Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Size: px
Start display at page:

Download "Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p."

Transcription

1 Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model p. 4 Electronic heat capacity p. 4 Thermal conductivity and the Wiedemann-Franz ratio p. 4 Hall effect p. 6 Summary p. 7 The Sommerfeld model p. 7 The introduction of quantum mechanics p. 7 The Fermi-Dirac distribution function p. 9 The electronic density of states p. 9 The electronic density of states at E [approximate] E[subscript F] p. 10 The electronic heat capacity p. 11 Successes and failures of the Sommerfeld model p. 13 The quantum mechanics of particles in a periodic potential: Bloch's theorem p. 16 Introduction and health warning p. 16 Introducing the periodic potential p. 16 Born-von Karman boundary conditions p. 17 The Schrodinger equation in a periodic potential p. 18 Bloch's theorem p. 19 Electronic bandstructure p. 20 The nearly-free electron model p. 23 Introduction p. 23 Vanishing potential p. 23 Single electron energy state p. 23 Several degenerate energy levels p. 24 Two degenerate free-electron levels p. 24 Consequences of the nearly-free-electron model p. 26 The alkali metals p. 27 Elements with even numbers of valence electrons p. 27 More complex Fermi surface shapes p. 29 The tight-binding model p. 32 Introduction p. 32 Band arising from a single electronic level p. 32 Electronic wavefunctions p. 32 Simple crystal structure p. 33 The potential and Hamiltonian p. 33

2 General points about the formation of tight-binding bands p. 35 The group IA and IIA metals; the tight-binding model viewpoint p. 36 The Group IV elements p. 36 The transition metals p. 37 Some general points about bandstructure p. 41 Comparison of tight-binding and nearly-free-electron bandstructure p. 41 The importance of k p. 42 hk is not the momentum p. 42 Group velocity p. 42 The effective mass p. 42 The effective mass and the density of states p. 43 Summary of the properties of k p. 44 Scattering in the Bloch approach p. 45 Holes p. 45 Postscript p. 46 Semiconductors and Insulators p. 49 Introduction p. 49 Bandstructure of Si and Ge p. 50 General points p. 50 Heavy and light holes p. 51 Optical absorption p. 51 Constant energy surfaces in the conduction bands of Si and Ge p. 52 Bandstructure of the direct-gap III-V and II-VI semiconductors p. 53 Introduction p. 53 General points p. 53 Optical absorption and excitons p. 54 Excitons p. 55 Constant energy surfaces in direct-gap III-V semiconductors p. 56 Thermal population of bands in semiconductors p. 56 The law of mass action p. 56 The motion of the chemical potential p. 58 Intrinsic carrier density p. 58 Impurities and extrinsic carriers p. 59 Extrinsic carrier density p. 60 Degenerate semiconductors p. 62 Impurity bands p. 62 Is it a semiconductor or an insulator? p. 62 A note on photoconductivity p. 63 Bandstructure engineering p. 65 Introduction p. 65 Semiconductor alloys p. 65

3 Artificial structures p. 66 Growth of semiconductor multilayers p. 66 Substrate and buffer layer p. 68 Quantum wells p. 68 Optical properties of quantum wells p. 69 Use of quantum wells in opto-electronics p. 70 Superlattices p. 71 Type I and type II superlattices p. 71 Heterojunctions and modulation doping p. 73 The envelope-function approximation p. 74 Band engineering using organic molecules p. 75 Introduction p. 75 Molecular building blocks p. 75 Typical Fermi surfaces p. 77 A note on the effective dimensionality of Fermi-surface sections p. 78 Layered conducting oxides p. 78 The Peierls transition p. 81 Measurement of bandstructure p. 85 Introduction p. 85 Lorentz force and orbits p. 85 General considerations p. 85 The cyclotron frequency p. 85 Orbits on a Fermi surface p. 87 The introduction of quantum mechanics p. 87 Landau levels p. 87 Application of Bohr's correspondence principle to arbitrarily-shaped Fermi surfaces in a magnetic field p. 89 Quantisation of the orbit area p. 90 The electronic density of states in a magnetic field p. 91 Quantum oscillatory phenomena p. 91 Types of quantum oscillation p. 93 The de Haas-van Alphen effect p. 94 Other parameters which can be deduced from quantum oscillations p. 96 Magnetic breakdown p. 97 Cyclotron resonance p. 97 Cyclotron resonance in metals p. 98 Cyclotron resonance in semiconductors p. 98 Interband magneto-optics in semiconductors p. 100 Other techniques p. 102 Angle-resolved photoelectron spectroscopy (ARPES) p. 103 Electroreflectance spectroscopy p. 104 Some case studies p. 105

4 Copper p. 105 Recent controversy: Sr[subscript 2]RuO[subscript 4] p. 106 Studies of the Fermi surface of an organic molecular metal p. 106 Quasiparticles: interactions between electrons p. 112 Transport of heat and electricity in metals and semiconductors p. 117 A brief digression; life without scattering would be difficult! p. 117 Thermal and electrical conductivity of metals p. 119 Metals: the 'Kinetic theory' of electron transport p. 119 What do [tau subscript [sigma] and [tau subscript [kappa] represent? p. 120 Matthiessen's rule p. 122 Emission and absorption of phonons p. 122 What is the characteristic energy of the phonons involved? p. 123 Electron-phonon scattering at room temperature p. 123 Electron-phonon scattering at T [double less-than sign] [theta subscript D] p. 123 Departures from the low temperature [sigma] [proportional to] T[superscript -5] dependence p. 124 Very low temperatures and/or very dirty metals p. 124 Summary p. 125 Electron-electron scattering p. 125 Electrical conductivity of semiconductors p. 127 Temperature dependence of the carrier densities p. 127 The temperature dependence of the mobility p. 128 Disordered systems and hopping conduction p. 129 Thermally-activated hopping p. 129 Variable range hopping p. 130 Magnetoresistance in three-dimensional systems p. 133 Introduction p. 133 Hall effect with more than one type of carrier p. 133 General considerations p. 133 Hall effect in the presence of electrons and holes p. 135 A clue about the origins of magnetoresistance p. 135 Magnetoresistance in metals p. 135 The absence of magnetoresistance in the Sommerfeld model of metals p. 135 The presence of magnetoresistance in real metals p. 137 The use of magnetoresistance in finding the Fermi-surface shape p. 138 The magnetophonon effect p. 139 Magnetoresistance in two-dimensional systems and the quantum Hall effect p. 143 Introduction: two-dimensional systems p. 143 Two-dimensional Landau-level density of states p. 144 Resistivity and conductivity tensors for a two-dimensional system p. 145 Quantisation of the Hall resistivity p. 147 Localised and extended states p. 148

5 A further refinement- spin splitting p. 148 Summary p. 149 The fractional quantum Hall effect p. 150 More than one subband populated p. 151 Inhomogeneous and hot carrier distributions in semiconductors p. 154 Introduction: inhomogeneous carrier distributions p. 154 The excitation of minority carriers p. 154 Recombination p. 155 Diffusion and recombination p. 155 Drift, diffusion and the Einstein equations p. 156 Characterisation of minority carriers; the Shockley-Haynes experiment p. 156 Hot carrier effects and ballistic transport p. 158 Drift velocity saturation and the Gunn effect p. 158 Avalanching p. 160 A simple resonant tunnelling structure p. 160 Ballistic transport and the quantum point contact p. 161 Useful terminology in condensed matter physics p. 165 Introduction p. 165 Crystal p. 165 Lattice p. 165 Basis p. 165 Physical properties of crystals p. 166 Unit cell p. 166 Wigner-Seitz cell p. 167 Designation of directions p. 167 Designation of planes; Miller indices p. 168 Conventional or primitive? p. 169 The 14 Bravais lattices p. 171 Derivation of density of states in k-space p. 172 Introduction p. 172 Density of states p. 173 Reading p. 174 Derivation of distribution functions p. 175 Introduction p. 175 Bosons p. 178 Fermions p. 178 The Maxwell-Boltzmann distribution function p. 178 Mean energy and heat capacity of the classical gas p. 179 Phonons p. 181 Introduction p. 181 A simple model p. 182

6 Extension to three dimensions p. 183 The Debye model p. 185 Phonon number p. 187 Summary; the Debye temperature as a useful energy scale in solids p. 188 A note on the effect of dimensionality p. 188 The Bohr model of hydrogen p. 191 Introduction p. 191 Hydrogenic impurities p. 192 Excitons p. 192 Experimental considerations in measuring resistivity and Hall effect p. 194 Introduction p. 194 The four-wire method p. 194 Sample geometries p. 196 The van der Pauw method p. 197 Mobility spectrum analysis p. 198 The resistivity of layered samples p. 198 Canonical momentum p. 200 Superconductivity p. 201 Introduction p. 201 Pairing p. 201 Pairing and the Meissner effect p. 203 List of selected symbols p. 205 Solutions and additional hints for selected exercises p. 209 Index p. 217 Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.

Basic Semiconductor Physics

Basic Semiconductor Physics Chihiro Hamaguchi Basic Semiconductor Physics With 177 Figures and 25 Tables Springer 1. Energy Band Structures of Semiconductors 1 1.1 Free-Electron Model 1 1.2 Bloch Theorem 3 1.3 Nearly Free Electron

More information

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES Jasprit Singh University of Michigan McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM Solid State Physics GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pisa, and INFM GIUSEPPE PASTORI PARRAVICINI Professor of Solid State Physics, Department of Physics,

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

FYS Vår 2017 (Kondenserte fasers fysikk)

FYS Vår 2017 (Kondenserte fasers fysikk) FYS3410 - Vår 2017 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v16/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9, 11, 17, 18,

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures Sheng S. Li Department of Electrical and Computer Engineering University of Florida Gainesville,

More information

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15 1 Lecture contents Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect Absorption edges in semiconductors Offset corresponds to bandgap Abs. coefficient is orders

More information

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation V Contents Preface XI Physical Constants, Units, Mathematical Signs and Symbols 1 Introduction 1 1.1 Carbon Nanotubes 1 1.2 Theoretical Background 4 1.2.1 Metals and Conduction Electrons 4 1.2.2 Quantum

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

Quantum Condensed Matter Physics Lecture 1

Quantum Condensed Matter Physics Lecture 1 Quantum Condensed Matter Physics Lecture 1 David Ritchie QCMP Lent/Easter 2017 http://www.sp.phy.cam.ac.uk/drp2/home 1.1 Quantum Condensed Matter Physics: synopsis (1) 1. Classical and Semi-classical models

More information

wave mechanics applied to semiconductor heterostructures

wave mechanics applied to semiconductor heterostructures wave mechanics applied to semiconductor heterostructures GERALD BASTARD les editions de physique Avenue du Hoggar, Zone Industrielle de Courtaboeuf, B.P. 112, 91944 Les Ulis Cedex, France Contents PREFACE

More information

Index. buried oxide 35, 44 51, 89, 238 buried channel 56

Index. buried oxide 35, 44 51, 89, 238 buried channel 56 Index A acceptor 275 accumulation layer 35, 45, 57 activation energy 157 Auger electron spectroscopy (AES) 90 anode 44, 46, 55 9, 64, 182 anode current 45, 49, 65, 77, 106, 128 anode voltage 45, 52, 65,

More information

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75 Chapter 1 Elementary Materials Science Concepts 3 1.1 Atomic Structure and Atomic Number 3 1.2 Atomic Mass and Mole 8 1.3 Bonding and Types of Solids 9 1.3.1 Molecules and General Bonding Principles 9

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

Electronic Properties of Materials An Introduction for Engineers

Electronic Properties of Materials An Introduction for Engineers Rolf E. Hummel Electronic Properties of Materials An Introduction for Engineers With 219 Illustrations Springer-Verlag Berlin Heidelberg New York Tokyo Contents PARTI Fundamentals of Electron Theory CHAPTER

More information

Semiconductor Physics

Semiconductor Physics Semiconductor Physics Advanced Texts in Physics This program of advanced texts covers a broad spectrum of topics which are of current and emerging interest in physics. Each book provides a comprehensive

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012 EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012 Office: 8 St. Mary s Street, Room no: 835 Phone: 353-5431 e-mail: tdm@bu.edu

More information

CONTENTS. vii. CHAPTER 2 Operators 15

CONTENTS. vii. CHAPTER 2 Operators 15 CHAPTER 1 Why Quantum Mechanics? 1 1.1 Newtonian Mechanics and Classical Electromagnetism 1 (a) Newtonian Mechanics 1 (b) Electromagnetism 2 1.2 Black Body Radiation 3 1.3 The Heat Capacity of Solids and

More information

Note that it is traditional to draw the diagram for semiconductors rotated 90 degrees, i.e. the version on the right above.

Note that it is traditional to draw the diagram for semiconductors rotated 90 degrees, i.e. the version on the right above. 5 Semiconductors The nearly free electron model applies equally in the case where the Fermi level lies within a small band gap (semiconductors), as it does when the Fermi level lies within a band (metal)

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Unit III Free Electron Theory Engineering Physics

Unit III Free Electron Theory Engineering Physics . Introduction The electron theory of metals aims to explain the structure and properties of solids through their electronic structure. The electron theory is applicable to all solids i.e., both metals

More information

Course Syllabus. offered by Department of Physics and Materials Science with effect from Semester A 2015/16. Introduction to Solid State Physics

Course Syllabus. offered by Department of Physics and Materials Science with effect from Semester A 2015/16. Introduction to Solid State Physics Course Syllabus offered by Department of Physics and Materials Science with effect from Semester A 2015/16 Part I Course Overview Course Title: Introduction to Solid State Physics Course Code: AP3272 Course

More information

Optical Characterization of Solids

Optical Characterization of Solids D. Dragoman M. Dragoman Optical Characterization of Solids With 184 Figures Springer 1. Elementary Excitations in Solids 1 1.1 Energy Band Structure in Crystalline Materials 2 1.2 k p Method 11 1.3 Numerical

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF PHYSICS QUESTION BANK II SEMESTER PH8252 - PHYSICS FOR INFORMATION SCIENCE (Common to CSE & IT) Regulation 2017 Academic Year

More information

Condensed matter theory Lecture notes and problem sets 2012/2013

Condensed matter theory Lecture notes and problem sets 2012/2013 Condensed matter theory Lecture notes and problem sets 2012/2013 Dmitri Ivanov Recommended books and lecture notes: [AM] N. W. Ashcroft and N. D. Mermin, Solid State Physics. [Mar] M. P. Marder, Condensed

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

Calculating Band Structure

Calculating Band Structure Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

More information

Density of states for electrons and holes. Distribution function. Conduction and valence bands

Density of states for electrons and holes. Distribution function. Conduction and valence bands Intrinsic Semiconductors In the field of semiconductors electrons and holes are usually referred to as free carriers, or simply carriers, because it is these particles which are responsible for carrying

More information

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY PHYS3080 Solid State Physics

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY PHYS3080 Solid State Physics THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY 006 PHYS3080 Solid State Physics Time Allowed hours Total number of questions - 5 Answer ALL questions All questions are

More information

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 8 Notes

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 8 Notes Overview 1. Electronic Band Diagram Review 2. Spin Review 3. Density of States 4. Fermi-Dirac Distribution 1. Electronic Band Diagram Review Considering 1D crystals with periodic potentials of the form:

More information

The Physics of Semiconductors

The Physics of Semiconductors The Physics of Semiconductors with applications to optoelectronic devices KEVIN F. BRENNAN CAMBRIDGE UNIVERSITY PRESS Contents Preface page xi Chapter1 Basic Concepts in Quantum Mechanics 1.1 Introduction

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Semiconductor Physics and Devices Chapter 3.

Semiconductor Physics and Devices Chapter 3. Introduction to the Quantum Theory of Solids We applied quantum mechanics and Schrödinger s equation to determine the behavior of electrons in a potential. Important findings Semiconductor Physics and

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester.

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. WS 20 Reg. No. : Question Paper Code : 27472 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Civil Engineering PH 6251 ENGINEERING PHYSICS II (Common to all branches except Biotechnology

More information

Physics of Low-Dimensional Semiconductor Structures

Physics of Low-Dimensional Semiconductor Structures Physics of Low-Dimensional Semiconductor Structures Edited by Paul Butcher University of Warwick Coventry, England Norman H. March University of Oxford Oxford, England and Mario P. Tosi Scuola Normale

More information

Condensed Matter Physics 2016 Lecture 13/12: Charge and heat transport.

Condensed Matter Physics 2016 Lecture 13/12: Charge and heat transport. Condensed Matter Physics 2016 Lecture 13/12: Charge and heat transport. 1. Theoretical tool: Boltzmann equation (review). 2. Electrical and thermal conductivity in metals. 3. Ballistic transport and conductance

More information

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar R measurements (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar April 18, 2014 Resistivity Typical resistivity temperature dependence: metals, semiconductors Magnetic scattering Resistivities

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Summary lecture VI. with the reduced mass and the dielectric background constant

Summary lecture VI. with the reduced mass and the dielectric background constant Summary lecture VI Excitonic binding energy reads with the reduced mass and the dielectric background constant Δ Statistical operator (density matrix) characterizes quantum systems in a mixed state and

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Quantum Condensed Matter Physics Lecture 9

Quantum Condensed Matter Physics Lecture 9 Quantum Condensed Matter Physics Lecture 9 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 9.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi

More information

Appendix 1: List of symbols

Appendix 1: List of symbols Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination

More information

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013)

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013) SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013) PART A UNIT-I Conducting Materials 1. What are the classifications

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

NANO/MICROSCALE HEAT TRANSFER

NANO/MICROSCALE HEAT TRANSFER NANO/MICROSCALE HEAT TRANSFER Zhuomin M. Zhang Georgia Institute of Technology Atlanta, Georgia New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore

More information

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples.

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. (a,b) Magneto-transmission ratio spectra T(B)/T(B 0 ) of graphene/h-bn

More information

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Springer Series in Solid-State Sciences 115 Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Bearbeitet von Jagdeep Shah erweitert 1999. Buch. xvi, 522 S. Hardcover ISBN 978 3

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

Quantum Physics & From Ideas to Implementation. Underlying concepts in the syllabus

Quantum Physics & From Ideas to Implementation. Underlying concepts in the syllabus Quantum Physics & From Ideas to Implementation Underlying concepts in the syllabus 1 1 What is Quantum Physics? Wave-particle duality Tells us that energy comes in packets, particles are wave-like. Systems

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar November 12, 2008 Resistivity Typical resistivity temperature

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

Chapter 6 Free Electron Fermi Gas

Chapter 6 Free Electron Fermi Gas Chapter 6 Free Electron Fermi Gas Free electron model: The valence electrons of the constituent atoms become conduction electrons and move about freely through the volume of the metal. The simplest metals

More information

Micro-Syllabus of CSIT Physics

Micro-Syllabus of CSIT Physics Micro-Syllabus of CSIT Physics Garcia Narciso, Damask Arthur, Physics for Computer Science Students, Springer-Verlag Reference Books: (B): Heliday David, Resnick Robert and Walker Gearl, Fundamentals of

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation Session 5: Solid State Physics Charge Mobility Drift Diffusion Recombination-Generation 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Solid-state physics Review of Semiconductor Physics The daunting task of solid state physics Quantum mechanics gives us the fundamental equation The equation is only analytically solvable for a handful

More information

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney Solid State Physics Lecture 10 Band Theory Professor Stephen Sweeney Advanced Technology Institute and Department of Physics University of Surrey, Guildford, GU2 7XH, UK s.sweeney@surrey.ac.uk Recap from

More information

Exciton spectroscopy

Exciton spectroscopy Lehrstuhl Werkstoffe der Elektrotechnik Exciton spectroscopy in wide bandgap semiconductors Lehrstuhl Werkstoffe der Elektrotechnik (WW6), Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen Vortrag

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Sommerfeld-Drude model. Ground state of ideal electron gas

Sommerfeld-Drude model. Ground state of ideal electron gas Sommerfeld-Drude model Recap of Drude model: 1. Treated electrons as free particles moving in a constant potential background. 2. Treated electrons as identical and distinguishable. 3. Applied classical

More information

Introduction to the Electronic Properties of Materials

Introduction to the Electronic Properties of Materials Introduction to the Electronic Properties of Materials David Jiles Ames Laboratory US Department of Energy and Department of Materials Science and Engineering and Department of Electrical and Computer

More information

Physics 622: Quantum Mechanics -- Part II --

Physics 622: Quantum Mechanics -- Part II -- Physics 622: Quantum Mechanics -- Part II -- Instructors Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small Hall (new wing), tel: 1-3532 e-mail: saaubi@wm.edu web: http://www.physics.wm.edu/~saubin/index.html

More information

The electronic structure of solids. Charge transport in solids

The electronic structure of solids. Charge transport in solids The electronic structure of solids We need a picture of the electronic structure of solid that we can use to explain experimental observations and make predictions Why is diamond an insulator? Why is sodium

More information

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals Topology of the Fermi surface wavefunctions and magnetic oscillations in metals A. Alexandradinata L.I. Glazman Yale University arxiv:1707.08586, arxiv:1708.09387 + in preparation Physics Next Workshop

More information

Lecture 8 Interband Transitions. Excitons

Lecture 8 Interband Transitions. Excitons Lecture 8 Interband Transitions Excitons Read: FS 4 Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 8 (2/4/2016) Slide 1 Textbook 1: M. Fox Optical Properties of Solids (2

More information

Dirac fermions in Graphite:

Dirac fermions in Graphite: Igor Lukyanchuk Amiens University, France, Yakov Kopelevich University of Campinas, Brazil Dirac fermions in Graphite: I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, 166402 (2004) - Phys. Rev.

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

8.1 Drift diffusion model

8.1 Drift diffusion model 8.1 Drift diffusion model Advanced theory 1 Basic Semiconductor Equations The fundamentals of semiconductor physic are well described by tools of quantum mechanic. This point of view gives us a model of

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL BASIS

More information

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Effusion The Maxwell-Boltzmann Distribution A Digression on

More information

Conductivity and Semi-Conductors

Conductivity and Semi-Conductors Conductivity and Semi-Conductors J = current density = I/A E = Electric field intensity = V/l where l is the distance between two points Metals: Semiconductors: Many Polymers and Glasses 1 Electrical Conduction

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

In this block the two transport mechanisms will be discussed: diffusion and drift.

In this block the two transport mechanisms will be discussed: diffusion and drift. ET3034TUx - 2.3.3 Transport of charge carriers What are the charge carrier transport principles? In this block the two transport mechanisms will be discussed: diffusion and drift. We will discuss that

More information

Metal-Insulator Transitions

Metal-Insulator Transitions Metal-Insulator Transitions Second Edition N. F. MOTT Emeritus Cavendish Professor of Physics University of Cambridge Taylor & Francis London New York Philadelphia Contents Preface to Second Edition v

More information

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr. Semiconductor Devices and Circuits Fall 2003 Midterm Exam Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Midterm: 1 hour The exam is a closed

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Bahram M. Askerov Sophia R. Figarova Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases With im Figures Springer Contents 1 Basic Concepts of Thermodynamics and Statistical Physics...

More information

Semiconductor Module

Semiconductor Module Semiconductor Module Optics Seminar July 18, 2018 Yosuke Mizuyama, Ph.D. COMSOL, Inc. The COMSOL Product Suite Governing Equations Semiconductor Schrödinger Equation Semiconductor Optoelectronics, FD Semiconductor

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Magnetic field spectrum of the correlated 2D electron system: Electron interactions lead to a range of manifestations 10? = 4? = 2 Resistance (arb.

More information

Bohr s Model, Energy Bands, Electrons and Holes

Bohr s Model, Energy Bands, Electrons and Holes Dual Character of Material Particles Experimental physics before 1900 demonstrated that most of the physical phenomena can be explained by Newton's equation of motion of material particles or bodies and

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS Second Edition B.K. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Preface Introduction 1 Simple Models of the Electron-Phonon Interaction

More information

Photoelectron Spectroscopy

Photoelectron Spectroscopy Stefan Hüfner Photoelectron Spectroscopy Principles and Applications Third Revised and Enlarged Edition With 461 Figures and 28 Tables JSJ Springer ... 1. Introduction and Basic Principles 1 1.1 Historical

More information

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized

More information