PHY 631 : Physics of Semiconductor Nanostructures

Size: px
Start display at page:

Download "PHY 631 : Physics of Semiconductor Nanostructures"

Transcription

1 DEPARTMENT OF PHYSICS PHY 631 : Physics of Semiconductor Nanostructures Course Objectives : By Y N Mohapatra in Semester beginning July 2015 The course introduces physics of phenomena in semiconductor nanostructures which have important technological applications, especially focusing on the application of principles of condensed matter physics and quantum processes in such structures. Prerequisites: The students taking this course must have had a prior exposure to quantum mechanics and solid state physics. The course is pitched at a higher level than any similar courses on Electronic Materials in terms of use of tools in quantum physics. However, the techniques and ideas are briefly reviewed at the point of use to make them intuitively familiar. Course Contents Review of condensed matter and semiconductor physics: a brief introduction to quantum view of bulk solids: introduction to key ideas in electronic properties, transport and interaction of photons with material. Characteristic length scales for quantum phenomena;scaling as a heuristic tool; scientific and technological significance of nanostructures and mesoscopic structures Carbon Nanotubes; Illustration of Quantum and Condensed Matter Physics. Fabrication of quantum nanostructures, Quantum structures and bandgap engineering. Transport in quantum structures with applications; electronic properties of heterostructures, quantum wells, quantum wires, quantum dots, and superlattices, strained layer super-lattices; Transport in mesoscopic structures:resonant tunneling, hot electrons, conductance and transmission of nanostructures;principles of application of electronic devices based on quantum structures: Optical properties and applications,optical processes in low dimensional semiconductors : Absorption, luminescence, excitons. application to lasers and photodetectors ; Magneto-transport in semiconductor Nanostructures : transport in magnetic field, semiclassicaldescription, quantum approach, Aharonov-Bohm effect, Shubnikov- de Haas effect; introduction to quantum Hall effect Intro to Frontiers in current research : Nanoelectronics, Nanophotonics & Spintronics - ynm

2

3 Standard Model and its Beyond Joydeep Chakrabortty March 24, 2014 I will start with pre Standard Model era. The idea of four-fermi theory and its failure. How the limitations of four-fermi theory encourages to think a new theory. Then I will discuss the idea of gauge theory. Next I will import the idea of Standard Model symmetry. The basic structures: Symmetry Groups, Particle contents, Lagrangian will discussed in details. In the process I will use some basic quantum field theory. I will discuss the Spontaneous breaking of Standard Model symmetry. Then I will incorporate the idea of Higgs mechanism, and will show how that will help to generate the masses for the gauge bosons and fermions in the theory. After discussing the Standard Model Gauge theory, I will dictate the predictions and shortcomings of this theory. There I will discuss the neutrino mass generation, gauge hierarchy, and other problems that force us to think beyond Standard Model. Experimental and phenomenological issues related to the Standard Model will be analysed. The phenomenological implications of few beyond Standard Model theories will be discussed References: 1. Gauge Theory of Elementary Particle Physics: Cheng and Li. 2. Gauge Theory in Particle Physics, Volume I+II: Aitchison and Hey. 3. Gauge Field Theories: Pokorski. 4. Classical Theory of Gauge Fields: Rubakov. 1

4 Quantum Field Theory-I (PHY681) Instructor: Sayantani Bhattacharyya Prerequisite: Quantum Mechanics-I (PHY431) and Quantum Mechanics-II (PHY432) 1. Lorentz and Poincare group. 2. Lagrangian formalism for classical fields 3. Global symmetry and Noether s Theorem 4. Quantization of interacting fields 5. S-Matrix 6. Divergences and renormalization 1

5 PHY690K Quantum Dynamics: Computation and Information Prerequisites: PHY431, PHY412, Computer Programing. Course Outline: 1. Quantum Dynamics of Discrete Systems: Two-level atoms, Spins, Manyparticle systems, Reduced Density Matrices, Schroedinger evolution of initial states, Master Equation approach to Equilibrium., Decoherence and entanglement. 2. Quantum Dynamical Processes: Information theory, Quantum communication, computation protocols and algorithms. 3. Quantum Dynamics of Continuous-variable systems: Interacting harmonic oscillators, Guassian states, evolution of one-mode and two-mode guassian states, entaglement. Reference Books: Quantum Mechanics: Sakurai, Cohen-Tanoudji Statistical Mechanics: Pathria Quantum Computation and Quantum Information: Nielsen and Chuang Quantum Comutation and Information: Benenti, Casati and Strini V. Subrahmanyam

6

7 DEPARTMENTAL ELECTIVE COURSE NO: PHY 690 M TITLE: Advanced General Relativity and Black Holes. PRE REQUISITE: PHY 407 Special and General Theory of Relativity COURSE CONTENTS 1. Summary of General Relativity Curvature and Field Equations. 2. Killing vectors and Symmetries. Energy Momentum Tensor 3. Schwarzschild Black Holes, Horizon, Singularity, Eddington Finkelstein Cordinates and Kruskal Diagrams, Carter Penrose Diagrams. 4. De Sitter and Anti De Sitter spaces. Einstein Static Universe. 5. Reissner Nordstrom Black Holes, Horizon, Singularity, Killing Vectors and Penrose Diagrams. 6. Kerr Black Holes Horizon, Singularity, Killing Vectors and Penrose Diagrams. 7. Kerr Newman Black Holes, Horizon, Singularity, Killing Vectors and Penrose Diagrams. 8. Laws of Black Hole Mechanics and Black Hole Thermodynamics.

8 PHY781 (High Energy Physiscs-II) Instructor: Dipankar Chakrabarti.[ , 1st semester] Pre-requisite: PHY681 Course Contents: 1. Scattering Cross-sections: tree-level calculation of QED scattering processes(e.g., Bhabha scattering, Møller scattering, e e + µ µ +, Compton scattering, e p scattering, etc.) 2. Radiative corrections: electron self energy, vacuum polarization, Lamb shift. Infrared and ultraviolet divergences. 3. Renormalization: power counting, degree of divergence of a diagram, cutoff and dimensional regularization,ward-takahashi Identity. electron charge and mass renormalization. 4. Gauge theories: quantization of Abelian and non-abelian gauge theories. 5. Path integral formalism. Books: 1. Quantum Field Theory- Peskin and Schroeder. 2. Quantum Field theory- Mandl and Shaw. 3. Quantum Field Theory - Itzykson and Zuber. 4. Quarks and Leptons- Halzen and Martin.

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Advanced Statistical mechanics PHY613

Advanced Statistical mechanics PHY613 Advanced Statistical mechanics PHY613 Instructor: Amit Dutta Module 1: Critical Phenomena and Renormalization Group Lect. 30 hrs Basics of Phase transitions, mean field theory, concepts of scaling, application

More information

PHY 602 QUANTUM MECHANICS,

PHY 602 QUANTUM MECHANICS, Department of Physics IIT Kanpur PHY 602 QUANTUM MECHANICS, 1-3-0-9 Course Objectives: This course is aimed at providing a comprehensive review of the core concepts of quantum mechanics through problem

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Physics (PHYS) Courses. Physics (PHYS) 1

Physics (PHYS) Courses. Physics (PHYS) 1 Physics (PHYS) 1 Physics (PHYS) Courses PHYS 5001. Introduction to Quantum Computing. 3 Credit Hours. This course will give an elementary introduction to some basics of quantum information and quantum

More information

Quantum Physics in the Nanoworld

Quantum Physics in the Nanoworld Hans Lüth Quantum Physics in the Nanoworld Schrödinger's Cat and the Dwarfs 4) Springer Contents 1 Introduction 1 1.1 General and Historical Remarks 1 1.2 Importance for Science and Technology 3 1.3 Philosophical

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES Jasprit Singh University of Michigan McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Physics 622 Relativistic Quantum Field Theory Course Syllabus

Physics 622 Relativistic Quantum Field Theory Course Syllabus Physics 622 Relativistic Quantum Field Theory Course Syllabus Instructor Office Swain West 226 Phone Number 855 0243 Open Door Policy Steven Gottlieb, Distinguished Professor I don t want to constrain

More information

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York QUANTUM FIELD THEORY A Modern Introduction MICHIO KAKU Department of Physics City College of the City University of New York New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Quantum Fields and Renormalization

More information

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program An Introduction to Quantum Field Theory Michael E. Peskin Stanford Linear Accelerator Center Daniel V. Schroeder Weber State University 4B Advanced Book Program TT Addison-Wesley Publishing Company Reading,

More information

Physics 610: Quantum Field Theory I

Physics 610: Quantum Field Theory I Physics 610: Quantum Field Theory I Fall 2011 Instructor: George Sterman (MT-6108, george.sterman@stonybrook.edu) Room: Physics P-112 TuTh 8:20-9:40 This course will introduce quantum field theory, emphasizing

More information

Optical Characterization of Solids

Optical Characterization of Solids D. Dragoman M. Dragoman Optical Characterization of Solids With 184 Figures Springer 1. Elementary Excitations in Solids 1 1.1 Energy Band Structure in Crystalline Materials 2 1.2 k p Method 11 1.3 Numerical

More information

DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS Department of Physics 1 DEPARTMENT OF PHYSICS Office in Engineering Building, Room 124 (970) 491-6206 physics.colostate.edu (http://www.physics.colostate.edu) Professor Jacob Roberts, Chair Undergraduate

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1 Physics-PH (PH) 1 PHYSICS-PH (PH) Courses PH 110 Physics of Everyday Phenomena (GT-SC2) Credits: 3 (3-0-0) Fundamental concepts of physics and elementary quantitative reasoning applied to phenomena in

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Part III The Standard Model

Part III The Standard Model Part III The Standard Model Theorems Based on lectures by C. E. Thomas Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Stephen Blaha, Ph.D. M PubHsMtw

Stephen Blaha, Ph.D. M PubHsMtw Quantum Big Bang Cosmology: Complex Space-time General Relativity, Quantum Coordinates,"Dodecahedral Universe, Inflation, and New Spin 0, 1 / 2,1 & 2 Tachyons & Imagyons Stephen Blaha, Ph.D. M PubHsMtw

More information

MASTER OF SCIENCE IN PHYSICS

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCE IN PHYSICS The Master of Science in Physics program aims to develop competent manpower to fill the demands of industry and academe. At the end of the program, the students should have

More information

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari This is a PhD level course, designed for second year PhD students in Theoretical High Energy Physics (HEP-TH)

More information

Gauge Theories of the Standard Model

Gauge Theories of the Standard Model Gauge Theories of the Standard Model Professors: Domènec Espriu (50%, coordinador) Jorge Casalderrey (25%) Federico Mescia (25%) Time Schedule: Mon, Tue, Wed: 11:50 13:10 According to our current state

More information

Syllabus of the Ph.D. Course Work Centre for Theoretical Physics Jamia Millia Islamia (First Semester: July December, 2010)

Syllabus of the Ph.D. Course Work Centre for Theoretical Physics Jamia Millia Islamia (First Semester: July December, 2010) Syllabus of the Ph.D. Course Work Centre for Theoretical Physics Jamia Millia Islamia (First Semester: July December, 2010) GRADUATE SCHOOL MATHEMATICAL PHYSICS I 1. THEORY OF COMPLEX VARIABLES Laurent

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Study Plan for Ph.D in Physics (2011/2012)

Study Plan for Ph.D in Physics (2011/2012) Plan Study Plan for Ph.D in Physics (2011/2012) Offered Degree: Ph.D in Physics 1. General Rules and Conditions:- This plan conforms to the regulations of the general frame of the higher graduate studies

More information

IH2654 Nanoelectronics, 9hp autumn 2012, period 1 and ****** Nanoelectronics, PhD course

IH2654 Nanoelectronics, 9hp autumn 2012, period 1 and ****** Nanoelectronics, PhD course IH2654 Nanoelectronics, 9hp autumn 2012, period 1 and ****** Nanoelectronics, PhD course For Master programs in Nanotechnology and E, F, ME and PhD students (Previously: 2B1234, 6p and 4H1716, 4p) https://www.kth.se/social/course/ih2654/

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

11 Group Theory and Standard Model

11 Group Theory and Standard Model Physics 129b Lecture 18 Caltech, 03/06/18 11 Group Theory and Standard Model 11.2 Gauge Symmetry Electromagnetic field Before we present the standard model, we need to explain what a gauge symmetry is.

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Part III. Interacting Field Theory. Quantum Electrodynamics (QED) November-02-12 8:36 PM Part III Interacting Field Theory Quantum Electrodynamics (QED) M. Gericke Physics 7560, Relativistic QM 183 III.A Introduction December-08-12 9:10 PM At this point, we have the

More information

Physics 622: Quantum Mechanics -- Part II --

Physics 622: Quantum Mechanics -- Part II -- Physics 622: Quantum Mechanics -- Part II -- Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small Hall (new wing), tel: 1-3532 e-mail: saaubi@wm.edu web: http://www.physics.wm.edu/~saubin/index.html

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory PHYSICS Subject Code: PH Course Structure Sections/Units Topics Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Mathematical Physics Classical Mechanics Electromagnetic

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

21 July 2011, USTC-ICTS. Chiang-Mei Chen 陳江梅 Department of Physics, National Central University

21 July 2011, USTC-ICTS. Chiang-Mei Chen 陳江梅 Department of Physics, National Central University 21 July 2011, Seminar @ USTC-ICTS Chiang-Mei Chen 陳江梅 Department of Physics, National Central University Outline Black Hole Holographic Principle Kerr/CFT Correspondence Reissner-Nordstrom /CFT Correspondence

More information

PHY1001, 1002, 1101, 1102 Select one from (CHM1001, 1002, 1051, 1052), or (BIO1101, 1102, 1105, 1106) 16 cr.

PHY1001, 1002, 1101, 1102 Select one from (CHM1001, 1002, 1051, 1052), or (BIO1101, 1102, 1105, 1106) 16 cr. Objective: The main goal of the study of physics is to cultivate creativity, adaptability, and responsibility in scientifically talented individuals through the study of the laws of nature and the physical

More information

PHYS-PHYSICS (PHYS) PHYS-PHYSICS (PHYS) 1. PHYS 212GL. General Physics II Laboratory

PHYS-PHYSICS (PHYS) PHYS-PHYSICS (PHYS) 1. PHYS 212GL. General Physics II Laboratory PHYS-PHYSICS (PHYS) 1 PHYS-PHYSICS (PHYS) PHYS 110G. The Great Ideas of Physics Conceptual, quantitative, and laboratory treatments of the great ideas and discoveries that have influenced lives and changed

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

EE 223 Applied Quantum Mechanics 2 Winter 2016

EE 223 Applied Quantum Mechanics 2 Winter 2016 EE 223 Applied Quantum Mechanics 2 Winter 2016 Syllabus and Textbook references Version as of 12/29/15 subject to revisions and changes All the in-class sessions, paper problem sets and assignments, and

More information

Quantum. Mechanics. Y y. A Modern Development. 2nd Edition. Leslie E Ballentine. World Scientific. Simon Fraser University, Canada TAIPEI BEIJING

Quantum. Mechanics. Y y. A Modern Development. 2nd Edition. Leslie E Ballentine. World Scientific. Simon Fraser University, Canada TAIPEI BEIJING BEIJING TAIPEI Quantum Mechanics A Modern Development 2nd Edition Leslie E Ballentine Simon Fraser University, Canada Y y NEW JERSEY LONDON SINGAPORE World Scientific SHANGHAI HONG KONG CHENNAI Contents

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

Spontaneous breaking of supersymmetry

Spontaneous breaking of supersymmetry Spontaneous breaking of supersymmetry Hiroshi Suzuki Theoretical Physics Laboratory Nov. 18, 2009 @ Theoretical science colloquium in RIKEN Hiroshi Suzuki (TPL) Spontaneous breaking of supersymmetry Nov.

More information

Physics of Low-Dimensional Semiconductor Structures

Physics of Low-Dimensional Semiconductor Structures Physics of Low-Dimensional Semiconductor Structures Edited by Paul Butcher University of Warwick Coventry, England Norman H. March University of Oxford Oxford, England and Mario P. Tosi Scuola Normale

More information

DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS Department of Physics 1 DEPARTMENT OF PHYSICS Roy F. Mitte Building Room 3240 T: 512.245.2131 F: 512.245.8233 www.txstate.edu/physics/ (http://www.txstate.edu/physics) Physics, the study of matter and

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

Quaternion Spin 2 Field Theory Peter Hickman

Quaternion Spin 2 Field Theory Peter Hickman Quaternion Spin 2 Field Theory Peter Hickman Abstract In this paper solutions to the nature of Dark matter, Dark energy, Matter, Inflation and the Matter-Antimatter asymmetry are proposed The real spin

More information

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena Path Integrals Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz 1 07743 Jena 5. Auflage WS 2008/09 1. Auflage, SS 1991 (ETH-Zürich) I ask readers to report

More information

Physics 7730: Particle Physics

Physics 7730: Particle Physics Physics 7730: Particle Physics! Instructor: Kevin Stenson (particle physics experimentalist)! Office: Duane F317 (Gamow tower)! Email: kevin.stenson@colorado.edu! Phone: 303-492-1106! Web page: http://www-hep.colorado.edu/~stenson/!

More information

Sub-Vacuum Phenomena

Sub-Vacuum Phenomena Sub-Vacuum Phenomena Lecture II APCTP-NCTS International School/Workshop on Larry Ford Tufts University Gravitation and Cosmology January 16, 2009 Zero point effects for a system of quantum harmonic oscillators

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

Lecture Notes on General Relativity

Lecture Notes on General Relativity Lecture Notes on General Relativity Matthias Blau Albert Einstein Center for Fundamental Physics Institut für Theoretische Physik Universität Bern CH-3012 Bern, Switzerland The latest version of these

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 6 Photons, electrons and other quanta EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku From classical to quantum theory In the beginning of the 20 th century, experiments

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

CONTENTS. vii. CHAPTER 2 Operators 15

CONTENTS. vii. CHAPTER 2 Operators 15 CHAPTER 1 Why Quantum Mechanics? 1 1.1 Newtonian Mechanics and Classical Electromagnetism 1 (a) Newtonian Mechanics 1 (b) Electromagnetism 2 1.2 Black Body Radiation 3 1.3 The Heat Capacity of Solids and

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

College of Arts and Sciences

College of Arts and Sciences Note: It is assumed that all prerequisites include, in addition to any specific course listed, the phrase or equivalent, or consent of instructor. 105 SICS AND ASTRONOMY TODAY. (1) This course is intended

More information

Particles and Strings Probing the Structure of Matter and Space-Time

Particles and Strings Probing the Structure of Matter and Space-Time Particles and Strings Probing the Structure of Matter and Space-Time University Hamburg DPG-Jahrestagung, Berlin, March 2005 2 Physics in the 20 th century Quantum Theory (QT) Planck, Bohr, Heisenberg,...

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY Mahnaz Q. Haseeb Physics Department COMSATS Institute of Information Technology Islamabad Outline Relevance Finite Temperature Effects One Loop Corrections

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Illustration of the Emergence of Fundamental Forces

Illustration of the Emergence of Fundamental Forces Copyright 2017 by Sylwester Kornowski All rights reserved Illustration of the Emergence of Fundamental Forces Sylwester Kornowski Abstract: Here, within the Scale-Symmetric Theory (SST), we illustrate

More information

Strings, gauge theory and gravity. Storrs, Feb. 07

Strings, gauge theory and gravity. Storrs, Feb. 07 Strings, gauge theory and gravity Storrs, Feb. 07 Outline Motivation - why study quantum gravity? Intro to strings Gravity / gauge theory duality Gravity => gauge: Wilson lines, confinement Gauge => gravity:

More information

Physics 8.861: Advanced Topics in Superfluidity

Physics 8.861: Advanced Topics in Superfluidity Physics 8.861: Advanced Topics in Superfluidity My plan for this course is quite different from the published course description. I will be focusing on a very particular circle of ideas around the concepts:

More information

Basic Semiconductor Physics

Basic Semiconductor Physics Chihiro Hamaguchi Basic Semiconductor Physics With 177 Figures and 25 Tables Springer 1. Energy Band Structures of Semiconductors 1 1.1 Free-Electron Model 1 1.2 Bloch Theorem 3 1.3 Nearly Free Electron

More information

Physics Courses. Courses. Physics Courses 1

Physics Courses. Courses. Physics Courses 1 Physics Courses 1 Physics Courses Courses PHYS 1403. General Physics I (C). General Physics I (3-2) A non-calculus treatment of mechanics and heat. Laboratory experience is an essential component of this

More information

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7:

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7: Chapter 7 -- Radiative Corrections: some formal developments A quotation from Peskin & Schroeder, Chapter 7: 7.1. Field-strength renormalization 7.2. The LSZ reduction formula 7.3. The optical theorem

More information

Lecture notes for QFT I (662)

Lecture notes for QFT I (662) Preprint typeset in JHEP style - PAPER VERSION Lecture notes for QFT I (66) Martin Kruczenski Department of Physics, Purdue University, 55 Northwestern Avenue, W. Lafayette, IN 47907-036. E-mail: markru@purdue.edu

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

9 Quantum Field Theory for Children

9 Quantum Field Theory for Children 101 9 Quantum Field Theory for Children The theories (known and hypothetical) needed to describe the (very) early universe are quantum field theories (QFT). The fundamental entities of these theories are

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

Effective Theories are Dimensional Analysis

Effective Theories are Dimensional Analysis Effective Theories are Dimensional Analysis Sourendu Gupta SERC Main School 2014, BITS Pilani Goa, India Effective Field Theories December, 2014 Outline Outline The need for renormalization Three simple

More information

Elementary particles and typical scales in high energy physics

Elementary particles and typical scales in high energy physics Elementary particles and typical scales in high energy physics George Jorjadze Free University of Tbilisi Zielona Gora - 23.01.2017 GJ Elementary particles and typical scales in HEP Lecture 1 1/18 Contents

More information

College of Arts and Sciences

College of Arts and Sciences Note: It is assumed that all prerequisites include, in addition to any specific course listed, the phrase or equivalent, or consent of instructor. 105 SICS AND ASTRONOMY TODAY. (1) This course is intended

More information

RESEARCH PROJECT: Investigation of Relativistic Longitudinal Gauge Fields. and their Interactions. Abstract

RESEARCH PROJECT: Investigation of Relativistic Longitudinal Gauge Fields. and their Interactions. Abstract RESEARCH PROJECT: Investigation of Relativistic Longitudinal Gauge Fields and their Interactions By: Dale Alan Woodside, Ph.D. Department of Physics, Macquarie University Sydney, New South Wales 2109,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction The book Introduction to Modern Physics: Theoretical Foundations starts with the following two paragraphs [Walecka (2008)]: At the end of the 19th century, one could take pride in

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

Quarks, Leptons and Gauge Fields Downloaded from by on 03/13/18. For personal use only.

Quarks, Leptons and Gauge Fields Downloaded from  by on 03/13/18. For personal use only. QUARKS, LEPTONS & GAUGE FIELDS 2nd edition Kerson Huang Professor of Physics Mussuchusetts Institute qf Technology Y 8 World Scientific Singapore New Jersey London Hong Kong Publirhed by World Scientific

More information

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION Wolfgang Rindler Professor of Physics The University of Texas at Dallas OXPORD UNIVERSITY PRESS Contents Introduction l 1 From absolute space

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

The Higgs - Theory. The Higgs. Theory. Arthur H. Compton Lecture th. Martin Bauer. Oct. 26 Arthur H. Compton Lectures Oct 26th 2013

The Higgs - Theory. The Higgs. Theory. Arthur H. Compton Lecture th. Martin Bauer. Oct. 26 Arthur H. Compton Lectures Oct 26th 2013 The Higgs - Theory The Higgs Martin Bauer Arthur H. Compton Lecture th Martin Oct. 26 2013Bauer Arthur H. Compton Lectures Oct 26th 2013 Theory Outline The Higgs: A new interaction How the Higgs field

More information

Lecture Notes. Quantum Theory. Prof. Maximilian Kreuzer. Institute for Theoretical Physics Vienna University of Technology. covering the contents of

Lecture Notes. Quantum Theory. Prof. Maximilian Kreuzer. Institute for Theoretical Physics Vienna University of Technology. covering the contents of Lecture Notes Quantum Theory by Prof. Maximilian Kreuzer Institute for Theoretical Physics Vienna University of Technology covering the contents of 136.019 Quantentheorie I and 136.027 Quantentheorie II

More information

What We Really Know About Neutrino Speeds

What We Really Know About Neutrino Speeds What We Really Know About Neutrino Speeds Brett Altschul University of South Carolina March 22, 2013 In particle physics, the standard model has been incredibly successful. If the Higgs boson discovered

More information

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and Black Hole Physics Basic Concepts and New Developments by Valeri P. Frolov Department of Physics, University of Alberta, Edmonton, Alberta, Canada and Igor D. Nbvikov Theoretical Astrophysics Center, University

More information

Lectures on Quantum Mechanics

Lectures on Quantum Mechanics Lectures on Quantum Mechanics Steven Weinberg The University of Texas at Austin CAMBRIDGE UNIVERSITY PRESS Contents PREFACE page xv NOTATION xviii 1 HISTORICAL INTRODUCTION 1 1.1 Photons 1 Black-body radiation

More information

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &. An Introductory Course of PARTICLE PHYSICS Palash B. Pal Saha Institute of Nuclear Physics Kolkata, India W CRC Press Taylor &. Francis Croup Boca Raton London New York CRC Press is an imprint of the &

More information

The Physics of Semiconductors

The Physics of Semiconductors The Physics of Semiconductors with applications to optoelectronic devices KEVIN F. BRENNAN CAMBRIDGE UNIVERSITY PRESS Contents Preface page xi Chapter1 Basic Concepts in Quantum Mechanics 1.1 Introduction

More information