Differentiation 9I. 1 a. sin x 0 for 0 x π. So f ( x ) is convex on the interval. [0, π]. f ( x) 6x 6 0 for x 1. So f ( x ) is concave for all x

Size: px
Start display at page:

Download "Differentiation 9I. 1 a. sin x 0 for 0 x π. So f ( x ) is convex on the interval. [0, π]. f ( x) 6x 6 0 for x 1. So f ( x ) is concave for all x"

Transcription

1 Differentiation 9I a f ( ) f ( ) 6 6 f ( ) 6 ii f ( ) is concave when f ( ) sin for π So f ( ) is concave on the interval [, π]. i f ( ) is conve when f ( ) 6 6 for So f ( ) is conve for all or on the interval [, ). f ( ) 7 f ( ) f ( ) ii f ( ) is concave when f ( ) 6 6 for So f ( ) is concave for all or on the interval (,]. 4 f ( ) f ( ) 4 9 f ( ) 8 6 ( ) i f ( ) is conve when f ( ) e i f ( ) is conve when f ( ) So f ( ) is not conve anywhere. ii f ( ) is concave when f ( ) So f ( ) is concave for all or on the interval (, ). f ( ) e f ( ) e f ( ) e 6( ) for or So f ( ) is conve for or, i f ( ) is conve when f ( ) e for In So f ( ) is conve on [ln, ). or on (,],. ii f ( ) is concave when f ( ) ii f ( ) is concave when f ( ) e for In So f ( ) is concave on (, ln ]. 6( ) for So f ( ) is concave for all or on the interval c f ( ) sin f ( ) cos f ( ) sin,. i f ( ) is conve when f ( ) sin for π π So f ( ) is conve on the interval [π, π]. f f ( ) ln, f ( ) f ( ) i f ( ) is conve when f ( ) But for all So f ( ) is not conve anywhere. ii f ( ) is concave when f ( ) for all So f ( ) is concave on (, ). Pearson Eucation Lt 7. Copying permitte for purchasing institution only. This material is not copyright free.

2 a f ( ) arcsin f ( ) ( ) f ( ) ( ) ( ) ( ) On the interval (, ), < f ( ) So f ( ) is concave on the interval (, ). On the interval (, ), > f ( ) So f ( ) is conve on the interval (, ). c f ( ) changes from concave to conve at = When =, y =. point of inflection is (, ). a f ( ) cos sin f ( ) cos sin cos f ( ) (cos sin ) sin ( sin ) sin 4sin sin (sin sin ) At points of inflection f ( ) sin sin (sin )(sin ) sin or π 5π π, or 6 6 Check the sign of f ( ) on either sie of each point: f () ( ) π f ( ) π is an inflection point 6 f(π) ( ) 5π is an inflection point 6 f (π) ( ) π is not an inflection point π y 6 4 5π y 6 4 So the points of inflection are π, 6 4 an 5π, 6 4. Pearson Eucation Lt 7. Copying permitte for purchasing institution only. This material is not copyright free.

3 f ( ) f ( ) ( ) f ( ) ( ) ( ) At points of inflection f ( ) ( ) ( ) Check the sign of f ( ) on either sie of = : f (.5) f (.5) 4 is a point of inflection When, y ( ) So the point of inflection is (, ). c f ( ) 4 f ( ) ( ) ( ) 4 4 f ( ) ( ) ( ) 4 ( ) ( ) At points of inflection f ( ) ( ) ( ) ( ) ( ) ( ) Check the sign of f ( ) on either sie of = : 4 f ( ) 7 4 f () 7 is a point of inflection When, y So the point of inflection is (, ). f ( ) arctan f ( ) f ( ) ( ) At points of inflection f ( ) only when ( ) When, f ( ) When, f ( ) y So the point of inflection is (, ). Pearson Eucation Lt 7. Copying permitte for purchasing institution only. This material is not copyright free.

4 4 5 a f ( ) ln f ( ) 4ln ( ln ) f ( ) ( ln ) 6 4ln At a point of inflection f ( ) 6 4ln ln e So there is one point of inflection, where e y e ( ) e ( ) e ( ) e At stationary points e when an stationary point at (, ) e e e ( ) When, so is neither a maimum nor a minimum point When, When, (, ) is a stationary point of inflection. At points of inflection e ( ) or From part a it is known that = is a stationary point of inflection. When, When, so is a point of inflection y e (,e ) is a non-stationary point of inflection. 6 a y e e e e ( ) At stationary points e ( ) when an e stationary point at, e e e ( ) e ( ) When, e Therefore, is a minimum. e At points of inflection e ( ) c, y e e When, When, so is a point of inflection non-stationary point of inflection at, e 7 i f ( ) is the graient, so it is negative for A zero for B positive for C zero for D Pearson Eucation Lt 7. Copying permitte for purchasing institution only. This material is not copyright free. 4

5 7 ii f ( ) etermines whether the curve is conve, is concave or has a point of inflection. Hence f ( ) is positive for A positive for B negative for C zero for D 8 f ( ) tan 9 a f ( ) sec sin f ( ) sec tan cos At points of inflection f ( ) sin only when sin, cos which has only one solution, =, in π π the interval When, f ( ) When, f ( ) When, f ( ) there is one point of inflection at (, ). 5 y ( ) 5 ( ) ( ) 4 () (8 ) 4 5 ( ) (8 ) 8( ) 4 ( ) (8 ) 8( ) ( ) (9 ) a ( 5) for all, so even though at = 5, the sign of oes not change on either sie of = 5 an hence it is not a point of inflection. 4( 5) when 5 an Stationary point is at (5, ). When 5, When 5, (5, ) is a minimum point. y ln 5 ln ln ln ln C is conve when ln In e At points of inflection () (9) or 9 5 y y 5 Points of inflection are, an, 9 87 Pearson Eucation Lt 7. Copying permitte for purchasing institution only. This material is not copyright free. 5

6 Challenge A general cuic can e written as f ( ) a c a c f ( ) 6a f ( ) f ( ) when Let ; then a f 6a a a 6a 6a f 6a a a 6a 6a The sign of f ( ) changes either sie of, so this is the single point of a inflection. a 4 y a c e 4a c a 6 c a 6 c As this is a quaratic equation, there are at most two values of for which. So there are at most two points of inflection. If the iscriminant of a quaratic is less than zero, there are no real solutions. Discriminant (6 ) 4ac 6 96 ac ( 8 ac) If 8ac then iscriminant < an so there are no solutions to. Therefore if 8 ac, then C has no points of inflection. Pearson Eucation Lt 7. Copying permitte for purchasing institution only. This material is not copyright free. 6

Hyperbolic Functions 6D

Hyperbolic Functions 6D Hyperbolic Functions 6D a (sinh cosh b (cosh 5 5sinh 5 c (tanh sech (sinh cosh e f (coth cosech (sech sinh (cosh sinh cosh cosh tanh sech g (e sinh e sinh e + cosh e (cosh sinh h ( cosh cosh + sinh sinh

More information

2 4 Substituting 2 into gives 2(2) 4. + x + x +...= + + x ! 4! Substituting x= 0 and =1 into (1 + x ) + x = 0, gives 0

2 4 Substituting 2 into gives 2(2) 4. + x + x +...= + + x ! 4! Substituting x= 0 and =1 into (1 + x ) + x = 0, gives 0 Talor Series 6C 1 Differentiating = +, with respect to, gives = 1+ (1) Differentiating (1) gives = () =, = 1 into = +, gives = + (1), so = 1 1 = into (1) gives =1+ = into gives () = () = = Sousing the

More information

( 2) ( ) Hyperbolic Functions 6E. cosh d (cosh sech ) d sinh tanh. cosh. x x x x x x C. x 1 x. 2 a. x x x = + = + cosh dx sinh C 3sinh C.

( 2) ( ) Hyperbolic Functions 6E. cosh d (cosh sech ) d sinh tanh. cosh. x x x x x x C. x 1 x. 2 a. x x x = + = + cosh dx sinh C 3sinh C. Hyperolic Functions 6E a (sinh+ cosh ) cosh+ sinh+ + cosh cosh (cosh sech ) sinh tanh sinh sinh sechtanh sech+ cosh cosh cosh c a a sinh cosh+ cosh sinh sinh + + ( ) + + ( ) ( ) ( ) ( ) arcosh + ( ) +

More information

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so: Taylor Series 6B a We can evaluate the it directly since there are no singularities: 7+ 7+ 7 5 5 5 b Again, there are no singularities, so: + + c Here we should divide through by in the numerator and denominator

More information

The stationary points will be the solutions of quadratic equation x

The stationary points will be the solutions of quadratic equation x Calculus 1 171 Review In Problems (1) (4) consider the function f ( ) ( ) e. 1. Find the critical (stationary) points; establish their character (relative minimum, relative maimum, or neither); find intervals

More information

Math 121 Winter 2010 Review Sheet

Math 121 Winter 2010 Review Sheet Math 121 Winter 2010 Review Sheet March 14, 2010 This review sheet contains a number of problems covering the material that we went over after the third midterm exam. These problems (in conjunction with

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Trigonometric Functions Mixed Exercise

Trigonometric Functions Mixed Exercise Trigonometric Functions Mied Eercise tan = cot, -80 90 Þ tan = tan Þ tan = Þ tan = ± Calculator value for tan = + is 54.7 ( d.p.) 4 a i cosecq = cotq, 0

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

Math Honors Calculus I Final Examination, Fall Semester, 2013

Math Honors Calculus I Final Examination, Fall Semester, 2013 Math 2 - Honors Calculus I Final Eamination, Fall Semester, 2 Time Allowed: 2.5 Hours Total Marks:. (2 Marks) Find the following: ( (a) 2 ) sin 2. (b) + (ln 2)/(+ln ). (c) The 2-th Taylor polynomial centered

More information

Review exercise

Review exercise Review eercise y cos sin When : 8 y and 8 gradient of normal is 8 y When : 9 y and 8 Equation of normal is y 8 8 y8 8 8 8y 8 8 8 8y 8 8 8 8y 8 8 8 y e ln( ) e ln e When : y e ln and e Equation of tangent

More information

Trigonometry and modelling 7E

Trigonometry and modelling 7E Trigonometry and modelling 7E sinq +cosq º sinq cosa + cosq sina Comparing sin : cos Comparing cos : sin Divide the equations: sin tan cos Square and add the equations: cos sin (cos sin ) since cos sin

More information

Math 1431 Final Exam Review. 1. Find the following limits (if they exist): lim. lim. lim. lim. sin. lim. cos. lim. lim. lim. n n.

Math 1431 Final Exam Review. 1. Find the following limits (if they exist): lim. lim. lim. lim. sin. lim. cos. lim. lim. lim. n n. . Find the following its (if they eist: sin 7 a. 0 9 5 b. 0 tan( 8 c. 4 d. e. f. sin h0 h h cos h0 h h Math 4 Final Eam Review g. h. i. j. k. cos 0 n nn e 0 n arctan( 0 4 l. 0 sin(4 m. cot 0 = n. = o.

More information

Methods in differential equations mixed exercise 7

Methods in differential equations mixed exercise 7 Methos in ifferential equations mie eercise 7 tan lnsec The integrating factor is e = e = sec Multiplying the equation by this factor gives: sec + ysectan= sec ( sec sec y = y sec= sec = tan+ c y= sin+

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

Work the following on notebook paper. No calculator. Find the derivative. Do not leave negative exponents or complex fractions in your answers.

Work the following on notebook paper. No calculator. Find the derivative. Do not leave negative exponents or complex fractions in your answers. ALULUS B WORKSHEET ON 8. & REVIEW Find the derivative. Do not leave negative eponents or comple fractions in your answers. sec. f 8 7. f e. y ln tan. y cos tan. f 7. f cos. y 7 8. y log 7 Evaluate the

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) =

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) = 85. f() = 4 ( - 6) 2 f'() = 4 (2)( - 6)(1) + ( - 6) 2 (4 3 ) = 2 3 ( - 6)[ + 2( - 6)] = 2 3 ( - 6)(3-12) = 6 3 ( - 4)( - 6) Thus, the critical values are = 0, = 4, and = 6. Now we construct the sign chart

More information

AP Calculus BC Summer Review

AP Calculus BC Summer Review AP Calculus BC 07-08 Summer Review Due September, 07 Name: All students entering AP Calculus BC are epected to be proficient in Pre-Calculus skills. To enhance your chances for success in this class, it

More information

Written Homework 7 Solutions

Written Homework 7 Solutions Written Homework 7 Solutions Section 4.3 20. Find the local maxima and minima using the First and Second Derivative tests: Solution: First start by finding the first derivative. f (x) = x2 x 1 f (x) =

More information

Summer Assignment for AP Calculus AB

Summer Assignment for AP Calculus AB This assignment is a review of Pre-calculus and Algebraic concepts that you need to be familiar with in order to make a smooth transition into AP Calculus AB. It will be due when you return to school on

More information

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2. ) Solve the following inequalities.) ++.) 4 >.) Calculus - Lab { + > + 5 + < +. ) Graph the functions f() =, g() = + +, h() = cos( ), r() = +. ) Find the domain of the following functions.) f() = +.) f()

More information

x π. Determine all open interval(s) on which f is decreasing

x π. Determine all open interval(s) on which f is decreasing Calculus Maimus Increasing, Decreasing, and st Derivative Test Show all work. No calculator unless otherwise stated. Multiple Choice = /5 + _ /5 over. Determine the increasing and decreasing open intervals

More information

Solutions to Test 2 Spring = y+x dy dx +0 = ex+y x+y dy. e x = dy dx (ex+y x) = y e x+y. dx = y ex+y e x+y x

Solutions to Test 2 Spring = y+x dy dx +0 = ex+y x+y dy. e x = dy dx (ex+y x) = y e x+y. dx = y ex+y e x+y x 12pt 1 Consider the equation e +y = y +10 Solutions to Test 2 Spring 2018 (a) Use implicit differentiation to find dy d d d (e+y ) = d ( (y+10) e+y 1+ dy ) d d = y+ dy d +0 = e+y +y dy +e d = y+ dy d +y

More information

Proof by induction ME 8

Proof by induction ME 8 Proof by induction ME 8 n Let f ( n) 9, where n. f () 9 8, which is divisible by 8. f ( n) is divisible by 8 when n =. Assume that for n =, f ( ) 9 is divisible by 8 for. f ( ) 9 9.9 9(9 ) f ( ) f ( )

More information

Section 4.1. Math 150 HW 4.1 Solutions C. Panza

Section 4.1. Math 150 HW 4.1 Solutions C. Panza Math 50 HW 4. Solutions C. Panza Section 4. Eercise 0. Use Eq. ( to estimate f. Use a calculator to compute both the error and the percentage error. 0. f( =, a = 5, = 0.4 Estimate f: f ( = 4 f (5 = 9 f

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

cos 5x dx e dt dx 20. CALCULUS AB WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND REVIEW Work the following on notebook paper. No calculator.

cos 5x dx e dt dx 20. CALCULUS AB WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND REVIEW Work the following on notebook paper. No calculator. WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND REVIEW Work the following on notebook paper. No calculator. Find the derivative. Do not leave negative eponents or comple fractions in our answers. 4. 8 4 f

More information

Chapter 5 Review. 1. [No Calculator] Evaluate using the FTOC (the evaluation part) 2. [No Calculator] Evaluate using geometry

Chapter 5 Review. 1. [No Calculator] Evaluate using the FTOC (the evaluation part) 2. [No Calculator] Evaluate using geometry AP Calculus Chapter Review Name: Block:. [No Calculator] Evaluate using the FTOC (the evaluation part) a) 7 8 4 7 d b) 9 4 7 d. [No Calculator] Evaluate using geometry a) d c) 6 8 d. [No Calculator] Evaluate

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

THE INVERSE TRIGONOMETRIC FUNCTIONS

THE INVERSE TRIGONOMETRIC FUNCTIONS THE INVERSE TRIGONOMETRIC FUNCTIONS Question 1 (**+) Solve the following trigonometric equation ( x ) π + 3arccos + 1 = 0. 1 x = Question (***) It is given that arcsin x = arccos y. Show, by a clear method,

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Math 111 Calculus I - SECTIONS A and B SAMPLE FINAL EXAMINATION Thursday, May 3rd, POSSIBLE POINTS

Math 111 Calculus I - SECTIONS A and B SAMPLE FINAL EXAMINATION Thursday, May 3rd, POSSIBLE POINTS Math Calculus I - SECTIONS A and B SAMPLE FINAL EXAMINATION Thursday, May 3rd, 0 00 POSSIBLE POINTS DISCLAIMER: This sample eam is a study tool designed to assist you in preparing for the final eamination

More information

Differential Calculus

Differential Calculus Differential Calculus. Compute the derivatives of the following functions a() = 4 3 7 + 4 + 5 b() = 3 + + c() = 3 + d() = sin cos e() = sin f() = log g() = tan h() = 3 6e 5 4 i() = + tan 3 j() = e k()

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

Differentiation 9F. tan 3x. Using the result. The first term is a product with. 3sec 3. 2 x and sec x. Using the product rule for the first term: then

Differentiation 9F. tan 3x. Using the result. The first term is a product with. 3sec 3. 2 x and sec x. Using the product rule for the first term: then Differentiation 9F a tan Using the reslt tan k k sec k sec 4tan Let tan ; then 4 sec and sec tan sec d tan tan The first term is a proct with and v tan and sec Using the proct rle for the first term: sec

More information

AP Calculus Prep Session Handout. Integral Defined Functions

AP Calculus Prep Session Handout. Integral Defined Functions AP Calculus Prep Session Handout A continuous, differentiable function can be epressed as a definite integral if it is difficult or impossible to determine the antiderivative of a function using known

More information

e k 5 = e 5k = 700. e 5k = k = ln k = ln 7. Assembling this value of k into our equation, we find that

e k 5 = e 5k = 700. e 5k = k = ln k = ln 7. Assembling this value of k into our equation, we find that 1. (15 points) A bar of iron which has been heated to 14 F is taken from the furnace into a 1 F metalworking studio. After 5 minutes it has cooled to 8 F. (a) (5 points) Construct a function T (t) modeling

More information

AP CALCULUS BC - FIRST SEMESTER EXAM REVIEW: Complete this review for five extra percentage points on the semester exam.

AP CALCULUS BC - FIRST SEMESTER EXAM REVIEW: Complete this review for five extra percentage points on the semester exam. AP CALCULUS BC - FIRST SEMESTER EXAM REVIEW: Complete this review for five etra percentage points on the semester eam. *Even though the eam will have a calculator active portion with 0 of the 8 questions,

More information

2 nd ORDER O.D.E.s SUBSTITUTIONS

2 nd ORDER O.D.E.s SUBSTITUTIONS nd ORDER O.D.E.s SUBSTITUTIONS Question 1 (***+) d y y 8y + 16y = d d d, y 0, Find the general solution of the above differential equation by using the transformation equation t = y. Give the answer in

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

Maximum and Minimum Values

Maximum and Minimum Values Maimum and Minimum Values y Maimum Minimum MATH 80 Lecture 4 of 6 Definitions: A function f has an absolute maimum at c if f ( c) f ( ) for all in D, where D is the domain of f. The number f (c) is called

More information

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = =

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = = Review Eercise a Use m m a a, so a a a Use c c 6 5 ( a ) 5 a First find Use a 5 m n m n m a m ( a ) or ( a) 5 5 65 m n m a n m a m a a n m or m n (Use a a a ) cancelling y 6 ecause n n ( 5) ( 5)( 5) (

More information

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist.

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist. . The asymptotes of the graph of the parametric equations = t, y = t t + are A) =, y = B) = only C) =, y = D) = only E) =, y =. What are the coordinates of the inflection point on the graph of y = ( +

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Math 1500 Fall 2010 Final Exam Review Solutions

Math 1500 Fall 2010 Final Exam Review Solutions Math 500 Fall 00 Final Eam Review Solutions. Verify that the function f() = 4 + on the interval [, 5] satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that

More information

Math Midterm Solutions

Math Midterm Solutions Math 50 - Midterm Solutions November 4, 009. a) If f ) > 0 for all in a, b), then the graph of f is concave upward on a, b). If f ) < 0 for all in a, b), then the graph of f is downward on a, b). This

More information

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1 1 w z k k States or implies that 4 i TBC Uses the definition of argument to write 4 k π tan 1 k 4 Makes an attempt to solve for k, for example 4 + k = k is seen. M1.a Finds k = 6 (4 marks) Pearson Education

More information

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M 3 p p 4 p 4 p 6 1 Completes the square to show p 4 p 6 p M1.a Concludes that (p + ) + > 0 for all values

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 9 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

AP Calculus BC Fall Final Part IA. Calculator NOT Allowed. Name:

AP Calculus BC Fall Final Part IA. Calculator NOT Allowed. Name: AP Calculus BC 18-19 Fall Final Part IA Calculator NOT Allowed Name: 3π cos + h 1. lim cos 3π h 0 = h 1 (a) 1 (b) (c) 0 (d) -1 (e) DNE dy. At which of the five points on the graph in the figure below are

More information

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu Math Spring 8: Solutions: HW #3 Instructor: Fei Xu. section 7., #8 Evaluate + 3 d. + We ll solve using partial fractions. If we assume 3 A + B + C, clearing denominators gives us A A + B B + C +. Then

More information

Part 1: Integration problems from exams

Part 1: Integration problems from exams . Find each of the following. ( (a) 4t 4 t + t + (a ) (b ) Part : Integration problems from 4-5 eams ) ( sec tan sin + + e e ). (a) Let f() = e. On the graph of f pictured below, draw the approimating

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

f(x) p(x) =p(b)... d. A function can have two different horizontal asymptotes...

f(x) p(x) =p(b)... d. A function can have two different horizontal asymptotes... Math Final Eam, Fall. ( ts.) Mark each statement as either true [T] or false [F]. f() a. If lim f() =and lim g() =, then lim does not eist......................!5!5!5 g() b. If is a olynomial, then lim!b

More information

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44 Math B Prof. Audrey Terras HW #4 Solutions Due Tuesday, Oct. 9 Section 7.4 #, 5, 6, 8,, 3, 44, 53; Section 7.5 #7,,,, ; Section 7.7 #, 4,, 5,, 44 7.4. Since 5 = 5 )5 + ), start with So, 5 = A 5 + B 5 +.

More information

Trigonometric Functions 6C

Trigonometric Functions 6C Trigonometric Functions 6C a b c d e sin 3 q æ ö ø 4 tan 6 q 4 æ ö tanq ø cos q æ ö ø 3 cosec 3 q - sin q sin q cos q sin q (using sin q + cos q ) So - sin q sin q æ ö ø 6 4cot 6 q sec q cot q secq cos

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATEMATICS AND STATISTICS Worksheet MAT 000 Fall 203 SOLUTIONS (a) First we find any vertical asymptotes We set ( ) 3 = 0 so = Note that the numerator

More information

Maximum and Minimum Values - 3.3

Maximum and Minimum Values - 3.3 Maimum and Minimum Values - 3.3. Critical Numbers Definition A point c in the domain of f is called a critical number offiff c or f c is not defined. Eample a. The graph of f is given below. Find all possible

More information

Solution: As x approaches 3, (x 2) approaches 1, so ln(x 2) approaches ln(1) = 0. Therefore we have a limit of the form 0/0 and can apply the.

Solution: As x approaches 3, (x 2) approaches 1, so ln(x 2) approaches ln(1) = 0. Therefore we have a limit of the form 0/0 and can apply the. MATH, solutions to practice problems for the final eam. Compute the it: a) 3 e / Answer: e /3. b) 3 ln( 3) Answer:. c) 3 ln( ) 3 Solution: As approaches 3, ( ) approaches, so ln( ) approaches ln() =. Therefore

More information

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS d d d d t dt 6 cos t dt Second Fundamental Theorem of Calculus: d f tdt d a d d 4 t dt d d a f t dt d d 6 cos t dt Second Fundamental

More information

Test Your Strength AB Calculus: Section A 35 questions No calculator allowed. A. 0 B. 1 C. 2 D. nonexistent. . Which of the following

Test Your Strength AB Calculus: Section A 35 questions No calculator allowed. A. 0 B. 1 C. 2 D. nonexistent. . Which of the following Test Your Strength AB Calculus: Section A 35 questions No calculator allowed Directions: Use the answer sheet to input your answers. Caps or lower case are OK. If you need to guess, put an X in the guess

More information

(a) During what time intervals on [0, 4] is the particle traveling to the left?

(a) During what time intervals on [0, 4] is the particle traveling to the left? Chapter 5. (AB/BC, calculator) A particle travels along the -ais for times 0 t 4. The velocity of the particle is given by 5 () sin. At time t = 0, the particle is units to the right of the origin. t /

More information

y. ( sincos ) (sin ) (cos ) + (cos ) (sin ) sin + cos cos. 5. 6.. y + ( )( ) ( + )( ) ( ) ( ) s [( t )( t + )] t t [ t ] t t s t + t t t ( t )( t) ( t + )( t) ( t ) t ( t ) y + + / / ( + + ) / / /....

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous.

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous. Multiple Choice. Circle the best answer. No work needed. No partial credit available. + +. Evaluate lim + (a (b (c (d 0 (e None of the above.. Evaluate lim (a (b (c (d 0 (e + + None of the above.. Find

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

du u C sec( u) tan u du secu C e du e C a u a a Trigonometric Functions: Basic Integration du ln u u Helpful to Know:

du u C sec( u) tan u du secu C e du e C a u a a Trigonometric Functions: Basic Integration du ln u u Helpful to Know: Integration Techniques for AB Eam Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

AP Calculus AB/BC ilearnmath.net

AP Calculus AB/BC ilearnmath.net CALCULUS AB AP CHAPTER 1 TEST Don t write on the test materials. Put all answers on a separate sheet of paper. Numbers 1-8: Calculator, 5 minutes. Choose the letter that best completes the statement or

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION 8 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems. After eamining the form

More information

lim 2 x lim lim sin 3 (9) l)

lim 2 x lim lim sin 3 (9) l) MAC FINAL EXAM REVIEW. Find each of the following its if it eists, a) ( 5). (7) b). c). ( 5 ) d). () (/) e) (/) f) (-) sin g) () h) 5 5 5. DNE i) (/) j) (-/) 7 8 k) m) ( ) (9) l) n) sin sin( ) 7 o) DNE

More information

Investigation 2 (Calculator): f(x) = 2sin(0.5x)

Investigation 2 (Calculator): f(x) = 2sin(0.5x) Section 3.3 Increasing/Decreasing & The 1 st Derivative Test Day 1 Investigation 1 (Calculator): f(x) = x 2 3x + 4 State all extremes on [0, 5]: Original graph: Global min(s): Global max(s): Local min(s):

More information

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator Math Test - Review Use differentials to approximate the following. Compare your answer to that of a calculator.. 99.. 8. 6. Consider the graph of the equation f(x) = x x a. Find f (x) and f (x). b. Find

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

CALCULUS OPTIONAL SUMMER WORK

CALCULUS OPTIONAL SUMMER WORK NAME JUNE 016 CALCULUS OPTIONAL SUMMER WORK PART I - NO CALCULATOR I. COORDINATE GEOMETRY 1) Identify the indicated quantities for -8x + 15y = 0. x-int y-int slope ) A line has a slope of 5/7 and contains

More information

Example 1. What are the critical points of f x 1 x x, 0 x? The maximal domain of f is 0 x and we find that

Example 1. What are the critical points of f x 1 x x, 0 x? The maximal domain of f is 0 x and we find that 6. Local Etrema of Functions We continue on our quest to etract as much information as possible about a function. The more information we gather, the better we can sketch the graph of the function. This

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

MATHEMATICS C1-C4 and FP1-FP3

MATHEMATICS C1-C4 and FP1-FP3 MS WELSH JOINT EDUCATION COMMITTEE. CYD-BWYLLGOR ADDYSG CYMRU General Certificate of Eucation Avance Subsiiary/Avance Tystysgrif Aysg Gyffreinol Uwch Gyfrannol/Uwch MARKING SCHEMES SUMMER 6 MATHEMATICS

More information

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER Work the following on notebook paper ecept for the graphs. Do not use our calculator unless the problem tells ou to use it. Give three decimal places

More information

WeBWorK demonstration assignment

WeBWorK demonstration assignment WeBWorK demonstration assignment.( pt) Match the statements defined below with the letters labeling their equivalent expressions. You must get all of the answers correct to receive credit.. x is less than

More information

MA 113 Calculus I Fall 2015 Exam 3 Tuesday, 17 November Multiple Choice Answers. Question

MA 113 Calculus I Fall 2015 Exam 3 Tuesday, 17 November Multiple Choice Answers. Question MA 11 Calculus I Fall 2015 Exam Tuesday, 17 November 2015 Name: Section: Last 4 digits of student ID #: This exam has ten multiple choice questions (five points each) and five free response questions (ten

More information

Calculus I Practice Final Exam B

Calculus I Practice Final Exam B Calculus I Practice Final Exam B This practice exam emphasizes conceptual connections and understanding to a greater degree than the exams that are usually administered in introductory single-variable

More information

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 This is a set of practice test problems for Chapter 4. This is in no way an inclusive set of problems there can be other types of problems

More information

MIDTERM 2. Section: Signature:

MIDTERM 2. Section: Signature: MIDTERM 2 Math 3A 11/17/2010 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. When you use a major theorem (like

More information

Sample Final Exam 4 MATH 1110 CALCULUS I FOR ENGINEERS

Sample Final Exam 4 MATH 1110 CALCULUS I FOR ENGINEERS Dept. of Math. Sciences, UAEU Sample Final Eam Fall 006 Sample Final Eam MATH 0 CALCULUS I FOR ENGINEERS Section I: Multiple Choice Problems [0% of Total Final Mark, distributed equally] No partial credit

More information

AP Calculus AB Semester 2 Practice Final

AP Calculus AB Semester 2 Practice Final lass: ate: I: P alculus Semester Practice Final Multiple hoice Identify the choice that best completes the statement or answers the question. Find the constants a and b such that the function f( x) = Ï

More information

AP Calculus 2004 AB FRQ Solutions

AP Calculus 2004 AB FRQ Solutions AP Calculus 4 AB FRQ Solutions Louis A. Talman, Ph. D. Emeritus Professor of Mathematics Metropolitan State University of Denver July, 7 Problem. Part a The function F (t) = 8 + 4 sin(t/) gives the rate,

More information