Land-surface atmosphere interaction

Size: px
Start display at page:

Download "Land-surface atmosphere interaction"

Transcription

1 Land-surface atmosphere interaction Author: Dr. Ferenc Ács Eötvös Loránd University Institute of Geography and Earth Sciences Department of Meteorology Financed from the financial support ELTE won from the Higher Education Restructuring Fund of the Hungarian Government

2 knowledge on the phenomenology of the atmospheric transport processes in the vicinity of the land-surface, Land-surface atmosphere interaction Goals: TO PROVIDE BASIC PHYSICS KNOWLEDGE, MORE PRECISELY knowledge on the phenomenology of radiation transfer above the land-surface, knowledge on the phenomenology of heat and water transport processes in the soil,

3 Land-surface atmosphere interaction Goals: TO PROVIDE BASIC PHYSICS KNOWLEDGE, MORE PRECISELY knowledge in detail about Monin- Obukhov s similarity theory, knowledge on the water transfer processes in the soil-vegetation system, knowledge on the energy transfer processes in the soil-vegetation system.

4 Introduction (Gaia and the vegetation) Characteristics of the soil-vegetationatmosphere system: central element: the vegetation (photosynthesis: the most important and ancient process on the Earth (Gaia)), Physical, chemical and biological phenomena and processes. Weather: physical processes. Climate: phyisical, chemical and biological processes.

5 Introduction (Gaia and the vegetation) Monteith et al. (1975)

6 Introduction (Gaia and the vegetation) Water: Flux densities and reservoirs. Soil is the largest water reservoir! Therefore meteorology cannot disregard the soil. Monteith et al. (1975)

7 Introduction (Gaia and the vegetation) Resistances: stomatal resistance is the largest. Therefore meteorology cannot disregard vegetation. Rose (1966) Ψ potential; r t - soil resistance; r gy root resistance; r x xylem vessel resistance; r s stomatal resistance; r cu cuticular resistance; r a aerodynamic resistances in the boundary (lower) and turbulent (upper) atmospheric layers; légkör = atmosphere; vízkészlet = water amount in the soil

8

9 Radiation Vegetation canopy: Radiation features of the leaf (r (reflection), tr (transmision) and a (absorption) spectra, water content), radiation features of the vegetation canopy (r and tr spectra), albedo (solar elevation angle), radiation balance.

10 Radiation Bare soil: Radiation features of the soil particles (r spectra), radiation features of the soil types (r spectra, humus and iron oxides), albedo (solar elevation angle, soil moisture content, roughness), radiation balance.

11 Radiation - vegetation Radiation (optical) properties of a "typical" leaf Jones (1983)

12 Radiation - vegetation radiation properties of the leaf Jones (1983)

13 Radiation - vegetation canopy radiation properties of the vegetation canopy, Jones (1983)

14 Radiation - vegetation canopy radiation properties of the vegetation canopy Braden (1985)

15 Radiation - vegetation canopy radiation properties of the vegetation canopy, Braden (1985)

16 Radiation - vegetated surface Albedo solar elevation When the irradiation is "low" the albedo is "high" and its changes are great. When the irradiation is "high" the albedo is "low" and its changes are "small". Sellers and Dorman (1987)

17 Radiation - vegetated surface Radiation balance: ) 1 ( c c g g a a v v v T T T tr R R and if tr v = ) 1 ( c c g g a a v v T T T R R (rough approach and the simplest form)

18 Radiation - bare soil surface radiation properties of the soil particles, Szász and Zilinyi (1994)

19 Radiation - bare soil surface radiation properties of the soil types, Jones (1983)

20 roughness: it has the smallest effect of the three parameters. Radiation - bare soil surface albedo (solar elevation, soil moisture content, roughness) solar elevation: the same dependence as in the case of vegetation, soil moisture content: dry soil higher albedo; moist soil lower albedo; the transition is non-linear,

21 Radiation - bare soil surface Radiation balance: R b R(1 b ) a T 4 a g T 4 g. (rough approach and the simplest form)

22

23 Soil definition Soil is a medium consisting of organic and inorganic materials, where the transfer of matter and energy occur continuously via physical, chemical and biological processes. Therefore soil possesses various horizons, so it has a stratified structure. Soil deviates from its bedrock source material by having such a layered structure. This layered structure is its important feature, and characterises it.

24 Soil - profiles Soil has a layered structure. The distribution of the horizons according to depth is called the soil profile. Each profile is composed of horizons A, B and C. The surface horizon A is the most weathered soil layer with the highest humus content. The sub-surface horizon B has a lower humus content than the surface horizon A. Horizon C is the least weathered soil layer and has the smallest humus content of the soil horizons.

25 Soil texture This notion expresses how large the soil particles are. The largest soil particles ( μm) are called sand. Sand s water conduction is high, consequently its water retention is low. Sandy soils have a very low CEC (Cation Exchange Capacity).

26 Soil texture Medium size soil particles (2 50 μm) are called silt. This possesses moderately high (neither good nor bad) water conduction and moderately low water retention. Its ion holding capacity is moderate.

27 Soil texture Soil particles with a diameter smaller than 2 μm are known as clay. Clay possesses low water conduction and a high water retention capacity. Its ion holding capacity is high.

28 Soil texture Stefanovits, Filep, Füleky (1999) Soil textural triangle: schematic diagram for representing soil particle composition (sand, silt and clay fractions expressed in per cent). (Remark: designations in the triangle represent soil texture classes)

29 Soil texture: classification according to soil particle composition Cosby et al. (1984)

30 Soil types Do not mistake soil type for soil texture! Soil type refers to soils formed under similar environmental conditions, in a similar state of development, possessing similar process associations.

31 Physical properties of soil Soil is made up of solids, liquids and gases. It is useful to define several variables which describe the physical condition of the three-phase soil system. M t = total mass, M s = mass of solids, M l = mass of liquid, M g = mass of gases, V t = total volume, V s = volume of solids, V l = volume of liquids, V g = volume of gases and V f = V l + V g = volume of fluid (sum of V l + V g ).

32 Physical properties of soils Particle density Dry bulk density Total porosity Void ratio e s b f V V M V f s s M V V t V. s s f t,,,

33 Physical properties of soil.,, S f l l b l b s l b s l l t l s l V V S w M M M M V V M M w Mass wetness or mass based water content Volume wetness or volumetric water content Degree of saturation

34 Particle size distribution in soils: particle size distribution curve A particle size distribution curve is a plot of the number of particles having a given diameter versus diameter. Particle size distribution in soil is approximately lognormal (a plot of number of particles vs. log diameter would approximate a Gaussian distribution function).

35 Soil heat flow Heat flow in the soil occures from particle to particle. The relationship between heat flux density and temperature is described by the Fourier law (first formulated by Fourier in 1822). The highest heat flow is in the vertical direction, since the temperature gradient is the highest in the vertical. Therefore a 1- dimensional treatment is common.

36 Fourier law Fourier law: This is an empirical formula, i.e. a parameterization. The negative sign regulates the direction of f h. λ is thermal conductivity (Wm -1 K -1 ) f h ( z, t) ( z) T z.

37 Differential equation of heat conduction Heat flux density f h is not constant over depth! Where z f h 0 (divergence) the temperature has to decrease, and vice versa, where f h 0 (convergence) z the temperature has to increase. Combining the Fourier law with the continuity equation f h z C h T t.

38 Differential equation for heat flow The equation can only be physically interpreted by using a minus sign on the left side of the equation! Namely, in the case of divergence of f h temperature T has to decrease over time [(δt/δt) < 0)], while in the case of the convergence of f h T has to increase over time [(δt/δt) > 0)]. C h is the volumetric specific heat of the soil. It is equal to the product of soil density (kgm -3 ) and specific heat (Jkg -1 K -1 ).

39 Differential equation for heat flow If λ and C h are independent of z, the equation could be written as where k=λ/c h is thermal diffusivity. t T z C z T z z h ) ( ] ) [( t T z T k 2 2

40 Thermal properties of soil materials The thermal properties of soil materials deviate markedly. Campbell (1985)

41 Parameterization of volumetric specific heat The volumetric specific heat of soil is the weighted sum of the specific heats of all soil constituents: C h C m m C w C a a C o o. Φ is the volume fraction of the components (m, w, a and o indicate mineral, water, air and organic constituents).

42 Parameterization of volumetric specific heat Since C a is too small and Φ o can be neglected (2-4% on average), C h of mineral soil becomes C h C m ( 1 ) C. f w

43 Thermal conductivity of soil It depends upon many factors f ( b,, q, o) Campbell (1985)

44 Thermal conductivity of soil different parameterizations Thermal conductivity change versus relative soil moisture content for fine and coarse soil textures (Johansen model) Ács et al. (2012) Johansen - Coarse Johansen - Fine

45 Thermal conductivity of soil different parameterizations Thermal conductivity change versus relative soil moisture content for fine, coarse and very coarse soil textures of mineral soils and of organic soils (Côté Konrad model) Ács et al. (2012) C - vcoarse - minerso C - coarse - minerso C - fine - minerso C - organic - minerso

46 Thermal conductivity of soil different parameterizations Thermal conductivity change versus relative soil moisture content for coarse, mineral soils using different parameterizations Hővezető képesség (W m-1 K-1) Ács et al. (2012) J - coarse C - coarse 0.8 N - coarse Relatív talajnedvesség-tartalom

47 Analitical solution to the heat flow equation The heat flow equation can be analitically solved using the boundary conditions as follows: Heat flux density at the soil surface: f h ( 0, t) fh0 fh0 sin( t ), 4 2. T At an infinite depth: f (, t) h 0.

48 Analitical solution to the heat flow equation Using former boundary conditions T( z, t) T Te z ds sin( t z d S ) where d S 2k 2. C At z=d S, the amplitude ΔT is e -1 =0.37 times its value at the surface. This is the so called damping depth T z d S T e 0,37T.

49 Analitical solution to the heat flow equation According to the solution the amplitude of the temperature wave decreases exponentially over depth, the phase of the temperature wave is linearly displaced over depth z.

50 The shape of f h (z,t) Combining the equations T(z,t) and f h (z,t), f h (z,t) can be written as f h ( z, t) f h0 e z / d sin( t ). 4 In doing so, we also used the following equation: sin x cosx S z d 2 sin( x S 4 ).

51 The shape of f h (z,t) f h (z,t) can also be written as This equation will be used for discussing the so called force-restore method, which serves for predicting soil surface temperature ) 2 ( ], ), ( ), ( 1 [ ), ( 0 2 / 1 S S h h d C d T f C where T t z T t t z T t z f

52 Water flow in the soil Water flow in the soil is similar to diffusion, leakage. This is caused by the tortuosity of the soil via the effect of capillary and gravitational forces. Gravitational force is imlicitly directed downwards. The direction of capillary forces is variable, it is the same with direction of water potential gradient. If the water potential gradient is directed upwards and the capillary force is larger than the gravitational force, the water flows upwards.

53 Water flow in the soil Gravitational force governs water flow in the macropores where the water is free (not bound to soil particles). This water is the so-called gravitational water. Capillary force governs water flow in the micropores where the water is bound by soil particles. This water is the so called capillary water. Capillary water is held by cohesion (attraction of water molecules to each other) and adhesion (attraction of water molecules to the soil particles).

54 Water flow in the soil Water flux density (f w ) is determined by both capillary and gravitational forces. This joint effect could be written as f w f f, wk wg where f wk K z and f wg K or Kg depending on the units used. Ψ is the water potential and K is the hydraulic conductivity. The formula for flux density f wk is the Darcy law, it is empirically based. Before discussing Ψ and K, let s get to know their units!

55 The unit of Ψ If the volume of water is considered, Ψ s unit is Jm -3, that is Nm -2 =Pa. Instead of Pa, water column height could also be used as the unit. The relationship: 1 hpa = 1 cm of water column height. If the mass of water is considered, Ψ s unit is Jkg -1.

56 The unit of K If the unit of Ψ is water column height and the unit of flux density f w is ms -1 (this comes from m 3 m -2 s -1 because water volume is considered), then the unit of K is also ms -1. In this case, flux density f wg = K. If the unit of Ψ is Jkg -1 and the unit of flux density f w is kgm -2 s -1, then the unit of K is kg s m -3. In this case, flux density f wg = K g.

57 Differential equation for water flow Flux density f w is not constant over depth! Where z f w 0 (divergence) the soil moisture content (θ) has to decrease and vice versa, where f w 0 (convergence) z the soil moisture content has to increase. Combining the flux density equation with the continuity equation one can obtain the so called Richards equation. f w z w. t

58 Differential equation for water flow If the water flow is mostly governed by capillary forces, that is when f w = f wk (this is the simpler case), then w [ K t z K K Dw. C ] z [ D z where D w is the water diffusivity. C represents the change of soil moisture content for a unit change of Ψ. The most important assumption for this transformation is that Ψ is a function of θ and, vice versa, θ is a function of Ψ. This is true only for capillary and osmotic potentials. w ], z

59 Differential equation for water flow In the former equation, the unknown variable is θ. Nevertheless, the equation could also be expressed as a function of Ψ. Then, since Ψ = Ψ m w C m. m t m w C t m z [ K z m ], where Ψ is the total water potential, while Ψ m is the matric or capillary potential. The relationship between Ψ and Ψ m as well as their dependence on θ will be discussed later.

60 Differential equation for water flow If the water flow is governed not only by matric but also by gravitational potential (this is the most general case), i.e. when f w = f wk +f wg, then w C t z [ K ]. z Since m gz, w C t m z [ K z m Kg].

61 Differential equation for water flow The latter equation approaches reality closely, since it takes into account both the capillary and gravitational effects. To be able to consider the equation, we have to know more about Ψ and K. Note that Ψ is a state variable, while K is a parameter! Let s first take a look at Ψ!

62 Water potential Water potential is the potential energy per unit mass (or volume) of water in a system, compared to that of pure, free water. According to the convention, the potential energy of free water is zero. So, the potential energy of bound water possesses negative values. The more the water is bound by soil particles, the more negative Ψ is, i.e. the higher the absolute value of Ψ is.

63 Water potential In the definition, Ψ is referring to both mass and volume. If it is reffering to volume, Ψ s unit is Nm -2, that is Pa. The negative Ψ can be interpreted as suction, the magnitude of which is equal to the pressure and, implicitly, it is directed opposite to it. It was also mentioned that Pa could also be replaced by water column height. 1 hpa = 1 cm water column height. Considering water mass, the unit of Ψ is Jkg -1.

64 Water potential Campbell (1985)

65 Water potential Water potential is not only determined by capillary and gravitational forces. In the vicinity of plant roots, water flow is also influenced by osmotic potential (Ψ o ). Osmotic potential is equivalent to the work required to transport water reversibly and isothermally from a solution to a reference pool of pure water at the same elevation. If the water column is continous, hydrostatic pressure could also act as an external force. This is characterized by a pressure potential Ψ p.

66 Water potential Total water potential (Ψ) is the sum of the water potential components, i.e. m g o p.

67 Water potential Among the water potential components, the matric (the result of the attraction between water and soil particles) and osmotic potentials depend on soil moisture content. Ψ is also function of θ via Ψ m and Ψ o. The Ψ m (θ) relationship is of basic importance, it is called the soil moisture characteristic or moisture release curve. The Ψ m (θ) relationship (in most cases this is the same as Ψ(θ)) is called the pf curve, when Ψ is represented as the logarithm of the water column height expressed in cm (y axis) versus relative soil moisture content (θ/θ S ) (x axis).

68 Water potential source= internet S= sand, L= loam, T= clay, WP= wilting point, FK= field capacity

69 Water potential The function Ψ(θ) can be estimated using statistical evaluations applied to soil sample data. Campbell s (1974) parameterization is based on the assumtion that the relationship between lnψ and ln[θ/θ S ] is linear (this is the simplest approach). S ( S ) b.

70 Water potential S ( ) S b. b is the porosity index, Ψ S is Ψ at saturation and analogously θ S is θ at saturation. Their values were determined by Clapp and Hornberger (Clapp and Hornberger, 1978) using data from USA soil samples. Clapp-Hornberger s data set (Clapp and Hornberger, 1978) is widely used in meteorological models.

71 Water potential Ács (1989)

72 Water potential There are also more complex parameterizations, van Genuchten s is one such parameterization (van Genuchten, 1980). This parameterization is widely used in soil science.

73 Hydraulic conductivity K changes similarly to Ψ in a broad range. In the large pores, where the gravitational effect is dominant, K is a function of Ψ S. K for saturated soil can be expressed after theoretical considerations as follows: K S 2 w 2 2 S (2b 2 S 1)(2b, 2) where σ is the surface tension of water, ν is the viscosity of water, θ S is the saturated soil moisture content, Ψ S is the saturated water potential, ρ w is the water density and b is the porosity index.

74 Hydraulic conductivity The former equation can also be written as K S S K is obviously proportional to K S and it is inversely related to Ψ S2. Ψ S can be interpreted as characteristic microscopic length. The characteristic length for a soil can be taken as the radius of the largest pores. 2 const.

75 Hydraulic conductivity Function K(θ) as the function Ψ(θ) could be estimated using statistical evaluations applied to data referring to soil samples. As it was mentioned, one of the simplest relations for K(θ) is obtained by Campbell (Campbell, 1974). ( ) 2b3 The values of K S, θ S and b are determined by Clapp and Hornberger (Clapp and Hornberger, 1978). Campbell s parameterization with values of K S, θ S and b obtained for USA are widely used in meteorological applications. K K S S.

76 Wetness characteristics and soil texture Water flow in the soil is regulated by pores, more precisely by their magnitude and size distribution. These two factors depend indirectly on the features of soil particles (magnitude, form, material composition). So, wetness characteristics as Ψ S, K S, θ S and b depend indirectly on soil texture. How? Is there any rule or relationship? Yes, relationships can be observed, in short, they are as follows.

77 Ψ S and the soil texture The magnitude of Ψ S increases going from coarser (sand) to finer (clay) soil textural classes. This increase could be quantified as it is done in the ISBA (Interaction Soil Biospere Atmosphere) biophysical scheme (Meteo France), nevertheless such quantification is not common in meteorological applications. The observed increase can be easily explained. At saturation, water retention in smaller pores is higher than water retention in larger pores.

78 K S and soil texture The magnitude of K S decreases going from coarser (sand) to finer (clay) soil textural classes. K S is extremely sensitive to the magnitude of the large pores since water runs out first from the largest pores when the water content decreases. It is logical but it has to be said: water runs out of the smaller pores only after it has run out of the larger pores.

79 θ S and the soil texture Concerning porosity (total pore volume) the basic question is as follows: How large is the porosity of many small pores with respect to the porosity of much fewer large pores? Observations show that porosity increases going from coarser (sand) to finer (clay) soil textural classes. Since θ S is practically equal to porosity, the same change can also be observed for θ S.

80 b and the soil texture b is the slope of the best-fit line between lnψ and ln[θ/θ S ]. Therefore b represents the change of lnψ for a unit change of ln[θ/θ S ]. If we construct these straight lines for all soil textural classes (on the basis of soil sample data), we shall see that the slope of the lines increases going from coarser to finer soil textures. More precisely: the lower b is the lower the porosity (light soils) and vice versa, the larger b is the larger the porosity (heavy soils).

81 Wetness characteristics of different soil textures for USA and Hungarian soils Ács et al. (2010)

82 Infiltration and redistribution Water flow in the soil is also determined by soil surface conditions. Precipitation flux density splits into surface run off (liquid water does not enter the soil) and infiltration (liquid water enters the soil). This partitioning depends upon relief and soil characteristics, primarily upon the soil texture and the soil moisture conditions. Hydrologists are interested in run off, while meteorologists and pedologists in infiltration. Let s find out more about the most important features of the infiltration!

83 Infiltration Infiltration rate f i (t) depends strongly on soil moisture content. It is higher for dry and lower for moist soil. Campbell (1985) Infiltration rate is initially high, but decreases over time to a constant value.

84 Infiltration When water enters soil, it develops a transmission zone from the soil surface to the wetting front (boundary between wet and dry soil). This sharp front is a result of the sharp decrease in K. In the transmission zone, K is high because θ is high. Below it K is low because θ is much lower than in the transmission zone. Cambell (1985)

85 Infiltration The observed infiltration rate f i (t) can also be theoretically deduced. Let x f be the depth of the transmission zone. Ψ f and Ψ i are the water potential at the wetting front and at the soil surface. Let [K] be the average hydraulic conductivity in the transmission zone. Then, the average infiltration rate is f i [ K] f x f i.

86 Infiltration During infiltration the observable wetting front moves through the soil with a velocity dx f /dt, threby increasing the water content in the transmission zone by Δθ. Δθ can be expressed as i 2 f 0, where θ 0 = soil water content before infiltration, θ i = soil water content at the inflow and θ f = soil water content at the wetting front.

87 Infiltration On the basis of the continuity equation [ K] i x f f dx Integration gives x f as a function of time. x f is directly proportional to the square root of time. dt f. x f 2[ K]( i f ) t.

88 Infiltration Combining x f and f i (t), f i ( t) [ K]( 2t i f ). The infiltration rate [f i (t)] is directly proportional to Δθ 1/2 and inversely proportional to t 1/2.

89 Infiltration Integrating f i (t) over time one can obtain cumulative infiltration. I I I 0 f ( t) dt [ K]( i { 2 t i 2 [ K]( t 0 [ K]( i { 2t ) t. dt, Cumulative infiltration is proportional to t 1/2. i f ) } 1/ 2 f t 0 t 1/ 2 f ) } 1/ 2 dt,

90 Soil water transport equations in the biophysical scheme SURFMOD The movement of water in the soil is represented in SURFMOD by Richards equation: w t f z In this equation, the so called source-sink term (for instance water uptake by roots) is not represented. By implementing it one gets w f w t z w. SST.

91 Soil water transport equations in the biophysical scheme SURFMOD Integrating the former equation between an upper level a and a lower level b and assuming that θ and SST are constant within the layer thickness D ab, one gets the following equation: w D ab t ( f wb f wa ) D ab SST, where D ab z b z a.

92 Prediction of θ in the top soil layer In the SURFMOD, this layer is denoted by D 1. So, D ab = D 1 [see Figures 2.3 and 2.5 in Ács et al. (2000)] f f D wa wb ab inf Q P SST run1 By substituting these terms, one gets an equation which agrees with equation (3.9) in Ács et al. (2000). Now let s look at Q 1! R1 Q Q R0 Q 1 E 0 and S, p.

93 Prediction of θ in the top soil layer Q 1 is constituted by both capillary and gravitational terms. Therefore Q K ( 1 z 1 1 w 1 z (δψ/δz) at z 1 refers to z b being equal to level D 1. Expressing levels via layer thicknesses and using finite difference approximation, one can simply obtain Q 1 as Q wk 1 1 (1 2 D 1 1 ). D 2 2 ),

94 Prediction of θ in the top soil layer where D 2 is the thickness of the intermediate soil layer [see Figure 2.3 in Ács et al. (2000)] The obtained Q 1 agrees with equation (5.19) for i=1 in Ács et al. (2000).

95 Prediction of θ in the intermediate soil layer In the SURFMOD, this layer is denoted by D 2. So, D ab = D 2 [see Figures 2.3 and 2.5 in Ács et al. (2000)]. Furthermore f wa Q 1 Q R1, f wb Q 2 and D ab SST Q run2. By substituting these terms one gets an equation which agrees with equation (3.12) in Ács et al. (2000).

96 Prediction of θ in the intermediate soil layer Furthermore Q wk 2 2 (1 2 D 2 2 D 3 3 ), The obtained Q 2 agrees with equation (5.19) for i=2 in Ács et al. (2000). Note that Figures 2.3 and 2.5 in Ács et al. (2000) can help in understanding how the equations are obtained.

97 Prediction of θ in the bottom soil layer In the SURFMOD, this layer is denoted by D 3. So, D ab = D 3 [see Figures 2.3 and 2.5 in Ács et al. (2000)]. Furthermore, there are no roots in this layer. So f f D wa wb ab Q Q By substituting these terms one gets an equation which agrees with equation (3.13) in Ács et al. (2000). 2 3 SST, and Q run3.

98

99 Phenomenology of the atmospheric transport processes in the vicinity of land-surface Structure and features of the near surface atmosphere (Foken, 2002)

100 Phenomenology of the atmospheric transports in the vicinity of landsurface Bonan (2002) What is transferred to where? Why and how?

101 Phenomenology of the atmospheric transports in the vicinity of land-surface What is the relationship between the flux densities [E (evaporation), H (heat) and τ (momentum)] and state variables [q (specific humidity), T (temperature), u (wind speed)]? In common practice, the state variables (q, T, u) are measured (routinely only at one level), while flux densities (except precipitation and radiation) are calculated! One important goal in micrometeorological education is to present the most important methods for calculating vertical flux densities, for instance, evapotranspiration.

102 Flow types Laminar flow (molecular diffusion; feature of the medium; it is near the surface) Turbulent flow [eddy (diffusion-like transfer) transfer; feature of the flow; it is far above the surface]

103 Turbulent flow domains Microscale turbulence ƒ=h/l (l=u τ) h = height above ground l = horizontal size of the eddy viscous subgroup, ƒ >> 1 inertial subgroup ƒ 1 micrometeorological domain mechanical turbulence 1 > ƒ 0.3 mechanical and thermal turbulence ƒ 0.3

104 Turbulent flow coefficients Eddy diffusivity (K) K flux density of the quantity concentration gradientof the quantity aerodinamic resistance (r) concentration differenceof the quantity r flux density of the quantity

105 Turbulent flow coefficients K refers to the level, while r to the layer! The relationship between them is as follows: r z 2 z 1 1 dz. K( z) This is derived from their definitions!

106 Mechanical turbulence ground surface turbulence caused by wind shear (wind speed change with the height), neutral stratification (vertical temperature gradient is equal to zero), mass transfer is possible, but heat transfer is not. Monteith et al. (1975) Logarithmic wind profile u( z) u k * ln( z z 0 )

107 Mechanical turbulence above the vegetation canopy Roughness length (z 0 ) [wind speed becomes zero not at the surface (this could be called the geometrical level ), but somewhat above the surface (it could be called the aerodynamic level )], Zero plane displacement height (d) [there is a shift between aerodynamic levels above vegetation and bare soil. Vegetation acts as a protective wall of height d against wind, though it is a porous medium.] u( z) Monteith et al. (1975) u k * z ln( z 0 d )

108 Mechanical turbulence above the vegetation canopy τ parameterizations, r and K calculations 2 u * 2 ) u( z C am r am 1 u( z) C am u( z) u 2 * K M k u* ( z d) lu* ahol lk( zd)

109 Thermal and mechanical turbulence ground surface Turbulence caused by both wind shear and surface heating, stable (the vertical temperature gradient is positive) and unstable (the vertical temperature gradient is negative) stratifications, wind profile: near to the logarithmic (but not logarithmic) Bonan (2002)

110 Thermal and mechanical turbulence ground surface There is heat transport beside momentum and mass transport. [all three profiles (wind, humidity, temperature) have to be considered] Land-surface: vegetation (d+z 0 ), bare soil (z 0 ).

111 Aerodynamic method Let stratification be neutral! Then, ) ( * d z ku E z q z q E K M. ) ( * d z ku z u z u K M

112 Aerodynamic method Let stratification be stable or unstable instead of neutral! Then, ) *( q q M Est d z ku E K E K E z q, ) *( d z ku c H K c H K c H z p M p Hst p. ) ( * m m M Mst d z k u K K z u

113 Aerodynamic method According to similarity theory, the functions φ(ς) are dimensionless so-called universal functions, where z L mon, L mon 3 * u g H k T c L mon is that height where the turbulent kinetic energy generated by wind shear and thermal stratification is equal. p.

114 Aerodynamic method We are interested to know the integral form of the equations (Brutsaert, 1982) since the measurements are at discrete levels, so q u E q ( 2) q ( 1), 1 q2 ku* H ) ( ), 12 ( 2 1 ku* c p u k ) ( ). * 2 u1 m( 2 m 1

115 Aerodynamic method where, ) ( 2 1 d q q, ) ( 2 1 d. ) ( 2 1 d m m

116 Aerodynamic method We are also interested in the relationship between the stable and unstable on the one hand and the neutral stratifications on the other. This could be characterized by introducing the so called stability function (ψ) (Brutsaert, 1982). ) ( ) ( ) ln( )) ( ( d ) ( ) ( ) ln( )) ( ( m m m m d ) ( ) ( ) ln( ) ( 1 )) ( ( q q q q q d d d

117 Aerodynamic method where So. ) ( 1 ) ( 2 1 d, ) ( ) ( ) ln( * 2 1 q q ku E q q, ) ( ) ( ) ln( * 2 1 c p ku H. ) ( ) ( ) ln( * 1 2 m m k u u u

118 Aerodynamic method Brutsaert (1982) Stability function

119 Aerodynamic method according to similarity theory h z0 ( planetaryboundarylayer height) 2, 1 L mon. The lower level is not in the atmosphere, instead at the land-surface because of the lack of the measurements! q 1 qs u1 0, 1 s and q2 q, u2 u,, 2.

120 Aerodynamic method, ) ( ln 0 * q q s z d z ku E q q, ) ( ln 0 * z d z c ku H p s. ) ( ln 0 * m m z d z k u u

121 Aerodynamic method In order to integrate ψ we need to know φ. Many functions of φ are suggested. Here, the functions suggested by Dyer and Hicks (1970) will be used. For unstable stratification q (1 16 ) 1/ 2, (1 16 ) 1/ 2, (1 16 m ) 1/ 4.

122 Aerodynamic method For stable stratification q m 6 1.

123 Aerodynamic method Universal functions Brutsaert (1982) Brutsaert (1982)

124 Aerodynamic method Businger et al. (1971) Universal functions Foken (2002)

125 Aerodynamic method, 1 1 2ln ) ( q q x x, 1 1 2ln ) ( x x ), ( 2 ) ( 2 ) (1 ) (1 ) (1 ) (1 ln ) ( m m m m x arctg x arctg x x x x., ) 16 (1, ) 16 1 ( / / mon L mon z és L d z x x For unstable stratification:

126 Aerodynamic method, 2 1 2ln ) ( 2 x, 2 1 2ln ) ( 2 x q. 2 ) 2arctan( 2 1 ln 2 1 2ln ) ( 2 x x x m For unstable stratification:

127 Aerodynamic method For stable stratification: q ( ) ( ) m ( ) 5 5 z d L mon.

128 Aerodynamic method We could see that flux densities E, H and τ depend upon L mon, and, vice versa, L mon depends upon E, H and friction velocity (u * ). When there is such an interdependence the iterative procedure has to be applied!

129 Energy balance of the vegetation canopy Beside roughness, the energy balance (available energy flux density) of the surface is also an important factor. Let s take a look at the energy balance of an air column! The air column is within the Prandtl layer. Oke (1978)

130 1. radiation balance at the top of the air column (R n ), 2. heat flux density across the soil surface (G), 3. turbulent heat flux densities (sensible heat flux density (H) and the latent heat flux density (λ E)) in the air column (we suppose that they are constant over height) Energy balance of the vegetation canopy What are flux densities? Vertical flux densities:

131 Energy balance of the vegetation canopy What are flux densities? Horizontal flux densities (advection (D)), Heat storage: 1. Heat storage in the column of the vegetation canopy (air, leaves, stems, thin soil surface layer) (J), 2. Radiation energy used by photosynthesis (μ A). μ is the fixation energy of CO 2 (1, J g -1 ), A is the assimilation rate (g m -2 s -1 )

132 Energy balance of the vegetation canopy Adding input and output flux densities referring to the air column one obtains the energy balance equation for the vegetation canopy: R n G D J A H E 0. The terms D, J and μ A could be neglected with respect to R n -G, so: R n G A e H E.

133 Energy balance of the vegetation canopy A e is the available energy flux density at the surface (note: A e is energy flux density (unit: W m -2 ) and not energy (unit: J)). Atmosphere gets the A e (in the form of H+λ E), therefore it is important for us. The partitioning of A e between H and λ E is regulated by the water availability of the surface.

134 Energy balance of the vegetation canopy How large are the flux densities? How do they change during the day? Monteith et al. (1975)

135 Energy balance of the vegetation canopy A P R. P= photosynthesis (mg m -2 s -1 ), Baldocchi (1994) R= respiration (mg m -2 s -1 ).

136 Bowen method Input data: air temperature (T), water vapour pressure (e) at least at two levels and the available energy flux density at the surface (A e ). A e is a new important term! Output quantities: sensible (H) and latent heat (λ E) flux densities. There are fewer input data (there is A e, but there is no u(z)) as compared to the aerodynamic method and the energy balance is fulfilled.

137 Bowen method. sin, 1, 1 1 E H ce A H A E e e E H E H E p H p K K because and K K e T z e K c z T K c E H β is the Bowen ratio. It can be estimated on the basis of the so called gradient measurements.. e T

138 Bowen method The accuracy of β depends on how well the best-fit straight line T(e) is estimated. Ács (1989) Gradient measurement: location - Rimski Sancevi (in Hungarian Római Sáncok), date 1982, 19 th May, local time - 14 hours, land-surface type bare soil

139 Bowen method Applicability: The method may be applied well when A e is large and is less applicable when A e is small (about zero).

140 Penman-Monteith s equation Combining the energy balance approach and the aerodynamic treatment one gets Penman-Monteith s equation. This is possible if water balance information is also available and used. Input data: air temperature (T), partial water vapor pressure (e) and wind velocity (u) at one level (the levels must not be at the same height), the available energy flux density of the surface and information referring to the availability of water on the surface. Output quantities: sensible (H) and latent heat (λ E) flux densities.

141 Penman-Monteith s equation Usually more input data are used than in the Bowen method since the so called surface resistance of the land-surface also has to be estimated. It takes into account the atmospheric stratification. The Bowen method does not. It is one of the most widespread equations in environmental meteorology.

142 Penman-Monteith s equation How is it derived? Here are the basic equations! A H E, r r r ah ae st e c c c p p p T (0) T ( z), H e(0) e( z) és E e T[(0)] e(0). E 4 equations, 4 unknowns. The unknowns are: H, λe, T(0) and e(0). S

143 Penman-Monteith s equation Now let s sum the last and the next to last equations! r ae r st c p e S [ T(0)] E e( z). Herewith e(0) is eliminated.

144 Penman-Monteith s equation How can T(0) be eliminated? e S [ T (0)] e S [ T ( z)] [ T (0) T ( z)], where es ( T ) T and T (0) T ( z) Ae E c p r ah.

145 Penman-Monteith s equation Substituting these Redistributing according to λe. ) ( ] [ )] ( [ E z e r c E A z T e c r r ah p e S p st ae. )] ( ) ( [ ) ( ah e S p ah st ae r A z e z T e c E r r r E

146 Penman-Monteith s equation Multiplying by γ and dividing by r ah E A e c p { e S ( r [ T ae ( z)] e( z)}/ r st ) / r ah r ah. Since r ah =r ae =r a and δe=e S [T(z)]-e(z) E A e c p (1 e r r st a / r ) a.

147 Priestley-Taylor s equation Input data: A e and the air temperaure (T) at one level. Output quantities: sensible (H) and latent heat (λe) flux densities. Contrary to Penman-Monteith s equation (PM equation) Priestly-Taylor s equation does not take into account the stratification effect. Priestley-Taylor s equation (PT equation) is more popular since satellite measurements of radiation became available.

148 Priestley-Taylor s equation How to derive it? Let s start from the PM equation! The PM equation can be divided into two terms. The first characterises the surface (term ΔA e ), while the second the evaporative demand of the atmosphere (term δe).

149 Priestley-Taylor s equation First supposition: the second term is usually less than the first. Therefore the second term can be expressed as a part of the first term. Second supposition: the surface is wet, therefore its surface resistance is small, i.e. r st 0. If the two suppositions are valid, then E PT A e where PT 1.25

150 Synthesis of the methods Four methods are presented for estimating H and λe: the aerodynamic method, the Bowen method, Penman-Monteith s equation and Priestly-Taylor s equation. Now let s compare the methods!

151 Synthesis of the methods Aerodynamic method Bowen method (T 2, e 2, u 2 ) (T 2, e 2 ) (T 1, e 1, u 1 ) (T 1, e 1 ) and A e estimation of no estimation of stratification stratification PM equation PT equation (T 1, e 1, u 1 ) A e and Θ T 1 and A e estimation of no estimation of stratification of stratification

152 Evaporation fraction and the Bowen ratio The Bowen ratio has already been introduced. The evaporation fraction α is defined as E A e Both α and β depend on the available water and energy of the surface, so indirectly on weather and climate. Neverthless, their changes can be analyzed in a simpler way. How?.

153 Evaporation fraction and the Bowen ratio Now let s take the resistances! So far two resistances were introduced: r a (aerodynamic resistance) and r st (stomatal resistance). Now let s see the so called climatic resistance! r i c p A e e. r i depends both on the state of the surface and on the state of the atmosphere.

154 Evaporation fraction and the Bowen ratio α and β can be easily expressed as function of r a, r st and r i. So, they can be also analyzed in terms of resistances (Jones, 1983)!. i a i a st st a a i a r r r r r and r r r r r

155

156 Soil and vegetation as water reservoirs Water transfer in the soil-vegetation system will be considered from the meteorological point of view. From the meteorological point of view soil and vegetation are primarily water reservoirs. Vegetation stores water not only in its body, but also on its surface.

157 Soil and vegetation as water reservoirs Soil can store the largest amount of water. This amount is much larger than the amount stored by vegetation. At the same time the amount of water storable in the body of vegetation is much larger than the amount of water storable on its surface. The ratio of water storable in the soil, in the body of vegetation and on the surface of vegetation is roughly equal to the ratio 100 : 10 : 1.

158 Soil and vegetation as water reservoirs It is important to say that soil s water storage capacity is comparable to annual flux densities entering and leaving it. It has to be underlined that soil is not only a great water reservoir but also a great carbon reservoir. But annual carbon flux densities which enter and leave it cannot be compared (they are much less) to its carbon storage capacity.

159 Soil and vegetation as water reservoirs Water amount is changing in both reservoirs, nevertheless they are not independent. They are connected via transpiration and root water uptake. Monteith et al. (1975)

160 Water flux densities in the soilvegetation system Which water flux densities are the largest? Precipitation, evapotranspiration and run-off. Evapotranspiration is composed of three components: transpiration, soil evaporation and evaporation of the intercepted water. As we see, the last two terms are both evaporation. Meteorologists are interested in precipitation and evapotranspiration, while hydrologist in run-off.

161 Water flux densities in the soilvegetation system One important contribution of the science of the biophysical modeling in meteorology is that it recognized and quantified the role and impact of transpiration in the formation of weather and climate.

162 (Water storage on leaves is called interception.) Water flux densities in the soilvegetation system Which water flux densities are moderately large (not small, not large) but important? The interception and evaporation of the intercepted water. Why? Since this water comes back into the atmosphere without entering the soil. With this, the water cycle becomes faster and the forcing of local convective weather events is stronger. This phenomenon is the strongest and therefore the most important in tropical regions.

163 Water flux densities in the soilvegetation system Now let s take a look at transpiration and root water uptake! These two water flux densities are different (root water uptake is always a little bit greater than transpiration), but they can be treated as equal from the meteorological point of view. This fact is important since the estimation of transpiration in meteorological models is based on this fact. The details related to this topic will be explained later.

164 Water storage in the soil-vegetation system Now let s also consider the characteristics of soil and vegetation as water reservoirs! The smallest water reservoir is the vegetation surface. Its average maximum value in meteorological models is 0.2 mm/lai, where LAI is the leaf area index. This means that a maximum of 2 dl water can be kept on a leaf surface of 1 m 2 without run-off. So, 1 l water can be stored on a leaf surface of 5 m 2. This value is an average value. This varies depending on vegetation type, but in meteorological models this is usually not taken into account.

165 Vegetation water content The ratio between the stored water and dry mass is an important vegetation characteristic. For herbaceous plants this ratio is 6:1. This ratio could also be used as a guideline for other vegetation types.

166 Vegetation water content According to the previous consideration as a first estimation vegetation water content is six times the dry mass contained in a unit of LAI. Water content possesses a daily course and it varies during the growing season. Daily maximum is at dawn, while the minimum is during the midday hours. In the growing season, it increases with the increase of biomass. At the end of the growing season, the water content of grasses is about 10 mm. This can be interpreted that 10 mm is accumulated over the course of about 100 days, so, the average accumulation rate is 0.1 mm/day.

167 The accumulation rate and transpiration Let s compare the accumulation rate and transpiration! We saw that the daily accumulation rate is 0.1 mm/day. The daily sum of transpiration is 1-4 mm/day. We can see that the accumulation rate is one order of magnitude or more smaller than transpiration. This means that water practically flows through the vegetation, its storage is minimal. Vegetation is simply a channel between the soil and atmosphere. This flow through the channel is independent from the stored water.

168 Soil water content What is the maximum storable water in the soil? When the storage is maximum, the pores are completely full with water, then θ=θ S. For 1 m 3 soil this is roughly 0.5 m 3, or 500 litres of water. Can vegetation gain access to this water? Not completely, only partly. Vegetation can take up water only from the θ f θ w soil moisture content zone, which is called the plant available water holding capacity.

169 Soil water content Plant available water holding capacity is less than θ S and greater than 0. The amount θ f θ w also depends upon soil texture. For sand it is the least (about 0.1 m 3, that is 100 litres of water), while for loam it is much greater (about m 3, that is litres of water). These facts also show the reason why loam is one of the best and sand is the least appropriate soil texture class for crop production.

170 Soil water content The meaning of θ f and θ w has still not been explained! θ f is the field capacity soil moisture content, while θ w is the wilting point soil moisture content. θ f is that minimum soil moisture content for which the force of gravity is still greater than the capillary force for holding the water. Consequently, the soil column is not able to hold the water in it for all cases when θ θ f. θ w is that soil moisture content value below which the plant is not able to take up water. In other words, the moisture content of soil after the plants have removed all the water they can.

171 Soil water holding capacity θ f and θ w values: Clapp and Hornberger (1978)

172 Soil water content We can see that plants are not only able to take up water in extreme dry (θ θ w ) but also in extreme wet (θ θ f ) conditions. This fact shows that plants need some soil air in order to take up water. Of course, this is regulated and solved by plants living in the water in a certain way (for instance, by building an aerenchyma system).

173 Soil water content There is a certain degree of uncertainity in the definition of θ f and θ w. Namely, gravitational drainage or the process of wilting cannot be observed unequivocally on the basis of the use of a number of criteria. Consequently, their values are uncertain. Different criteria are used to determine their values. Without discussing this issue, let s underline that in the biophysical modelling of the land-surface their numerical values are uncertain though they are important.

174 Water transport in the soil-plant system Let s take a look at water transport in the soil-plant system! We showed on the diurnal scale that the amount of stored water in vegetation (accumulation rate) could be neglected with respect to transpiration. Transpiration can be succesfully modelled taking into account the above fact. The use of the aforementioned assumption is widespread in meteorological applications. Therefore, the basic equations of this approach will be briefly presented.

175 Transpiration model: basic equations Root water uptake (Q R ) is the input water flow. This water flow will be simulated using an analogy to Ohm s law (current is the ratio of potential difference and resistance). Voltage is the difference between the leaf water potential (Ψ leaf ) and soil water potential (Ψ soil ). Ψ leaf refers to the average leaf of the canopy which is represented by one big leaf located on the level d+z 0. Ψ soil reflects an average potential reffering to the 1-m deep soil moisture content profile in the root zone.

176 Transpiration model: basic equations Soil puts up a resistance r S, while vegetation a resistance r P to the water flow in the soil-plant system. r S is greater the drier the soil is, and vice versa, r S is smaller the wetter the soil is. Note that r S is comparable to stomatal resistance when the soil is dry! r P is mainly caused by xylem vessels. It is taken as a constant.

177 Resistances in the soil-plant system Rose (1966) Ψ potential; r t - soil resistance; r gy root resistance; r x xylem vessel resistance; r s stomatal resistance; r cu cuticular resistance; r a aerodynamic resistances in the boundary (lower) and turbulent (upper) atmospheric layers; légkör = atmosphere; vízkészlet=water amount in the soil

178 Transpiration model: basic equations Root water uptake can be expressed as Q R soil r S r P leaf. (1)

179 Transpiration model: basic equations Soil water potential and leaf water potential are given in unit of water column height [m H 2 O]. Resistances are given in seconds, though such a resistance unit is very unusual. This is true because Q R is parameterized after Ohm s law. Such a parameterization can be done since the water flow in the soil-plant system is almost a steady state (quasi steadystate). The unit in seconds can be interpreted as follows: if the resistance is high, the water flows slowly, consequently the transport needs more time. So, a long time is equivalent to great resistance, and vice versa, a short time corresponds to a low resistance value.

180 Transpiration model: basic equations We have already mentioned that root water uptake (input water flux, Q R ) is practically equal to transpiration (output water vapor flux, E T ), i.e. Q E R T. (2)

181 Transpiration model: basic equations Transpiration can be calculated either by Penman-Monteith s formula or by the gradient method, as presented below: ) (3. ) ( ) (3, ) (1 / b r r e T e c E L a r r r e c R E L c a r vg S p T a c a p n T

182 Transpiration model: basic equations One of the most important terms in eq. (3a) is r c. In the meteorological land-surface modelling community, r c is commonly parameterized by Jarvis (1976) formula: r c r st min F ad LAI GLF F ma. Jarvis (1976) formula consists of the product of different environmental functions, often called stress functions contained in F ad and in F ma.

183 Transpiration model: basic equations Beside such multiplicative formula, there are also such formulae where the whole effect is expressed by the addition of environmental functions (see, for instance, Federer, 1979). Symbols: r stmin is the minimum stomatal resistance at optimum environmental conditions, LAI is the leaf area index, GLF is the green leaf fraction, F ad is the function for representing the atmospheric demand effect upon stomatal functioning and F ma is the function for representing soil moisture availability effect upon stomatal functioning.

184 Transpiration model: basic equations The function F ma can be expressed via Ψ leaf since it depends upon soil water availability. Taking these facts into account, F leaf cr ma, soil, S cr that is r c r LAI F GLF st min ad F ma f ( leaf ). (4)

185 Transpiration model: basic equations Input data: state variables and fluxes: S, T, e, U, P; parameters: ρ, c p, γ, L, LAI, GLF, r stmin, Ψ cr, Ψ soil,s. Quantities to be calculated: Δ, R n,δe. Parametrizations: r S, r P, Ψ soil, r a, F ad. Symbols: see Table 2.1 in Ács et al. (2000, page 22, 23)

186 Transpiration model: basic equations We have four unknowns in four equations. The unknowns are: Ψ leaf, r c, E T and Q R. Ψ leaf could be expressed by combining equations. Of course, E T could also be estimated on the basis of Ψ leaf.

187 Transpiration model: basic equations The form of the equation for Ψ leaf depends upon how the function F ma is parameterized. If the F ma /Ψ leaf relationship is linear, the equation for Ψ leaf is a quadratic equation. Only the positive signed square root solution is the real, physically based solution.

188 Transpiration model: basic equations Model results: Monteith et al. (1975)

189 Transpiratiom model: applications in the SURFMOD The derivation of the equation for estimating Ψ leaf based on the use of equation (3a) for calculating LE T can be found in Ács et al. (2000) on page 59. The same, but for equation (3b) can be found in Ács et al. (2000) on page 58.

190 Vegetation canopy surface resistance Rose (1966) As already mentioned, one of the most important parameters in Penman-Monteith s equation is vegetation canopy resistance r c.

191 The functioning of stomata Since r c is an important parameter in calculating transpiration, the functioning of stomata (opening, closing) has to be described as fully as possible in meteorology too. source: internet

192 Stomata Large area density small area density Chaloner (2003) Chaloner (2003)

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Reinder A.Feddes Jos van Dam Joop Kroes Angel Utset, Main processes Rain fall / irrigation Transpiration Soil evaporation

More information

Contents. 1. Evaporation

Contents. 1. Evaporation Contents 1 Evaporation 1 1a Evaporation from Wet Surfaces................... 1 1b Evaporation from Wet Surfaces in the absence of Advection... 4 1c Bowen Ratio Method........................ 4 1d Potential

More information

METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance. Spring Semester 2011 February 8, 10 & 14, 2011

METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance. Spring Semester 2011 February 8, 10 & 14, 2011 METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance Spring Semester 2011 February 8, 10 & 14, 2011 Reading Arya, Chapters 2 through 4 Surface Energy Fluxes (Ch2) Radiative Fluxes (Ch3)

More information

Evapotranspiration: Theory and Applications

Evapotranspiration: Theory and Applications Evapotranspiration: Theory and Applications Lu Zhang ( 张橹 ) CSIRO Land and Water Evaporation: part of our everyday life Evapotranspiration Global Land: P = 800 mm Q = 315 mm E = 485 mm Evapotranspiration

More information

EVAPORATION GEOG 405. Tom Giambelluca

EVAPORATION GEOG 405. Tom Giambelluca EVAPORATION GEOG 405 Tom Giambelluca 1 Evaporation The change of phase of water from liquid to gas; the net vertical transport of water vapor from the surface to the atmosphere. 2 Definitions Evaporation:

More information

Global Water Cycle. Surface (ocean and land): source of water vapor to the atmosphere. Net Water Vapour Flux Transport 40.

Global Water Cycle. Surface (ocean and land): source of water vapor to the atmosphere. Net Water Vapour Flux Transport 40. Global Water Cycle Surface (ocean and land): source of water vapor to the atmosphere Water Vapour over Land 3 Net Water Vapour Flux Transport 40 Water Vapour over Sea 10 Glaciers and Snow 24,064 Permafrost

More information

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often?

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often? 2. Irrigation Key words: right amount at right time What if it s too little too late? 2-1 Too much too often? To determine the timing and amount of irrigation, we need to calculate soil water balance.

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 6 Good morning and welcome to the next lecture of this video course on Advanced Hydrology.

More information

ONE DIMENSIONAL CLIMATE MODEL

ONE DIMENSIONAL CLIMATE MODEL JORGE A. RAMÍREZ Associate Professor Water Resources, Hydrologic and Environmental Sciences Civil Wngineering Department Fort Collins, CO 80523-1372 Phone: (970 491-7621 FAX: (970 491-7727 e-mail: Jorge.Ramirez@ColoState.edu

More information

Evapotranspiration. Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere

Evapotranspiration. Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere Evapotranspiration Evaporation (E): In general, the change of state from liquid to gas Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere

More information

Principles of soil water and heat transfer in JULES

Principles of soil water and heat transfer in JULES Principles of soil water and heat transfer in JULES Anne Verhoef 1, Pier Luigi Vidale 2, Raquel Garcia- Gonzalez 1,2, and Marie-Estelle Demory 2 1. Soil Research Centre, Reading (UK); 2. NCAS-Climate,

More information

12 SWAT USER S MANUAL, VERSION 98.1

12 SWAT USER S MANUAL, VERSION 98.1 12 SWAT USER S MANUAL, VERSION 98.1 CANOPY STORAGE. Canopy storage is the water intercepted by vegetative surfaces (the canopy) where it is held and made available for evaporation. When using the curve

More information

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS CHAPTER 7: THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS 7.1: Introduction The atmosphere is sensitive to variations in processes at the land surface. This was shown in the earlier

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

The Ocean-Atmosphere System II: Oceanic Heat Budget

The Ocean-Atmosphere System II: Oceanic Heat Budget The Ocean-Atmosphere System II: Oceanic Heat Budget C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth MAR 555 Lecture 2: The Oceanic Heat Budget Q

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 5. The logarithmic sublayer and surface roughness In this lecture Similarity theory for the logarithmic sublayer. Characterization of different land and water surfaces for surface flux parameterization

More information

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3 Contents 1 The Richardson Number 1 1a Flux Richardson Number...................... 1 1b Gradient Richardson Number.................... 2 1c Bulk Richardson Number...................... 3 2 The Obukhov

More information

Lecture notes: Interception and evapotranspiration

Lecture notes: Interception and evapotranspiration Lecture notes: Interception and evapotranspiration I. Vegetation canopy interception (I c ): Portion of incident precipitation (P) physically intercepted, stored and ultimately evaporated from vegetation

More information

Assimilation of satellite derived soil moisture for weather forecasting

Assimilation of satellite derived soil moisture for weather forecasting Assimilation of satellite derived soil moisture for weather forecasting www.cawcr.gov.au Imtiaz Dharssi and Peter Steinle February 2011 SMOS/SMAP workshop, Monash University Summary In preparation of the

More information

03. Field capacity, Available soil water and permanent wilting point

03. Field capacity, Available soil water and permanent wilting point 03. Field capacity, Available soil water and permanent wilting point Field capacity or water holding capacity of the soil After heavy rain fall or irrigation of the soil some water is drained off along

More information

New soil physical properties implemented in the Unified Model

New soil physical properties implemented in the Unified Model New soil physical properties implemented in the Unified Model Imtiaz Dharssi 1, Pier Luigi Vidale 3, Anne Verhoef 3, Bruce Macpherson 1, Clive Jones 1 and Martin Best 2 1 Met Office (Exeter, UK) 2 Met

More information

Boundary layer equilibrium [2005] over tropical oceans

Boundary layer equilibrium [2005] over tropical oceans Boundary layer equilibrium [2005] over tropical oceans Alan K. Betts [akbetts@aol.com] Based on: Betts, A.K., 1997: Trade Cumulus: Observations and Modeling. Chapter 4 (pp 99-126) in The Physics and Parameterization

More information

Darcy s Law, Richards Equation, and Green-Ampt Equation

Darcy s Law, Richards Equation, and Green-Ampt Equation Darcy s Law, Richards Equation, and Green-Ampt Equation 1. Darcy s Law Fluid potential: in classic hydraulics, the fluid potential M is stated in terms of Bernoulli Equation (1.1) P, pressure, [F L!2 ]

More information

This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques

This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques 1 Fluxes, or technically flux densities, are the number

More information

Environmental Fluid Dynamics

Environmental Fluid Dynamics Environmental Fluid Dynamics ME EN 7710 Spring 2015 Instructor: E.R. Pardyjak University of Utah Department of Mechanical Engineering Definitions Environmental Fluid Mechanics principles that govern transport,

More information

Land Surface Processes and Their Impact in Weather Forecasting

Land Surface Processes and Their Impact in Weather Forecasting Land Surface Processes and Their Impact in Weather Forecasting Andrea Hahmann NCAR/RAL with thanks to P. Dirmeyer (COLA) and R. Koster (NASA/GSFC) Forecasters Conference Summer 2005 Andrea Hahmann ATEC

More information

Lecture 10. Surface Energy Balance (Garratt )

Lecture 10. Surface Energy Balance (Garratt ) Lecture 10. Surface Energy Balance (Garratt 5.1-5.2) The balance of energy at the earth s surface is inextricably linked to the overlying atmospheric boundary layer. In this lecture, we consider the energy

More information

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay.

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay. Contents 1 Infiltration 1 1a Hydrologic soil horizons...................... 1 1b Infiltration Process......................... 2 1c Measurement............................ 2 1d Richard s Equation.........................

More information

5. General Circulation Models

5. General Circulation Models 5. General Circulation Models I. 3-D Climate Models (General Circulation Models) To include the full three-dimensional aspect of climate, including the calculation of the dynamical transports, requires

More information

+ Validation of a simplified land surface model and

+ Validation of a simplified land surface model and + Validation of a simplified land surface model and its application to the case of shallow cumulus convection development Colorado State University January 2013 Marat Khairoutdinov Jungmin Lee Simplified

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT SSC107 Fall 2000 Chapter 2, Page - 1 - CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT Contents: Transport mechanisms Water properties Definition of soil-water potential Measurement of soil-water

More information

Snow II: Snowmelt and energy balance

Snow II: Snowmelt and energy balance Snow II: Snowmelt and energy balance The are three basic snowmelt phases 1) Warming phase: Absorbed energy raises the average snowpack temperature to a point at which the snowpack is isothermal (no vertical

More information

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer Logarithmic velocity profile in the atmospheric (rough wall) boundary layer P =< u w > U z = u 2 U z ~ ε = u 3 /kz Mean velocity profile in the Atmospheric Boundary layer Experimentally it was found that

More information

Lecture 3a: Surface Energy Balance

Lecture 3a: Surface Energy Balance Lecture 3a: Surface Energy Balance Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Total: 50 pts Absorption of IR radiation O 3 band ~ 9.6 µm Vibration-rotation interaction of CO 2 ~

More information

Estimating Evaporation : Principles, Assumptions and Myths. Raoul J. Granger, NWRI

Estimating Evaporation : Principles, Assumptions and Myths. Raoul J. Granger, NWRI Estimating Evaporation : Principles, Assumptions and Myths Raoul J. Granger, NWRI Evaporation So what is it anyways? Evaporation is the phenomenon by which a substance is converted from the liquid or solid

More information

Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation

Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Evaluating Irrigation Management Strategies Over 25 Years Prepared November 2003 Printed February 27, 2004 Prepared

More information

Two requirements for evaporation from natural surfaces. The atmospheric boundary layer. Vertical structure of the ABL. Bloc 1. Hydrologie quantitative

Two requirements for evaporation from natural surfaces. The atmospheric boundary layer. Vertical structure of the ABL. Bloc 1. Hydrologie quantitative 3.1 Introduction Figure 3.1 M1 SDE MEC558 Hydrologie continentale et ressources en eau Continental Hydrology and Water Resources Two requirements for evaporation from natural surfaces Bloc 1. Hydrologie

More information

WUFI Workshop at NTNU /SINTEF Fundamentals

WUFI Workshop at NTNU /SINTEF Fundamentals WUFI Workshop at NTNU /SINTEF 2008 Fundamentals Contents: From steady-state to transient Heat storage and -transport Moisture storage and -transport Calculation of coupled transport Model limitations 2

More information

Greenhouse Steady State Energy Balance Model

Greenhouse Steady State Energy Balance Model Greenhouse Steady State Energy Balance Model The energy balance for the greenhouse was obtained by applying energy conservation to the greenhouse system as a control volume and identifying the energy terms.

More information

Evapotranspiration. Andy Black. CCRN Processes Workshop, Hamilton, ON, Sept Importance of evapotranspiration (E)

Evapotranspiration. Andy Black. CCRN Processes Workshop, Hamilton, ON, Sept Importance of evapotranspiration (E) Evapotranspiration Andy Black CCRN Processes Workshop, Hamilton, ON, 12-13 Sept 213 Importance of evapotranspiration (E) This process is important in CCRN goals because 1. Major component of both terrestrial

More information

Glaciology HEAT BUDGET AND RADIATION

Glaciology HEAT BUDGET AND RADIATION HEAT BUDGET AND RADIATION A Heat Budget 1 Black body radiation Definition. A perfect black body is defined as a body that absorbs all radiation that falls on it. The intensity of radiation emitted by a

More information

Convective Fluxes: Sensible and Latent Heat Convective Fluxes Convective fluxes require Vertical gradient of temperature / water AND Turbulence ( mixing ) Vertical gradient, but no turbulence: only very

More information

The role of soil moisture in influencing climate and terrestrial ecosystem processes

The role of soil moisture in influencing climate and terrestrial ecosystem processes 1of 18 The role of soil moisture in influencing climate and terrestrial ecosystem processes Vivek Arora Canadian Centre for Climate Modelling and Analysis Meteorological Service of Canada Outline 2of 18

More information

The Behaviour of the Atmosphere

The Behaviour of the Atmosphere 3 The Behaviour of the Atmosphere Learning Goals After studying this chapter, students should be able to: apply the ideal gas law and the concept of hydrostatic balance to the atmosphere (pp. 49 54); apply

More information

Radiation, Sensible Heat Flux and Evapotranspiration

Radiation, Sensible Heat Flux and Evapotranspiration Radiation, Sensible Heat Flux and Evapotranspiration Climatological and hydrological field work Figure 1: Estimate of the Earth s annual and global mean energy balance. Over the long term, the incoming

More information

Evapotranspiration. Rabi H. Mohtar ABE 325

Evapotranspiration. Rabi H. Mohtar ABE 325 Evapotranspiration Rabi H. Mohtar ABE 325 Introduction What is it? Factors affecting it? Why we need to estimate it? Latent heat of vaporization: Liquid gas o Energy needed o Cooling process Saturation

More information

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS Overview Introduction Important Concepts for Understanding water Movement through Vines Osmosis Water Potential Cell Expansion and the Acid Growth

More information

Lei Zhao. F&ES Yale University

Lei Zhao. F&ES Yale University Lei Zhao F&ES Yale University Outline Basic Idea Algorithm Results: modeling vs. observation Discussion Basic Idea Surface Energy Balance Equation Diagnostic form: Heat capacity of ground zero ; ground

More information

Atmospheric Mercury Deposition Modeling

Atmospheric Mercury Deposition Modeling Atmospheric Mercury Deposition Modeling Brief review and comments on remaining uncertainties Frank J. Marsik University of Michigan NADP Total Deposition Science Meeting October 28 th, 2011 Gaseous Dry

More information

Surface Energy Budget

Surface Energy Budget Surface Energy Budget Please read Bonan Chapter 13 Energy Budget Concept For any system, (Energy in) (Energy out) = (Change in energy) For the land surface, Energy in =? Energy Out =? Change in energy

More information

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA Advances in Geosciences Vol. 16: Atmospheric Science (2008) Eds. Jai Ho Oh et al. c World Scientific Publishing Company LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING

More information

Approaches in modelling tritium uptake by crops

Approaches in modelling tritium uptake by crops Approaches in modelling tritium uptake by crops EMRAS II Approaches for Assessing Emergency Situations Working Group 7 Tritium Accidents Vienna 25-29 January 2010 D. Galeriu, A Melintescu History Different

More information

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 13: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Wednesday Quiz #2 Wednesday Mid Term is Wednesday May 6 Practice

More information

Thermal Crop Water Stress Indices

Thermal Crop Water Stress Indices Page 1 of 12 Thermal Crop Water Stress Indices [Note: much of the introductory material in this section is from Jackson (1982).] The most established method for detecting crop water stress remotely is

More information

Stomatal conductance has a strong dependence upon humidity deficits

Stomatal conductance has a strong dependence upon humidity deficits Stomatal conductance has a strong dependence upon humidity deficits 1 There is no universal function between stomatal conductance and humidity deficits. Some plants are more sensitive than others Hall

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 14: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Today, HW#5 is posted Quiz Today on Chapter 3, too. Mid Term

More information

Energy balance and melting of a glacier surface

Energy balance and melting of a glacier surface Energy balance and melting of a glacier surface Vatnajökull 1997 and 1998 Sverrir Gudmundsson May 1999 Department of Electromagnetic Systems Technical University of Denmark Science Institute University

More information

UNIT 12: THE HYDROLOGIC CYCLE

UNIT 12: THE HYDROLOGIC CYCLE UNIT 12: THE HYDROLOGIC CYCLE After Unit 12 you should be able to: o Effectively use the charts Average Chemical Composition of Earth s Crust, Hydrosphere and Troposphere, Selected Properties of Earth

More information

M.Sc. in Meteorology. Physical Meteorology Prof Peter Lynch. Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield.

M.Sc. in Meteorology. Physical Meteorology Prof Peter Lynch. Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield. M.Sc. in Meteorology Physical Meteorology Prof Peter Lynch Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield. Climate Change???????????????? Tourists run through a swarm of pink

More information

Chapter 1 - Soil Mechanics Review Part A

Chapter 1 - Soil Mechanics Review Part A Chapter 1 - Soil Mechanics Review Part A 1.1 Introduction Geotechnical Engineer is concerned with predicting / controlling Failure/Stability Deformations Influence of water (Seepage etc.) Soil behavour

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT

THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT S. S. Zilitinkevich 1,2,3, I. Mammarella 1,2, A. Baklanov 4, and S. M. Joffre 2 1. Atmospheric Sciences,, Finland 2. Finnish

More information

AP Biology Transpiration and Stomata

AP Biology Transpiration and Stomata AP Biology Transpiration and Stomata Living things must exchange matter with the environment to survive, Example: Gas Exchange in Plants photosynthesis cellular respiration 1. During which hours does a

More information

METRIC tm. Mapping Evapotranspiration at high Resolution with Internalized Calibration. Shifa Dinesh

METRIC tm. Mapping Evapotranspiration at high Resolution with Internalized Calibration. Shifa Dinesh METRIC tm Mapping Evapotranspiration at high Resolution with Internalized Calibration Shifa Dinesh Outline Introduction Background of METRIC tm Surface Energy Balance Image Processing Estimation of Energy

More information

Effect of moisture transfer on heat energy storage in simple layer walls

Effect of moisture transfer on heat energy storage in simple layer walls Effect of moisture transfer on heat energy storage in simple layer walls C. MAALOUF 1, A.D. TRAN LE 1, M. LACHI 1, E. WURTZ 2, T.H. MAI 1 1-Laboratoire Thermomécanique/GRESPI, Faculté des Sciences, University

More information

Lecture 7: The Monash Simple Climate

Lecture 7: The Monash Simple Climate Climate of the Ocean Lecture 7: The Monash Simple Climate Model Dr. Claudia Frauen Leibniz Institute for Baltic Sea Research Warnemünde (IOW) claudia.frauen@io-warnemuende.de Outline: Motivation The GREB

More information

NCEP non-hydrostatic regional model and surface scheme LAPS: A dynamical scaling tool for use in agricultural models

NCEP non-hydrostatic regional model and surface scheme LAPS: A dynamical scaling tool for use in agricultural models NCEP non-hydrostatic regional model and surface scheme LAPS: A dynamical scaling tool for use in agricultural models D.T. Mihailović and B. Lalić Faculty of Agriculture, University of Novi Sad, Novi Sad,

More information

GEOG 402. Soil Temperature and Soil Heat Conduction. Summit of Haleakalā. Surface Temperature. 20 Soil Temperature at 5.0 cm.

GEOG 402. Soil Temperature and Soil Heat Conduction. Summit of Haleakalā. Surface Temperature. 20 Soil Temperature at 5.0 cm. GEOG 40 Soil Temperature and Soil Heat Conduction 35 30 5 Summit of Haleakalā Surface Temperature Soil Temperature at.5 cm 0 Soil Temperature at 5.0 cm 5 0 Air Temp 5 0 0:00 3:00 6:00 9:00 :00 5:00 8:00

More information

Circle the correct (best) terms inside the brackets:

Circle the correct (best) terms inside the brackets: 1 Circle the correct (best) terms inside the brackets: 1) Soils are [consolidated / unconsolidated] [natural / artificial] bodies at the earth s surface. Soils contain mineral and organic material, which

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

The Stable Boundary layer

The Stable Boundary layer The Stable Boundary layer the statistically stable or stratified regime occurs when surface is cooler than the air The stable BL forms at night over land (Nocturnal Boundary Layer) or when warm air travels

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface:

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface: Chapter five (Wind profile) 5.1 The Nature of Airflow over the surface: The fluid moving over a level surface exerts a horizontal force on the surface in the direction of motion of the fluid, such a drag

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice

Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice Henk de Bruin During the visit to Pachacamac we contemplate about the 4 elements, fire, air, water and

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

Question 1: What are the factors affecting the rate of diffusion? Diffusion is the passive movement of substances from a region of higher concentration to a region of lower concentration. Diffusion of

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

EAS270, The Atmosphere 2 nd Mid-term Exam 2 Nov. 2016

EAS270, The Atmosphere 2 nd Mid-term Exam 2 Nov. 2016 EAS270, The Atmosphere 2 nd Mid-term Exam 2 Nov. 2016 Professor: J.D. Wilson Time available: 50 mins Value: 25% No formula sheets; no use of tablet computers etc. or cell phones. Formulae/data at back.

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Introduction to Soil Science and Wetlands Kids at Wilderness Camp

Introduction to Soil Science and Wetlands Kids at Wilderness Camp Introduction to Soil Science and Wetlands Kids at Wilderness Camp Presented by: Mr. Brian Oram, PG, PASEO B.F. Environmental Consultants http://www.bfenvironmental.com and Keystone Clean Water Team http://www.pacleanwater.org

More information

S. J. Schymanski (Referee) 1 Summary

S. J. Schymanski (Referee) 1 Summary Hydrol. Earth Syst. Sci. Discuss., 9, C5863 C5874, 2012 www.hydrol-earth-syst-sci-discuss.net/9/c5863/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Hydrology

More information

Transport in Plants (Ch. 23.5)

Transport in Plants (Ch. 23.5) Transport in Plants (Ch. 23.5) Transport in plants H 2 O & minerals transport in xylem Transpiration Adhesion, cohesion & Evaporation Sugars transport in phloem bulk flow Gas exchange photosynthesis CO

More information

GEOG415 Mid-term Exam 110 minute February 27, 2003

GEOG415 Mid-term Exam 110 minute February 27, 2003 GEOG415 Mid-term Exam 110 minute February 27, 2003 1 Name: ID: 1. The graph shows the relationship between air temperature and saturation vapor pressure. (a) Estimate the relative humidity of an air parcel

More information

Analysis of the Cooling Design in Electrical Transformer

Analysis of the Cooling Design in Electrical Transformer Analysis of the Cooling Design in Electrical Transformer Joel de Almeida Mendes E-mail: joeldealmeidamendes@hotmail.com Abstract This work presents the application of a CFD code Fluent to simulate the

More information

15. Physics of Sediment Transport William Wilcock

15. Physics of Sediment Transport William Wilcock 15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

Spring Semester 2011 March 1, 2011

Spring Semester 2011 March 1, 2011 METR 130: Lecture 3 - Atmospheric Surface Layer (SL - Neutral Stratification (Log-law wind profile - Stable/Unstable Stratification (Monin-Obukhov Similarity Theory Spring Semester 011 March 1, 011 Reading

More information

A SENSITIVITY STUDY OF A COUPLED SOIL-VEGETATION BOUNDARY-LAYER SCHEME FOR USE IN ATMOSPHERIC MODELING

A SENSITIVITY STUDY OF A COUPLED SOIL-VEGETATION BOUNDARY-LAYER SCHEME FOR USE IN ATMOSPHERIC MODELING A SENSITIVITY STUDY OF A COUPLED SOIL-VEGETATION BOUNDARY-LAYER SCHEME FOR USE IN ATMOSPHERIC MODELING DRAGUTIN T. MIHAILOVIĆ Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Yugoslavia

More information

APPENDIX B. The primitive equations

APPENDIX B. The primitive equations APPENDIX B The primitive equations The physical and mathematical basis of all methods of dynamical atmospheric prediction lies in the principles of conservation of momentum, mass, and energy. Applied to

More information

Snow Melt with the Land Climate Boundary Condition

Snow Melt with the Land Climate Boundary Condition Snow Melt with the Land Climate Boundary Condition GEO-SLOPE International Ltd. www.geo-slope.com 1200, 700-6th Ave SW, Calgary, AB, Canada T2P 0T8 Main: +1 403 269 2002 Fax: +1 888 463 2239 Introduction

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach

Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach Dr.Gowri 1 Dr.Thirumalaivasan 2 1 Associate Professor, Jerusalem College of Engineering, Department of Civil

More information