2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the

Size: px
Start display at page:

Download "2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the"

Transcription

1 2. Electric Current The net flow of charges through a etallic wire constitutes an electric current. Do you know who carries current? Current carriers In solid - the electrons in outerost orbit carries current in solid In liquid but in liquids the current carriers are ions (cations and anions) So, EMF is a force required to ove electrons. What is the source of electrootive force? Battery, dynao etc. are the source of E.M.F. How source of EMF works (battery, generator or dynao)? For battery- In gases Actually gases are insulator of current. But in soe special cases, it is possible to ake current flow in gases. The gases can be ionized at low pressure and high potential differences although gases contain positive ions and electrons. Why do gases conduct at low pressure? The electrons don't get enough tie to get accelerated.... When the gas pressure is low (but not too low), the electrons get enough tie (or distance) to accelerate. By the tie they collide with an ato, they have gained enough kinetic energy fro the electric field to ionize other atos. ELECTROMOTIVE FORCE: Response on electrootive force is different fro different author. But I will tell you a short trick to learn electrootive force. Electro eans electron and otive eans otion and force is force, so in short force required oving electron in solid. This is an electrolytic cell. Such arrangeent which does work to ove charge fro lower potential to higher potential energy is known as source of ef. Let us see how it works. An electrolytic cell consists of two rods (cathode and anode) +ve and ve rods. And an electrolyte (is a solution in tank) When electrodes are iersed in electrolyte, they exchange charges with the electrolyte due to difference in concentration of free electrons in the and electrolyte. The positive electrode acquires positive potential and negative electrode acquires negative potential. Then the axiu potential difference between the two electrodes of the cell is E =v + -(-v ) = v + +v 0 E.M.F. of a cell is defined as the axiu potential difference between the two electrodes of the

2 cell when no current is drawn fro the cell. E = E. dl SI UNIT OF E.M.F IS VOLT OR JOULE/COULOMB. ELECTRIC CURRENT: The rate of flow of charges in a definite direction is known as electric current. Electric current = total charge flown Tie taken Electric current, I= q t If in a solid conductor the net charges is q=ne (because the charges can be quantized) Then, I= ne t If Q be the net aount of positive charge flowing in a direction in a tie interval fro t+ t. Then current in a conductor q I = Liit t 0 t = dq dt Unit of current is Apere. One apere ay be defined as, if 1C of charge is flowing per second through any section of wire. Electronic current- The direction of flow of electrons is known as electronic current. Note: The flow of electric current is opposite to that of electronic current. Current is a scalar quantity because it does not follow vector law of addition. DRIFT VELOCITY: When conductor is subjected to an electric field E, each electron experiences a force. F =k q 1q 2 r 2, E= k q r 2 fro electrostatics. Force experienced by electron- F = ee F = a, a = F, a = ee here Negative sign shows that the direction of force is opposite to electric field. Here, = ass of election, e = charge, E = electric field. If solid conductor is not subjected to any electric field or under the influence of electrootive force then, the otion of all electrons are rando. And their average initial velocity is zero. As shown in figure. Direction of electric current: Conventional current or electric current The direction of flow of positive charges gives the direction of electric current. If initial velocity of 1 st, 2nd, 3rd,n th electrons is u1, u2, u3, un. u avg = u 1 + u 2 + u 3 + u n = 0 n fro 1st equation of otion v = u + at if tie taken by 1st electron is τ 1

3 τ avg = τ 1 + τ 2 + τ 3 + τ n n for 1st electron, u 1 = v 1 + aτ 1 for 2nd electron, u 2 = v 2 + aτ 2 siilarly for n th, u n = v 3 + aτ n The average velocity of all the free electrons in the conductor under the effect of external electric field is the drift velocity of the free electrons. v d or v avg = u avg + aτ avg v d = u 1 + u 2 + u 3 + u n n v d = ee τ avg, v d = 0 + a τ avg + a τ 1 + τ 2 + τ 3 + τ n n (i. e. ) a = ee τ avg = average relaxation tie, MOBILITY: Mobility of charge carrier (electron and holes) Holes in seiconductors Electrons in solid conductors ay be defined as ratio of drift velocity to electric field. Represented by µ (u) μ = v d E For electrons μ e = v d E = eτ Volue of conductor = area length V = A l Assue that there are n nubers of electrons in this conductor then Total electrons = Aln Total charge on solid, q = Alne Fro this equation we can write that E OR V= E. dl E = V l Speed = distance, tie = distance tie speed, t = l v d I = q Alne t = l v d I = Anev d and in ters obility, v d = μe So, I = AneμE OHM S LAW: At constant pressure, teperature and echanical strain etc. I V OR V I V = IR Or For holes μ h = v d E = eτ Si unit of obility is 2 s 1 V 1 RELATION BETWEEN CURRENT AND DRIFT VELOCITY: R = V I R is known as resistance.

4 Deduction of oh s law: v d = ee τ avg, E = V l v d = ev τ l Putting the value of v d in I = Anev d Suppose you have to pass through a narrow alley if it is short then easy to cross. But if it is long then we will have to suffer a little bit long. R 1/A This eans that whenever we increase the area of cross section of wire the resistance decreases and so on. In siple language if you have to go across a alley which is wide it will be easy to pass. So here ass, length, nuber, tie and area all are constant. V I = l ne 2 = R, a constant τa ELECTRICAL RESISTANCE: The physical quantity which opposes the flow of electric current is known as resistance. Si unit of resistance is oh. (Ω) Diensional forula of resistance is R = V W displaceent I = q I = F q I R = MLT 2 L A = ML2 T 2 AT A = ML 2 T 3 A 2 Cause of resistance is frequent collision of electrons with ions or atos of the conductor while drifting. RESISTIVITY OR SPECIFIC RESISTANCE: Resistance depends upon certain factors. R l This eans that whenever we increase the length of wire resistances also increases. I will ake it siple for you. R l A, R = l A ρ, ρ = R A l Here ρ is a constant known as resistivity or specific resistance Resistivity ay be defined as the resistance of a 1 long and 1 2 areas of cross section. SI unit of resistivity is oh/eter. Diensional forula ρ = R A l, ρ = ML 2 T 3 A 2 L2 L = ML 3 T 3 A 2 ρ = R A where R = l l Ane 2 τ ρ = l Ane 2 τ A l = ne 2 τ ρ = ne 2 fro this equation if τ we assue and e is constant Then ρ 1 n ρ 1 we can see that τ the value of ρ depends upon nuber of electron n and τ, the average relaxation tie. CURRENT DENSITY: Current density ay be defined as the aount of current (I) pass through any cross sectional area A. Denoted by J, J = I A J = Anev d = nev A d The SI unit of current density is A/ 2 Relation between current density and electric field

5 J = I Ane 2 Eτ A = = ne2 τe A Relation between resistivity and obility I = Anev d, v d = μe and J = I A = E ρ = nev d = neμe or ρ = 1 neμ EFFECT OF TEMPERATURE ON RESISTANCE: The value of resistance increases with increase in teperature. Suppose that RT Is resistance R at teperature T. RT=R 0 (1 + αt + βt 2 ) α AND β are teperature cofficients, their values vary fro etal to etal If T teperature is not as large as in ost cases so above expression can be expressed as RT=R 0 (1 + αt) Or we can write it as α = R T R 0 R 0 T R 2 R 1 α = R 1 (T 2 T 1 ) EFFECT OF TEMPERATURE ON RESISTIVITY: It is as sae as that of resistance just replace resistance with resistivity. ρt=ρ 0 (1 + αt) ρ 2 ρ 1 α = ρ 1 (T 2 T 1 ) = dρ dt. 1 ρ 1 GRAPHS: FOR METALS Metals: In ost etals, nuber density n of free electrons does not change with teperature but an increase in teperature increases the aplitude of vibration of lattice ions of the etal. Therefore, the Collision of free electrons with ions or atos while drifting towards the positive end of the conductor becoes ore frequent, resulting in a decrease in relaxation tie. Thus resistivity of conductor increases with increase in teperature. The value of α is positive, showing that their resistivity increase with increase in teperature. For ost etals the resistivity increases linearly with increase in teperature over a teperature range of about 500 k, above the roo teperature. Sei conductors: In case of sei- conductors, the value of α is negative. It eans the resistivity of seiconductor decreases as teperature increases Insulators: The resistivity increases exponentially with decrease in teperature in case of seiconductors. It becoes infinitely large at teperature near absolute zero i.e. the conductivity is alost zero at o k. The teperature dependence of resistivity of sei-conductors and insulators is given by: ρ = ρ 0e E g/2kt Where K= Boltzann constant ( j ole -1 k -1 )

6 T= absolute teperature E=Energy band gap between conduction band and valence band or activation energy for conduction The classification of non-conduction aterials into insulators and seiconductors depends upon the E. (i) If E= 1eV, the value of resistivity is not very high therefore, the aterials are called sei-conductors. (ii) If E 1eV, the value of resistivity is very high and the aterials are called insulators. NON-OHMIC DEVICES: The device which does not follow oh s law is known as non-ohic devices. Such as LED. (LIGHT EMITTING DIODE). (GaAs). It is a non-ohic device. Graph of voltage and current is not straight line (linear). Graph of V and I depends on the sign of V. In this graph the value of current for certain value of voltage will not be sae if the direction is changed. Graph of V and I is not unique. Here you can see that in this graph 3 dotted line are drawn parallel to each other. Each of the cuts voltage on different points. But the value of current in this graph is sae at two different values of voltage. SUPER-CONDUCTIVITY: As we already know that the value of resistance decreases with decrease in teperature. At a certain teperature (called critical teperature) the value of resistance becoes zero. This is known as superconductivity. For exaple Mercury at 4.2k Lead at 7.25k And niobiu at 9.2k becoes superconductors. RESISTANCE: IN SERIES Many students got confuse in series and parallel connection while deterining. Here is a easy ethod.

7 Suppose you are aking a huan chain holding one hand of other student and so on. V1 = IR1, V2 = IR2 and V3 = IR3. PARALLEL in volt? EMF can also be called as ter potential difference of battery like 6V OR 12V. But, this is when there is no current drawn fro battery. In other hand terinal potential difference is also potential difference as per nae but this is when the current is drawn fro battery. Assue you have a glass of water and the aount of water in glass is x. this x is EMF And soe aount of water is drawn out of glass ( x). Now the aount of water in glass is x x. this is terinal potential difference. Here question arises who draws out water or where does it go. Answer is, it is consued by resistance offered by electrolyte (solution in battery) and electrodes (cathode and anode). This well known resistance is INTERNAL RESISTANCE Of battery. Equations Internal resistance is r Capacity or EMF of battery is Here full glass of water is EMF( ) Sall aount of water drawn, v = Ir Reaining water in glass is TERMINAL P.D V = v or V = Ir r = V I, r = V V R In this case suppose you are holding both hands of your friend GROUPING OF CELLS: IN SERIES DIFFERNCE BETWEEN EMF AND TERMINAL POTENTIAL DIFFERENCE: EMF eans electrootive force is actually the capacity of battery. Which is calculated Let potential difference across 1 st cell is V 1 2 ND cell is V 2 Fro terinal P.D. forula V 1= 1 Ir 1 V 2= 2 Ir 2 So potential difference of 2 cells is algebraic su V 1 + V 2= 1 Ir Ir 2

8 = I(r 1 + r 2 ) eq = r eq = r 1 + r 2. V= eq + r eq IN PARALLEL r eq = r 1r 2 r 1 + r 2 1 Dividing eq by r eq r eq = 1 r r 2 eq r eq = 1 r r 1 r 1 + r 2 r 1 r 2 r 1 + r 2 eq r eq = 1 r r 2 n r n MIXED GROUPING OF CELLS: I = I 1 + I 2 (1) V = 1 I 1 r 1, V = 2 I 2 r 2 I 1 = 1 V r 1, I 2 = 2 V r 2 I = 1 V r V r 2 = ( 1 r r 2 ) V ( 1 r r 2 ) V = 1r r 1 r 1 +r 2 Ir 1r 2 r 1 +r 2 V = eq r eq eq = 1 r r 1 r 1 + r 2 IN each row, there are n cells. Total no. of cells in a row in series is n Their internal resistance is = nr Their EMF = n Now in colun their nubers is and are in parallel. Their internal resistance is= 1 = 1 r p nr upto ters nr = nr or r p = nr total resistance in circuit = R + nr HERE In parallel cobination of cells does affect the EMF of each cell but increase the nuber of cathode and anode. So total EMF of cells = n Current in ext. resistance,

9 I=effective EMF/Total resistance I = n R + nr or I = n R + nr Current will be axiu when R + nr will be iniu. So it can be written as ( R) 2 + ( nr) 2 2nRr + 2nRr = iniu ( R nr) 2 + 2nRr = iniu and it will be inu only when ( R nr) 2 = 0 or R nr = 0 R = nr = R = nr So we can get axiu current only when if the value of external resistance is equal to total internal resistance of the cell. Thank you Divya Ranjan Teacher (The institute of physics)

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Current, Resistance Electric current and current density

Current, Resistance Electric current and current density General Physics Current, Resistance We will now look at the situation where charges are in otion - electrodynaics. The ajor difference between the static and dynaic cases is that E = 0 inside conductors

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor

More information

CHAPTER: 3 CURRENT ELECTRICITY

CHAPTER: 3 CURRENT ELECTRICITY CHAPTER: 3 CURRENT ELECTRICITY 1. Define electric current. Give its SI unit. *Current is the rate of flow of electric charge. I (t) = dq dt or I = q t SI unit is ampere (A), 1A = 1C 1s 2. Define current

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong.

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong. 4 Phys520.nb 2 Drude theory ~ Chapter in textbook 2.. The relaxation tie approxiation Here we treat electrons as a free ideal gas (classical) 2... Totally ignore interactions/scatterings Under a static

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

CURRENT ELECTRICITY MARKS WEIGHTAGE 7 marks

CURRENT ELECTRICITY MARKS WEIGHTAGE 7 marks CURRENT ELECTRICITY MARKS WEIGHTAGE 7 marks QUICK REVISION (Important Concepts & Formulas) Electric current The current is defined as the rate of flow of charges across any cross sectional area of a conductor.

More information

ELEC NCERT. 1. Which cell will measure standard electrode potential of copper electrode? (g,0.1 bar) H + (aq.,1 M) Cu 2+ (aq.

ELEC NCERT. 1. Which cell will measure standard electrode potential of copper electrode? (g,0.1 bar) H + (aq.,1 M) Cu 2+ (aq. I. Multiple Choice Questions (Type-I) 1. Which cell will easure standard electrode potential of copper electrode? Pt (s) H 2 (g,0.1 bar) H + (aq.,1 M) Cu 2+ (aq.,1m) Cu Pt(s) H 2 (g, 1 bar) H + (aq.,1

More information

Chapter 27. Current and Resistance

Chapter 27. Current and Resistance Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new

More information

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok 1 Course Progress Introductory level Electrostatic, Coulomb s Law Electric Field, Gauss Law Magnetic field, Maxwell s Equations Current,

More information

Tridib s Physics Tutorials visit NCERT-XII / Unit- 03 Current Electricity

Tridib s Physics Tutorials visit   NCERT-XII / Unit- 03 Current Electricity CURRENT ELECTRICITY OHM S LAW:- Let us consider a conductor through which a current I is flowing and V be the potential difference between its ends,then Ohm s law states that V I or, V = R I..(1) where

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric

More information

By Mir Mohammed Abbas II PCMB 'A' CHAPTER FORMULAS & NOTES. 1. Current through a given area of a conductor is the net charge passing

By Mir Mohammed Abbas II PCMB 'A' CHAPTER FORMULAS & NOTES. 1. Current through a given area of a conductor is the net charge passing Formulae For u CURRENT ELECTRICITY 1 By Mir Mohammed Abbas II PCMB 'A' 1 Important Terms, Definitions & Formulae CHAPTER FORMULAS & NOTES 1. Current through a given area of a conductor is the net charge

More information

Chapter 27. Current And Resistance

Chapter 27. Current And Resistance Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

More information

Chapter 3: Current and Resistance. Direct Current Circuits

Chapter 3: Current and Resistance. Direct Current Circuits Chapter 3: Current and Resistance. Direct Current Circuits 3.1. Electric Current 3.2. Resistance and Resistivity 3.3. Ohm s Law and a Microscopic View of Ohm s Law 3.4. Semiconductors and Superconductors

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on Deceber 15, 2014 Partners Naes: Grade: EXPERIMENT 8 Electron Beas 0. Pre-Laboratory Work [2 pts] 1. Nae the 2 forces that are equated in order to derive the charge to

More information

Current and Resistance

Current and Resistance Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

More information

Chapter 27 Current and resistance

Chapter 27 Current and resistance 27.1 Electric Current Chapter 27 Current and resistance 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.6 Electrical Power 2 27.1 Electric Current Consider a system

More information

Current and Resistance

Current and Resistance Chapter 26 Current and Resistance Copyright 26-1 Electric Current As Fig. (a) reminds us, any isolated conducting loop regardless of whether it has an excess charge is all at the same potential. No electric

More information

Announcement. Grader s name: Qian Qi. Office number: Phys Office hours: Thursday 4:00-5:00pm in Room 134

Announcement. Grader s name: Qian Qi. Office number: Phys Office hours: Thursday 4:00-5:00pm in Room 134 Lecture 3 1 Announceent Grader s nae: Qian Qi Office nuber: Phys. 134 -ail: qiang@purdue.edu Office hours: Thursday 4:00-5:00p in Roo 134 2 Millikan s oil Drop xperient Consider an air gap capacitor which

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Chapter 27. Current And Resistance

Chapter 27. Current And Resistance Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Question 3: How is the electric potential difference between the two points defined? State its S.I. unit.

Question 3: How is the electric potential difference between the two points defined? State its S.I. unit. EXERCISE (8 A) Question : Define the term current and state its S.I unit. Solution : Current is defined as the rate of flow of charge. I = Q/t Its S.I. unit is Ampere. Question 2: Define the term electric

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

CLASS X- ELECTRICITY

CLASS X- ELECTRICITY Conductor- Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X- ELECTRICITY als through which electric current can pass

More information

Note 5: Current and Resistance

Note 5: Current and Resistance Note 5: Current and Resistance In conductors, a large number of conduction electrons carry electricity. If current flows, electrostatics does not apply anymore (it is a dynamic phenomenon) and there can

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

Chapter 25 Current Resistance, and Electromotive Force

Chapter 25 Current Resistance, and Electromotive Force Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

General Properties of Radiation Detectors Supplements

General Properties of Radiation Detectors Supplements Phys. 649: Nuclear Techniques Physics Departent Yarouk University Chapter 4: General Properties of Radiation Detectors Suppleents Dr. Nidal M. Ershaidat Overview Phys. 649: Nuclear Techniques Physics Departent

More information

Figure 1: Equivalent electric (RC) circuit of a neurons membrane

Figure 1: Equivalent electric (RC) circuit of a neurons membrane Exercise: Leaky integrate and fire odel of neural spike generation This exercise investigates a siplified odel of how neurons spike in response to current inputs, one of the ost fundaental properties of

More information

Chapter 25: Electric Current

Chapter 25: Electric Current Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through

More information

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions )

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions ) 22 - ELECTRON AND PHOTONS Page 1 1 ) A photocell is illuinated by a sall source placed 1 away. When the sae source of light is placed 1 / 2 away, the nuber of electrons eitted by photocathode would ( a

More information

Chapter 27. Current and Resistance

Chapter 27. Current and Resistance Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q

More information

AP Physics Thermodynamics Wrap-up

AP Physics Thermodynamics Wrap-up AP Physics herodynaics Wrap-up Here are your basic equations for therodynaics. here s a bunch of the. 3 his equation converts teperature fro Fahrenheit to Celsius. his is the rate of heat transfer for

More information

Motion of Charges in Uniform E

Motion of Charges in Uniform E Motion of Charges in Unifor E and Fields Assue an ionized gas is acted upon by a unifor (but possibly tie-dependent) electric field E, and a unifor, steady agnetic field. These fields are assued to be

More information

Conducting surface - equipotential. Potential varies across the conducting surface. Lecture 9: Electrical Resistance.

Conducting surface - equipotential. Potential varies across the conducting surface. Lecture 9: Electrical Resistance. Lecture 9: Electrical Resistance Electrostatics (time-independent E, I = 0) Stationary Currents (time-independent E and I 0) E inside = 0 Conducting surface - equipotential E inside 0 Potential varies

More information

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2)

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2) Lecture.5. Ideal gas law We have already discussed general rinciles of classical therodynaics. Classical therodynaics is a acroscoic science which describes hysical systes by eans of acroscoic variables,

More information

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014 Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

of conduction electrons

of conduction electrons Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: of 9 Hoework: See website. Table of Contents: Ch. 7 Electric Current an esistance, 7. Electric

More information

(B) ' > 2 (A) ' < 2 (D) ' = 2 (C) > ' > 2. Page 1 of 6

(B) ' > 2 (A) ' < 2 (D) ' = 2 (C) > ' > 2.  Page 1 of 6 TEST-7 TOPIC: ELECTRONIC DEICES ND DUL NTURE OF MTTER Q.1 Lights of two different frequencies whose photons have energies 1e and.5 e respectively, successively illuinate a etal of work function.5 e. The

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson

More information

CURRENT ELECTRICITY The charge flowing any cross-section per unit time in a conductor is called electric current.

CURRENT ELECTRICITY The charge flowing any cross-section per unit time in a conductor is called electric current. CUENT ELECTICITY Important Points:. Electric Current: The charge flowing any cross-section per unit time in a conductor is called electric current. Electric Current I q t. Current Density: a) The current

More information

Measuring Temperature with a Silicon Diode

Measuring Temperature with a Silicon Diode Measuring Teperature with a Silicon Diode Due to the high sensitivity, nearly linear response, and easy availability, we will use a 1N4148 diode for the teperature transducer in our easureents 10 Analysis

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapter 25 University Physics (PHY 2326) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm

More information

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A)

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric current is I Average Electric

More information

Downloaded from

Downloaded from CLASS XII MLL Questions Current Electricity Q.. The sequence of bands marked on a carbon resistor is red, red. Red silver. What is the value of resistance? Ans: 0 ±0% Q. Does the drift velocity vary with

More information

Chemistry 432 Problem Set 11 Spring 2018 Solutions

Chemistry 432 Problem Set 11 Spring 2018 Solutions 1. Show that for an ideal gas Cheistry 432 Proble Set 11 Spring 2018 Solutions P V 2 3 < KE > where is the average kinetic energy of the gas olecules. P 1 3 ρ v2 KE 1 2 v2 ρ N V P V 1 3 N v2 2 3 N

More information

Handout 5: Current and resistance. Electric current and current density

Handout 5: Current and resistance. Electric current and current density 1 Handout 5: Current and resistance Electric current and current density Figure 1 shows a flow of positive charge. Electric current is caused by the flow of electric charge and is defined to be equal to

More information

Webreview - Ch 27 Quantum Physics Practice Test

Webreview - Ch 27 Quantum Physics Practice Test Please do write on practice test. ID A Webreview - Ch 27 Quantu Physics Practice Test Multiple Choice Identify the choice that best copletes the stateent or answers the question. 1. Planck's quantu theory

More information

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, Look over Chapter 26 sections 1-7 Examples 3, 7 Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Chapter 3: Electric Current and Direct-Current Circuit

Chapter 3: Electric Current and Direct-Current Circuit Chapter 3: Electric Current and Direct-Current Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Direct-current is current that flows

More information

Flow Rate is the NET amount of water passing through a surface per unit time

Flow Rate is the NET amount of water passing through a surface per unit time Electric Current An Analogy Water Flow in a Pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a surface per unit time Individual molecules are bouncing around with speeds of

More information

Chapter 26 Current and Resistance

Chapter 26 Current and Resistance Chapter 26 Current and Resistance Electric Current Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current

More information

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer PHYS 443 Section 003 Lecture # Wednesday, Nov. 9, 003 Dr. Mystery Lecturer. Fluid Dyanics : Flow rate and Continuity Equation. Bernoulli s Equation 3. Siple Haronic Motion 4. Siple Bloc-Spring Syste 5.

More information

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get:

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get: Equal Area Criterion.0 Developent of equal area criterion As in previous notes, all powers are in per-unit. I want to show you the equal area criterion a little differently than the book does it. Let s

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

CHAPTER 1 ELECTRICITY

CHAPTER 1 ELECTRICITY CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

NEET PHYSICS PAPER CODE : PP NEET-2018 ( ) PHYSICS

NEET PHYSICS PAPER CODE : PP NEET-2018 ( ) PHYSICS NEET PHYSICS PAPER CODE : PP NEET-8 (6-5-8) PHYSICS Q. An e wave is propagating in a ediu with a Ans. () velocity v v î. The instantaneous oscillating electric field of this e wave is along +y axis. Then

More information

XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K.

XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K. XII PHYSICS LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [CURRENT ELECTRICITY] CHAPTER NO. 13 CURRENT Strength of current in a conductor is defined as, Number of coulombs

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

6 Chapter. Current and Resistance

6 Chapter. Current and Resistance 6 Chapter Current and Resistance 6.1 Electric Current... 6-2 6.1.1 Current Density... 6-2 6.2 Ohm s Law... 6-5 6.3 Summary... 6-8 6.4 Solved Problems... 6-9 6.4.1 Resistivity of a Cable... 6-9 6.4.2 Charge

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

Chapter 24: Electric Current

Chapter 24: Electric Current Chapter 24: Electric Current Electric current Electric current is a net flow of electric charge. Quantitatively, current is the rate at which charge crosses a given area. I = dq dt dq = q(n AL)=q(n Av

More information

Dynamics of Bass Reflex Loudspeaker Systems (3)

Dynamics of Bass Reflex Loudspeaker Systems (3) MCAP5E Dynaics of Bass Refle Loudspeaker Systes (3) Deriving Equations of Motion of Bass Refle Speaker Systes 3. Deriving Equations of Motion Shigeru Suzuki Released in May 5th, 8 in Japanese Released

More information

What are the two types of current? The two types of current are direct current and alternating current.

What are the two types of current? The two types of current are direct current and alternating current. Electric Current What are the two types of current? The two types of current are direct current and alternating current. Electric Current The continuous flow of electric charge is an electric current.

More information

Chapter 27: Current and Resistance

Chapter 27: Current and Resistance Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4 Massachusetts Institute of Technology Quantu Mechanics I (8.04) Spring 2005 Solutions to Proble Set 4 By Kit Matan 1. X-ray production. (5 points) Calculate the short-wavelength liit for X-rays produced

More information

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful.

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful. PHSX 446 FINAL EXAM Spring 25 First, soe basic knowledge questions You need not show work here; just give the answer More than one answer ight apply Don t waste tie transcribing answers; just write on

More information

Lecture Frontier of complexity more is different Think of a spin - a multitude gives all sorts of magnetism due to interactions

Lecture Frontier of complexity more is different Think of a spin - a multitude gives all sorts of magnetism due to interactions Lecture 1 Motivation for course The title of this course is condensed atter physics which includes solids and liquids (and occasionally gases). There are also interediate fors of atter, e.g., glasses,

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

PAP342-Solid State Physics I Solution 09/10 Semester 2

PAP342-Solid State Physics I Solution 09/10 Semester 2 PAP342-Solid State Physics I Solution 09/10 Seester 2 Wang Shengtao May 10, 2010 Question 1. (a) A scheatic showing the position of the Feri level related to the (b) band edges can be found in [Kittel]

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

UNIT 5: Electric Current and Direct-Current Circuit (D.C.)

UNIT 5: Electric Current and Direct-Current Circuit (D.C.) UNT 5: Electric Current Direct-Current Circuit (D.C.) SF07 5. Electric Current, Consider a simple closed circuit consists of wires, a battery a lamp as shown in figure 5.a. F r e E r rea, From the figure,

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method)

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method) Projectile Motion with Air Resistance (Nuerical Modeling, Euler s Method) Theory Euler s ethod is a siple way to approxiate the solution of ordinary differential equations (ode s) nuerically. Specifically,

More information

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor: 16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion

More information