2011 February 8, 10 & 14, 2011

METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance. Spring Semester 2011 February 8, 10 & 14, 2011 METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance Spring Semester 2011 February 8, 10 & 14, 2011 Reading Arya, Chapters 2 through 4 Surface Energy Fluxes (Ch2) Radiative Fluxes (Ch3)

More information

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS CHAPTER 7: THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS 7.1: Introduction The atmosphere is sensitive to variations in processes at the land surface. This was shown in the earlier

More information

+ Validation of a simplified land surface model and

+ Validation of a simplified land surface model and + Validation of a simplified land surface model and its application to the case of shallow cumulus convection development Colorado State University January 2013 Marat Khairoutdinov Jungmin Lee Simplified

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

Research Article Performance Evaluation of Four-Parameter Models of the Soil-Water Characteristic Curve

Research Article Performance Evaluation of Four-Parameter Models of the Soil-Water Characteristic Curve e Scientific World Journal, Article ID 56985, 2 pages http://dx.doi.org/55/204/56985 Research Article Performance Evaluation of Four-Parameter Models of the Soil-Water Characteristic Curve Siti Jahara

More information

Darcy s Law, Richards Equation, and Green-Ampt Equation

Darcy s Law, Richards Equation, and Green-Ampt Equation Darcy s Law, Richards Equation, and Green-Ampt Equation 1. Darcy s Law Fluid potential: in classic hydraulics, the fluid potential M is stated in terms of Bernoulli Equation (1.1) P, pressure, [F L!2 ]

More information

Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL

Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL Soil Physical Properties Porosity Pore size and pore size distribution Water holding capacity Bulk density

More information

GEOG 402. Soil Temperature and Soil Heat Conduction. Summit of Haleakalā. Surface Temperature. 20 Soil Temperature at 5.0 cm.

GEOG 402. Soil Temperature and Soil Heat Conduction. Summit of Haleakalā. Surface Temperature. 20 Soil Temperature at 5.0 cm. GEOG 40 Soil Temperature and Soil Heat Conduction 35 30 5 Summit of Haleakalā Surface Temperature Soil Temperature at.5 cm 0 Soil Temperature at 5.0 cm 5 0 Air Temp 5 0 0:00 3:00 6:00 9:00 :00 5:00 8:00

More information

Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro

Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro Fakultät Umweltwissenschaften, Fachrichtung Hydrowissenschaften. Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro Jinxing Guo, Peter-Wolfgang Graeber Table of contents

More information

03. Field capacity, Available soil water and permanent wilting point

03. Field capacity, Available soil water and permanent wilting point 03. Field capacity, Available soil water and permanent wilting point Field capacity or water holding capacity of the soil After heavy rain fall or irrigation of the soil some water is drained off along

More information

Exploring the uncertainty of soil water holding capacity information

Exploring the uncertainty of soil water holding capacity information Exploring the uncertainty of soil water holding capacity information Linda Lilburne*, Stephen McNeill, Tom Cuthill, Pierre Roudier Landcare Research, Lincoln, New Zealand *Corresponding author: lilburnel@landcareresearch.co.nz

More information

The matric flux potential: history and root water uptake

The matric flux potential: history and root water uptake The matric flux potential: history and root water uptake Marius Heinen, Peter de Willigen (Alterra, Wageningen-UR) Jos van Dam, Klaas Metselaar (Soil Physics, Ecohydrology and Groundwater Management Group,

More information

Predicting the soil-water characteristics of mine soils

Predicting the soil-water characteristics of mine soils Predicting the soil-water characteristics of mine soils D.A. Swanson, G. Savci & G. Danziger Savci Environmental Technologies, Golden, Colorado, USA R.N. Mohr & T. Weiskopf Phelps Dodge Mining Company,

More information

Evapotranspiration. Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere

Evapotranspiration. Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere Evapotranspiration Evaporation (E): In general, the change of state from liquid to gas Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere

More information

Workshop Opening Presentation of the DYNAS Project

Workshop Opening Presentation of the DYNAS Project Workshop Opening Presentation of the DYNAS Project Alexandre Ern, Eric Gaume, Cyril Kao, Jérôme Jaffré CERMICS École Nationale des Ponts et Chausées Marne-la-Vallée, France DYNAS Workshop 06-08/12/04 p.1

More information

Chapter 4 Water Vapor

Chapter 4 Water Vapor Chapter 4 Water Vapor Chapter overview: Phases of water Vapor pressure at saturation Moisture variables o Mixing ratio, specific humidity, relative humidity, dew point temperature o Absolute vs. relative

More information

12 SWAT USER S MANUAL, VERSION 98.1

12 SWAT USER S MANUAL, VERSION 98.1 12 SWAT USER S MANUAL, VERSION 98.1 CANOPY STORAGE. Canopy storage is the water intercepted by vegetative surfaces (the canopy) where it is held and made available for evaporation. When using the curve

More information

Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models

Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models WATER RESOURCES RESEARCH, VOL. 40, W07409, doi:10.1029/2004wr003285, 2004 Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models J. Maximilian Köhne

More information

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often?

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often? 2. Irrigation Key words: right amount at right time What if it s too little too late? 2-1 Too much too often? To determine the timing and amount of irrigation, we need to calculate soil water balance.

More information

In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique

In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique WATER RESOURCES RESEARCH, VOL. 34, NO. 5, PAGES 1035 1050, MAY 1998 In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique M. Inoue Arid Land Research Center,

More information

C) D) 3. Which graph best represents the relationship between soil particle size and the rate at which water infiltrates permeable soil?

C) D) 3. Which graph best represents the relationship between soil particle size and the rate at which water infiltrates permeable soil? 1. Which earth material covering the surface of a landfill would permit the least amount of rainwater to infiltrate the surface? A) silt B) clay C) sand D) pebbles 2. Which graph best represents the relationship

More information

Supplementary Material: Crop & Pasture Science, 2013, 64(12),

Supplementary Material: Crop & Pasture Science, 2013, 64(12), 10.1071/CP13168_AC CSIRO 2013 Supplementary Material: Crop & Pasture Science, 2013, 64(12), 1182 1194. Hydrological and water-use efficiency implications of geomorphological stratification in palæochannels

More information

RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA

RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA GEOPHYSICS RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA C. BUCUR 1, M. OLTEANU 1, M. PAVELESCU 2 1 Institute for Nuclear Research, Pitesti, Romania, crina.bucur@scn.ro 2 Academy of Scientists Bucharest,

More information

Updating the Coupling Algorithm in HYDRUS Package for MODFLOW

Updating the Coupling Algorithm in HYDRUS Package for MODFLOW Updating the Coupling Algorithm in HYDRUS Package for MODFLOW SAHILA BEEGUM Guided by Dr. K P Sudheer, Dr. Indumathi M Nambi & Dr. Jirka Šimunek Department of Civil Engineering, Indian Institute of Technology

More information

C. Lanni(1), E. Cordano(1), R. Rigon(1), A. Tarantino(2)

C. Lanni(1), E. Cordano(1), R. Rigon(1), A. Tarantino(2) Landslide Processes: from geomorphologic mapping to dynamic modelling (6-7 February, 2009 - Strasbourg, France) A tribute to Prof. Dr. Theo van Asch C. Lanni(1), E. Cordano(1), R. Rigon(1), A. Tarantino(2)

More information

Land-surface atmosphere interaction

Land-surface atmosphere interaction Land-surface atmosphere interaction Author: Dr. Ferenc Ács Eötvös Loránd University Institute of Geography and Earth Sciences Department of Meteorology Financed from the financial support ELTE won from

More information

Use of satellite soil moisture information for NowcastingShort Range NWP forecasts

Use of satellite soil moisture information for NowcastingShort Range NWP forecasts Use of satellite soil moisture information for NowcastingShort Range NWP forecasts Francesca Marcucci1, Valerio Cardinali/Paride Ferrante1,2, Lucio Torrisi1 1 COMET, Italian AirForce Operational Center

More information

Effective unsaturated hydraulic conductivity for one-dimensional structured heterogeneity

Effective unsaturated hydraulic conductivity for one-dimensional structured heterogeneity WATER RESOURCES RESEARCH, VOL. 41, W09406, doi:10.1029/2005wr003988, 2005 Effective unsaturated hydraulic conductivity for one-dimensional structured heterogeneity A. W. Warrick Department of Soil, Water

More information

The PRECIS Regional Climate Model

The PRECIS Regional Climate Model The PRECIS Regional Climate Model General overview (1) The regional climate model (RCM) within PRECIS is a model of the atmosphere and land surface, of limited area and high resolution and locatable over

More information

2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007

2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007 2nd International Conference Determination of the Soil Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution Alexander Scheuermann & Andreas Bieberstein Motivation

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 6 Good morning and welcome to the next lecture of this video course on Advanced Hydrology.

More information

Estimating soil specific surface area using the summation of the number of spherical particles and geometric mean particle-size diameter

Estimating soil specific surface area using the summation of the number of spherical particles and geometric mean particle-size diameter African Journal of Agricultural Research Vol. 6(7), pp. 1758-1762, 4 April, 2011 Available online at http://www.academicjournals.org/ajar DOI: 10.5897/AJAR11.199 ISSN 1991-637X 2011 Academic Journals Full

More information

Dielectric mixing model for the estimation of complex permittivity of wet soils at C and X band microwave frequencies

Dielectric mixing model for the estimation of complex permittivity of wet soils at C and X band microwave frequencies Indian Journal of Pure & Applied Physics Vol. 53, March 2015, pp. 190-198 Dielectric mixing model for the estimation of complex permittivity of wet soils at C and X band microwave frequencies D H Gadani

More information

P. Broadbridge. Snippets from Infiltration: where Approximate Integral Analysis is Exact.

P. Broadbridge. Snippets from Infiltration: where Approximate Integral Analysis is Exact. P. Broadbridge Snippets from Infiltration: where Approximate Integral Analysis is Exact. Hydrology of 1D Unsaturated Flow in Darcy-Buckingham-Richards approach. Nonlinear diffusion-convection equations

More information

ET Theory 101. USCID Workshop. CUP, SIMETAW (DWR link)

ET Theory 101. USCID Workshop.   CUP, SIMETAW (DWR link) ET Theory 101 USCID Workshop http://biomet.ucdavis.edu PMhr, PMday, PMmon CUP, SIMETAW (DWR link) R.L. Snyder, Biometeorology Specialist Copyright Regents of the University of California Methods of eat

More information

Effect of the Lower Boundary Position of the Fourier Equation on the Soil Energy Balance

Effect of the Lower Boundary Position of the Fourier Equation on the Soil Energy Balance ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 21, NO. 6, 2004, 868 878 Effect of the Lower Boundary Position of the Fourier Equation on the Soil Energy Balance SUN Shufen (šë ) and ZHANG Xia (Ü _ ) State Key

More information

An objective analysis of the dynamic nature of field capacity

An objective analysis of the dynamic nature of field capacity WATER RESOURCES RESEARCH, VOL. 45,, doi:10.1029/2009wr007944, 2009 An objective analysis of the dynamic nature of field capacity Navin K. C. Twarakavi, 1 Masaru Sakai, 2 and Jirka Šimůnek 2 Received 5

More information

A Tool for Estimating Soil Water Available for Plants Using the 1:1,000,000 Scale Soil Geographical Data Base of Europe

A Tool for Estimating Soil Water Available for Plants Using the 1:1,000,000 Scale Soil Geographical Data Base of Europe A Tool for Estimating Soil Water Available for Plants Using the :,000,000 Scale Soil Geographical Data Base of Europe Le Bas, D. King and J. Daroussin. Abstract INRA - SESCPF, Domaine de Limère, 4560 ARDON,

More information

Teaching Unsaturated Soil Mechanics as Part of the Undergraduate Civil Engineering Curriculum

Teaching Unsaturated Soil Mechanics as Part of the Undergraduate Civil Engineering Curriculum Teaching Unsaturated Soil Mechanics as Part of the Undergraduate Civil Engineering Curriculum Delwyn G. Fredlund, Visiting Professor Kobe University, Kobe, Japan Sapporo, Hokkaido, Japan February 15, 2005

More information

Frozen Ground Containment Barrier

Frozen Ground Containment Barrier Frozen Ground Containment Barrier GEO-SLOPE International Ltd. www.geo-slope.com 1200, 700-6th Ave SW, Calgary, AB, Canada T2P 0T8 Main: +1 403 269 2002 Fax: +1 888 463 2239 Introduction Frozen soil barriers

More information

MOISTURE PERMEABILITY DATA PRESENTED AS A MATHEMATICAL FUNCTION APPLICABLE TO HEAT AND MOISTURE TRANSPORT MODELS

MOISTURE PERMEABILITY DATA PRESENTED AS A MATHEMATICAL FUNCTION APPLICABLE TO HEAT AND MOISTURE TRANSPORT MODELS MOISTURE PERMEABILITY DATA PRESENTED AS A MATHEMATICAL FUNCTION APPLICABLE TO HEAT AND MOISTURE TRANSPORT MODELS Dr. Graham H. Galbraith Glasgow Caledonian University Mr. R. Craig McLean The University

More information

Global Water Cycle. Surface (ocean and land): source of water vapor to the atmosphere. Net Water Vapour Flux Transport 40.

Global Water Cycle. Surface (ocean and land): source of water vapor to the atmosphere. Net Water Vapour Flux Transport 40. Global Water Cycle Surface (ocean and land): source of water vapor to the atmosphere Water Vapour over Land 3 Net Water Vapour Flux Transport 40 Water Vapour over Sea 10 Glaciers and Snow 24,064 Permafrost

More information

1 BASIC CONCEPTS AND MODELS

1 BASIC CONCEPTS AND MODELS 1 BASIC CONCEPTS AND ODELS 1.1 INTRODUCTION This Volume III in the series of textbooks is focused on applications of environmental isotopes in surface water hydrology. The term environmental means that

More information

&

& Inverse Problem for Transient Unsaturated Flow Identifiability and Non Uniqueness K. S. Hari Prasad & M. S. Ghidaoui Department of Civil and Structural Engineering The Hong Kong University of Science and

More information

FROST HEAVE. GROUND FREEZING and FROST HEAVE

FROST HEAVE. GROUND FREEZING and FROST HEAVE FROST HEAVE The temperature of soils near the ground surface reflects the recent air temperatures. Thus, when the air temperature falls below 0 C (32 F) for extended periods, the soil temperature drops

More information

Scaling to generalize a single solution of Richards' equation for soil water redistribution

Scaling to generalize a single solution of Richards' equation for soil water redistribution 582 Scaling to generalize a single solution of Richards' equation for soil water redistribution Morteza Sadeghi 1 *, Bijan Ghahraman 1, Kamran Davary 1, Seyed Majid Hasheminia 1, Klaus Reichardt 2 1 Ferdowsi

More information

Thermal and hydraulic modelling of road tunnel joints

Thermal and hydraulic modelling of road tunnel joints Thermal and hydraulic modelling of road tunnel joints Cédric Hounyevou Klotoé 1, François Duhaime 1, Lotfi Guizani 1 1 Département de génie de la construction, École de technologie supérieure, Montréal,

More information

Notes on Spatial and Temporal Discretization (when working with HYDRUS) by Jirka Simunek

Notes on Spatial and Temporal Discretization (when working with HYDRUS) by Jirka Simunek Notes on Spatial and Temporal Discretization (when working with HYDRUS) by Jirka Simunek 1. Temporal Discretization Four different time discretizations are used in HYDRUS: (1) time discretizations associated

More information

Procedure for Determining Near-Surface Pollution Sensitivity

Procedure for Determining Near-Surface Pollution Sensitivity Procedure for Determining Near-Surface Pollution Sensitivity Minnesota Department of Natural Resources Division of Ecological and Water Resources County Geologic Atlas Program March 2014 Version 2.1 I.

More information

6. Circle the correct answer: SINK A drains faster or SINK B drains faster Why?

6. Circle the correct answer: SINK A drains faster or SINK B drains faster Why? NAME date ROY G BIV Water Cycle and Water Movement in the Ground Test 5. 6. Circle the correct answer: SINK A drains faster or SINK B drains faster Why? 7. Circle the correct answer: SINK A retains more

More information

EXAMPLE PROBLEMS. 1. Example 1 - Column Infiltration

EXAMPLE PROBLEMS. 1. Example 1 - Column Infiltration EXAMPLE PROBLEMS The module UNSATCHEM is developed from the variably saturated solute transport model HYDRUS-1D [Šimůnek et al., 1997], and thus the water flow and solute transport parts of the model have

More information

Land Ice Sea Surface Model: Short Description and Verification

Land Ice Sea Surface Model: Short Description and Verification International Environmental Modelling and Software Society (iemss) 2010 International Congress on Environmental Modelling and Software Modelling for Environment s Sake, Fifth Biennial Meeting, Ottawa,

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

Monday, October 15 th Grab a textbook! Objective: We will explain the formation of different soils and classify soils according to particle size.

Monday, October 15 th Grab a textbook! Objective: We will explain the formation of different soils and classify soils according to particle size. Soil Mr. Gilmore Monday, October 15 th Grab a textbook! Objective: We will explain the formation of different soils and classify soils according to particle size. Review: 1. The four limestone samples

More information

The hydrol module of ORCHIDEE: scientific documentation

The hydrol module of ORCHIDEE: scientific documentation The hydrol module of ORCHIDEE: scientific documentation [rev 3977] and on, work in progress, towards CMIP6v1 A. Ducharne with C. Ottlé, F. Maignan, N. Vuichard, J. Ghattas, F. Wang, P. Peylin, J. Polcher,

More information

New Methods for Measuring Water Desorption and Vapour Permeation Rates in Membranes

New Methods for Measuring Water Desorption and Vapour Permeation Rates in Membranes New Methods for Measuring Water Desorption and Vapour Permeation Rates in Membranes L. I. iortea, D. O Driscoll, E. P. Berg, P. Xiao, F.. Pascut and R. E. Imhof School of Engineering, South Bank University,

More information

3. The map below shows an eastern portion of North America. Points A and B represent locations on the eastern shoreline.

3. The map below shows an eastern portion of North America. Points A and B represent locations on the eastern shoreline. 1. Most tornadoes in the Northern Hemisphere are best described as violently rotating columns of air surrounded by A) clockwise surface winds moving toward the columns B) clockwise surface winds moving

More information

Subsurface Flow Modelling At The Hillslope Scale: Numerical And Physical Analysis. Oscar Cainelli

Subsurface Flow Modelling At The Hillslope Scale: Numerical And Physical Analysis. Oscar Cainelli Subsurface Flow Modelling At The Hillslope Scale: Numerical And Physical Analysis Oscar Cainelli 2007 Based on the doctoral thesis in Environmental Engineering (XIX cycle) defended in February 2007 at

More information

Snow II: Snowmelt and energy balance

Snow II: Snowmelt and energy balance Snow II: Snowmelt and energy balance The are three basic snowmelt phases 1) Warming phase: Absorbed energy raises the average snowpack temperature to a point at which the snowpack is isothermal (no vertical

More information

Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils

Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils D. Jougnot 1, N. Linde 1, A. Revil 2,3, and C. Doussan 4 1 Institute

More information

Snow Parameter Caused Uncertainty of Predicted Snow Metamorphism Processes

Snow Parameter Caused Uncertainty of Predicted Snow Metamorphism Processes Sno Parameter Caused Uncertainty of Predicted Sno Metamorphism Processes Report on the Research Performed during the REU Program at the University of Alaska Fairbanks, Geophysical Institute, 903 Koyukuk

More information

Aldo Ferrero, Francesco Vidotto, Fernando De Palo. RUNOFF team

Aldo Ferrero, Francesco Vidotto, Fernando De Palo. RUNOFF team TOPPS ACADEMY 15-1818 th June 2015 Grugliasco (TO) Aldo Ferrero, Francesco Vidotto, Fernando De Palo RUNOFF team DIAGNOSIS what data do we need? collection of territorial data (soils, elevation, slope,

More information

Outline. In Situ Stresses. Soil Mechanics. Stresses in Saturated Soil. Seepage Force Capillary Force. Without seepage Upward seepage Downward seepage

Outline. In Situ Stresses. Soil Mechanics. Stresses in Saturated Soil. Seepage Force Capillary Force. Without seepage Upward seepage Downward seepage Soil Mechanics In Situ Stresses Chih-Ping Lin National Chiao Tung Univ. cplin@mail.nctu.edu.tw Outline Without seepage Upward seepage Downward seepage Seepage Force The total stress at the elevation of

More information

Modelling Trickle Irrigation: Comparison of Analytical and Numerical Models For Estimation of Wetting Front Position with Time.

Modelling Trickle Irrigation: Comparison of Analytical and Numerical Models For Estimation of Wetting Front Position with Time. Modelling Trickle Irrigation: Comparison of Analytical and Numerical Models For Estimation of Wetting Front Position with Time. Freeman J. Cook a,c, Peter Fitch b, Peter Thorburn c,d, Philip B. Charlesworth

More information

Suction Potential and Water Absorption from Periodic Channels in Different Types of Homogeneous Soils

Suction Potential and Water Absorption from Periodic Channels in Different Types of Homogeneous Soils I. Solekhudin and K.C. Ang/ Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 42-55 (212) Suction Potential and Water Absorption from Periodic Channels in Different Types of Homogeneous Soils

More information

Simulation of Unsaturated Flow Using Richards Equation

Simulation of Unsaturated Flow Using Richards Equation Simulation of Unsaturated Flow Using Richards Equation Rowan Cockett Department of Earth and Ocean Science University of British Columbia rcockett@eos.ubc.ca Abstract Groundwater flow in the unsaturated

More information

Chapter 1 - Soil Mechanics Review Part A

Chapter 1 - Soil Mechanics Review Part A Chapter 1 - Soil Mechanics Review Part A 1.1 Introduction Geotechnical Engineer is concerned with predicting / controlling Failure/Stability Deformations Influence of water (Seepage etc.) Soil behavour

More information

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT SSC107 Fall 2000 Chapter 2, Page - 1 - CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT Contents: Transport mechanisms Water properties Definition of soil-water potential Measurement of soil-water

More information

Summary and concluding remarks

Summary and concluding remarks Contents Introduction Experimental design Model domain: CORDEX-East Asia domain Model description: HadGEM3-RA Evaluation results Mean climate Inter-annual variability Climate extreme Summary and concluding

More information

ONE DIMENSIONAL CLIMATE MODEL

ONE DIMENSIONAL CLIMATE MODEL JORGE A. RAMÍREZ Associate Professor Water Resources, Hydrologic and Environmental Sciences Civil Wngineering Department Fort Collins, CO 80523-1372 Phone: (970 491-7621 FAX: (970 491-7727 e-mail: Jorge.Ramirez@ColoState.edu

More information

A Method, tor Determining the Slope. or Neutron Moisture Meter Calibration Curves. James E. Douglass

A Method, tor Determining the Slope. or Neutron Moisture Meter Calibration Curves. James E. Douglass Station Paper No. 154 December 1962 A Method, tor Determining the Slope or Neutron Moisture Meter Calibration Curves James E. Douglass U.S. Department of Agriculture-Forest Service Southeastern Forest

More information

Agry 465 Exam October 18, 2006 (100 points) (9 pages)

Agry 465 Exam October 18, 2006 (100 points) (9 pages) Agry 465 Exam October 18, 2006 (100 points) (9 pages) Name (4) 1. In each of the following pairs of soils, indicate which one would have the greatest volumetric heat capacity, and which would have the

More information

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head.

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head. Groundwater Seepage 1 Groundwater Seepage Simplified Steady State Fluid Flow The finite element method can be used to model both steady state and transient groundwater flow, and it has been used to incorporate

More information

Final Report. Mn/ROAD TDR Evaluation and Data Analysis

Final Report. Mn/ROAD TDR Evaluation and Data Analysis 2004-15 Final Report Mn/ROAD TDR Evaluation and Data Analysis Technical Report Documentation Page 1. Report No. 2. 3. Recipients Accession No. MN/RC 2004-15 4. Title and Subtitle 5. Report Date Mn/ROAD

More information

Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous Soils: A Numerical Study

Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous Soils: A Numerical Study Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous Soils: A Numerical Study Jianting Zhu and Binayak P. Mohanty* ABSTRACT factors. Kim and Stricker (1996) employed

More information

Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation

Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Evaluating Irrigation Management Strategies Over 25 Years Prepared November 2003 Printed February 27, 2004 Prepared

More information

Development of Soil Hydraulic Pedotransfer Functions on a European scale: Their Usefulness in the Assessment of Soil Quality

Development of Soil Hydraulic Pedotransfer Functions on a European scale: Their Usefulness in the Assessment of Soil Quality This paper was peer-reviewed for scientific content. Pages 541-549. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International

More information

Chemistry of Tiling and Crusting

Chemistry of Tiling and Crusting Chemistry of Tiling and Crusting Tom DeSutter Assistant Professor of Soil Science NDSU Soil and Soil/Water Training 25 January 2012 What is Dispersion? Soil particles are repelled away from each other

More information

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Ruowen Liu, Bruno Welfert and Sandra Houston School of Mathematical & Statistical Sciences,

More information

EFFECTS OF SATURATION AND DRY DENSITY ON SOIL THERMAL CONDUCTIVITY. Bryan R. Becker, Ph.D., P.E. Associate Professor. and

EFFECTS OF SATURATION AND DRY DENSITY ON SOIL THERMAL CONDUCTIVITY. Bryan R. Becker, Ph.D., P.E. Associate Professor. and EFFECTS OF SATURATION AND DRY DENSITY ON SOIL THERMAL CONDUCTIVITY by Bryan R. Becker, Ph.D., P.E. Associate Professor and Brian A. Fricke Research Assistant Department of Mechanical and Aerospace Engineering

More information

Land Data Assimilation for operational weather forecasting

Land Data Assimilation for operational weather forecasting Land Data Assimilation for operational weather forecasting Brett Candy Richard Renshaw, JuHyoung Lee & Imtiaz Dharssi * *Centre Australian Weather and Climate Research Contents An overview of the Current

More information

Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements

Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements Carlos Manoel Pedro Vaz Embrapa Agricultural Instrumentation, São Carlos, Brazil Lecture given at the College on Soil Physics

More information

We thank you for your review on our paper. We addressed the following points in a general answer to all reviewers

We thank you for your review on our paper. We addressed the following points in a general answer to all reviewers Hydrol. Earth Syst. Sci. Discuss., 11, C3731 C3742, 2014 www.hydrol-earth-syst-sci-discuss.net/11/c3731/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License.

More information

Green-Ampt infiltration model for sloping surfaces

Green-Ampt infiltration model for sloping surfaces WATER RESOURCES RESEARCH, VOL. 42,, doi:10.1029/2005wr004468, 2006 Green-Ampt infiltration model for sloping surfaces Li Chen 1 and Michael H. Young 1 Received 27 July 2005; revised 31 March 2006; accepted

More information

Rainfall-runoff model with non-linear reservoir

Rainfall-runoff model with non-linear reservoir Rainfall-runoff model with non-linear reservoir R.J.Oosterbaan On website https://www.waterlog.info Theory of the RainOff model to be found on https://www.waterlog.info/rainoff.htm Introduction The runoff

More information

Rocks and Weathering

Rocks and Weathering Rocks and Weathering The Effects of Weathering The process of mountain building thrusts rock up to Earth s surface. Weathering is the process that breaks down rock and other substances at Earth s surface.

More information

UNIT 12: THE HYDROLOGIC CYCLE

UNIT 12: THE HYDROLOGIC CYCLE UNIT 12: THE HYDROLOGIC CYCLE After Unit 12 you should be able to: o Effectively use the charts Average Chemical Composition of Earth s Crust, Hydrosphere and Troposphere, Selected Properties of Earth

More information

The use of SAGA-GIS in an integrated meteorological/ hydrological model for the Mawddach river catchment, North Wales

The use of SAGA-GIS in an integrated meteorological/ hydrological model for the Mawddach river catchment, North Wales The use of SAGA-GIS in an integrated meteorological/ hydrological model for the Mawddach river catchment, North Wales Graham Hall, Roger Cratchley and Sarah Johnson School of Agricultural and Forest Sciences,

More information

SHAWN NAYLOR. Research Hydrogeologist Center for Geospatial Data Analysis, Indiana Geological Survey

SHAWN NAYLOR. Research Hydrogeologist Center for Geospatial Data Analysis, Indiana Geological Survey SHAWN NAYLOR Research Hydrogeologist Center for Geospatial Data Analysis, Indiana Geological Survey Project overview Funded by American Recovery and Reinvestment Act Develop distributed network of databases

More information

Chapter 1 STATISTICAL REGRESSION. H. Vereecken* and M. Herbst

Chapter 1 STATISTICAL REGRESSION. H. Vereecken* and M. Herbst 3 Chapter 1 STATISTICAL REGRESSION H. Vereecken* and M. Herbst Institut Agrosphäre, ICG-IV, Forschungszentrum Jülich GmbH, Leo Brandt Strabe, 52425 Jülich, Germany p Corresponding author: Tel.: þ49-2461-61-6392;

More information

Numerical investigations of hillslopes with variably saturated subsurface and overland flows

Numerical investigations of hillslopes with variably saturated subsurface and overland flows Numerical investigations of hillslopes with variably saturated subsurface and overland flows ARC DYNAS H. Beaugendre, T. Esclaffer, A. Ern and E. Gaume DYNAS Workshop 06-08/12/04 DYNAS Workshop 06-08/12/04

More information

PURPOSE To develop a strategy for deriving a map of functional soil water characteristics based on easily obtainable land surface observations.

PURPOSE To develop a strategy for deriving a map of functional soil water characteristics based on easily obtainable land surface observations. IRRIGATING THE SOIL TO MAXIMIZE THE CROP AN APPROACH FOR WINTER WHEAT TO EFFICIENT AND ENVIRONMENTALLY SUSTAINABLE IRRIGATION WATER MANAGEMENT IN KENTUCKY Ole Wendroth & Chad Lee - Department of Plant

More information