Trigonometry and modelling 7E

Size: px
Start display at page:

Download "Trigonometry and modelling 7E"

Transcription

1 Trigonometry and modelling 7E sinq +cosq º sinq cosa + cosq sina Comparing sin : cos Comparing cos : sin Divide the equations: sin tan cos Square and add the equations: cos sin (cos sin ) since cos sin sinq + 6 cosq cos cos sin sin Comparing sin : sin () Comparing cos : 6 cos () Divide () by () : tan 6 So. ( d.p.) sinq - cosq cos cos sin sin Comparing sin : sin () Comparing cos : cos () Divide () by () : tan So 4.8 ( d.p.) 4 a Let cosq - sinq º cos(q +a) cos cos sin sin Compare cos : cos () Compare sin : sin () Divide () by () : tan π Square and add : 4 π So cos sin cos b This is the graph of y = cosq, translated by to the left and then stretched in the π y direction by scale factor. Meets y-ais at (0, ) π 7π Meets -ais at,0,,0 6 6 a Let 7cosq - 4sinq º cos(q +a) cos cos sin sin Compare cos : cos 7 () Compare sin : sin 4 () Divide () by () : tan 7.7 ( d.p.) 4 7 Square and add: 4 7 So 7 cos 4sin cos( 7.7 ) b Graph meets y-ais where q = 0, i.e. y = 7cos0-4sin0 = 7 so coordinates are (0, 7) c Maimum value of cos(q ) is when cos(q ) = So maimum is Minimum value is (-) = - Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free.

2 d i The line y = will meet the graph twice in 0 60, so there are solutions. ii As the maimum value is it can never be 6, so there are 0 solutions. iii As - is a minimum, line y = - only meets curve once, so only solution. 6 a Let sin cos sin sin cos cos sin Comparing sin : cos () Comparing cos : sin () Divide () by () sin tan cos So 7.6 ( d.p.) cos sin (cos sin ) 0 0 0, 7.6 ( d.p.) b Use the value of to d.p. in calculating values of to avoid rounding errors 0 sin( 7.6 ) sin( 7.6 ) 0 sin 9. ( d.p.) 0 As 0 60, the interval for 7.6 is So , and , , 7.7 ( d.p.) 7 a Set cos sin cos( ) cos sin cos cos sin sin Comparing sin : sin () Comparing cos : cos () Divide () by () sin tan cos So.07 ( d.p.) cos sin (cos sin ) So cos sin cos(.07) b cos(.07).. cos(.07). cos.06 ( d.p.) As 0 π, the interval for.07 is π.07 So.07.06, π , ,.44 ( d.p.) Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free.

3 8 a Write 6sin +8cos in the form sin( ), where 0, 0 90 So 6sin 8cos sin cos cos sin Compare sin : cos 6 () Compare cos : sin 8 () 4 Divide () by (): tan. ( d.p.) So 6sin 8cos 0sin(. ) Solve 0sin(. ), in the interval 0 60 so sin(. ). 60, 0 6.9, 66.9 ( d.p.) b Let cosq - sinq º cos(q +a) cos cos sin sin Compare cos : cos () Compare sin : sin () Divide () by () : tan 6. ( d.p.) Solve cos( 6. ), in the interval 0 90 so cos( 6. ) for c Let 8cosq +sinq º cos(q -a) sin cos cos sin Compare cos : cos 8 () Compare sin : sin () Divide () by () : tan ( d.p.) 8 7 Solve 7 cos( 6.9 ) 0, in the interval So cos 6.9, cos 0.97 ( d.p.) 7 So , ,.9 ( d.p.) , , , 6.9 ( d.p.) Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free.

4 8 d Let sin cos sin sin cos cos sin Compare sin : cos () Compare cos : sin () Divide () by () : tan 67.8 ( d.p.) Solve sin , in the interval So sin 67.8, From quadrant diagram: , 0 8.6, , 74.8 ( d.p.) 9 a Set sin 4cos sin( ) sin 4cos sin cos cos sin Compare sin : cos () Compare cos : sin 4 () 4 Divide () by () : tan. ( d.p.) 4 So sin 4cos sin(. ) b The minimum value of sin 4cos is. This occurs when sin(. ) ( d.p.) c sin(. ), in the interval 0 80 So sin(. ), in the interval ,68.46, 7.4.6,7.9,4.6 ( d.p.) - cosq 0 a As sin q = and cos cos So sin cos 6sin cos cos cos (sincos ) cos cos sin 4cos sin Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free. 4

5 0 b Write sinq - 4cosq in the form sin( ) The maimum value of sin( ) is The minimum value of sin( ) is You know that 4 so So maimum value of 4cos sin is 6 and minimum value of 4cos sin is 4 c 4cos sin sin 4cos Write sinq - 4cosq in the form sin( ) So sin( ) sin(. ) (By solving in same way as Question 9, part a) Look for solutions in the interval , ,8.4 ( d.p.) a Let cosq + sinq º cos(q -a) cos cos sin sin Compare cos : cos () Compare sin : sin () Divide () by (): tan 8.4 ( d.p.) Solve 0 cos( 8.4 ), in the interval 0 60 cos( 8.4 ) , , 7.7 ( d.p.) b Squaring cosq = - sinq gives 9cos q = 4 + sin q - 4sinq Þ 9(- sin q) = 4 + sin q - 4sinq Þ 0sin q - 4sinq - = 0 c 0sin q - 4sinq - = sin For sin, sin is positive, 0 so is in the first and second quadrants. 69., , 0.8 ( d.p.) 4 6 For sin, sin is negative, 0 so is in the third and fourth quadrants. 80 (. ), 60 (. )., 7.7 ( d.p.) So solutions of quadratic in (b) are 69., 0.8,., 7.7 ( d.p.) d In squaring the equation, you are also including the solutions to cosq = -( - sinq), which when squared produces the same quadratic. The etra two solutions satisfy this equation. Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free.

6 a cot cosec cos sin sin Multiplying both sides by sin gives cossin b cossin Set sin cos sin( ) sin cos cos sin So cos and sin sin tan cos tan 6.7 ( d.p.) So sin( 6.7) sin( 6.7), in the interval ,.4 0,6.9 ( d.p.) As both cot and cosec are undefined at 0, 6.9 is the only solution. a cos sin 4 coscos sinsin 4 4 sin sin cos sin sin sin cos sin sin sin cos sin b cos sin Set sin cos sin( ) sin cos cos sin So cos and sin sin tan cos tan π 6 4 π sin 6 π sin, in the interval 6 π π π a Set 9cos 40sin cos( ) cos cos sin sin b i So cos 9 and sin 40 sin 40 tan cos 9 40 tan 9 So 77.0 ( d.p.) cos sin 40 9 (cos sin ) 68 4 So 9cos 40sin 4cos( 77.0 ) 8 g( ) 0 4cos( 77.0 ) The minimum value of g( ) is when cos( 77.0 ) 8 8 So the minimum value is Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free. 6

7 4 b ii The minimum occurs when cos( 77.0 ) a Set cos sin cos( ) cos cos sin sin So cos and sin sin tan cos tan So.6 ( d.p.) cos sin (cos sin ) 69 b cos(.6 ) cos(.6 ), in the interval , , 08.7 ( d.p.) c d 4cos 0sin cos cos 4 sin cos sin a =, b = and c = 4cos 0sin cos cos sin From part (a) cos sin cos(.6 ) The minimum value is therefore when cos(.60 ) It is ( ) Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free. 7

Trigonometric Functions Mixed Exercise

Trigonometric Functions Mixed Exercise Trigonometric Functions Mied Eercise tan = cot, -80 90 Þ tan = tan Þ tan = Þ tan = ± Calculator value for tan = + is 54.7 ( d.p.) 4 a i cosecq = cotq, 0

More information

h (1- sin 2 q)(1+ tan 2 q) j sec 4 q - 2sec 2 q tan 2 q + tan 4 q 2 cosec x =

h (1- sin 2 q)(1+ tan 2 q) j sec 4 q - 2sec 2 q tan 2 q + tan 4 q 2 cosec x = Trigonometric Functions 6D a Use + tan q sec q with q replaced with q + tan q ( ) sec ( q ) b (secq -)(secq +) sec q - (+ tan q) - tan q c tan q(cosec q -) ( ) tan q (+ cot q) - tan q cot q tan q d (sec

More information

Trigonometric Functions 6C

Trigonometric Functions 6C Trigonometric Functions 6C a b c d e sin 3 q æ ö ø 4 tan 6 q 4 æ ö tanq ø cos q æ ö ø 3 cosec 3 q - sin q sin q cos q sin q (using sin q + cos q ) So - sin q sin q æ ö ø 6 4cot 6 q sec q cot q secq cos

More information

Review Exercise 2. , æ. ç ø. ç ø. ç ø. ç ø. = -0.27, 0 x 2p. 1 Crosses y-axis when x = 0 at sin 3p 4 = 1 2. ö ø. æ Crosses x-axis when sin x + 3p è

Review Exercise 2. , æ. ç ø. ç ø. ç ø. ç ø. = -0.27, 0 x 2p. 1 Crosses y-axis when x = 0 at sin 3p 4 = 1 2. ö ø. æ Crosses x-axis when sin x + 3p è Review Exercise 1 Crosses y-axis when x 0 at sin p 4 1 Crosses x-axis when sin x + p 4 ö 0 x + p 4 -p, 0, p, p x - 7p 4, - p 4, p 4, 5p 4 So coordinates are 0, 1 ö, - 7p 4,0 ö, - p 4,0 ö, p 4,0 ö, 5p 4,0

More information

a 2 = 5 Þ 2cos y + sin y = Þ 2cos y = sin y 5-1 Þ tan y = 3 a

a 2 = 5 Þ 2cos y + sin y = Þ 2cos y = sin y 5-1 Þ tan y = 3 a Trigonometry and Modelling Mixed Exercise a i ii sin40 cos0 - cos40 sin0 sin(40-0 ) sin0 cos - sin cos 4 cos - sin 4 sin As cos(x - y) sin y cos xcos y + sin xsin y sin y () Draw a right-angled triangle,

More information

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = =

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = = Review Eercise a Use m m a a, so a a a Use c c 6 5 ( a ) 5 a First find Use a 5 m n m n m a m ( a ) or ( a) 5 5 65 m n m a n m a m a a n m or m n (Use a a a ) cancelling y 6 ecause n n ( 5) ( 5)( 5) (

More information

Q Scheme Marks AOs Pearson Progression Step and Progress descriptor. and sin or x 6 16x 6 or x o.e

Q Scheme Marks AOs Pearson Progression Step and Progress descriptor. and sin or x 6 16x 6 or x o.e 1a A 45 seen or implied in later working. B1 1.1b 5th Makes an attempt to use the sine rule, for example, writing sin10 sin 45 8x3 4x1 States or implies that sin10 3 and sin 45 A1 1. Solve problems involving

More information

( ) Trigonometric identities and equations, Mixed exercise 10

( ) Trigonometric identities and equations, Mixed exercise 10 Trigonometric identities and equations, Mixed exercise 0 a is in the third quadrant, so cos is ve. The angle made with the horizontal is. So cos cos a cos 0 0 b sin sin ( 80 + 4) sin 4 b is in the fourth

More information

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2)

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2) Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. (a) Using the identity cos (A + B) º cos A cos B sin A sin B, rove that cos A º sin A. () (b) Show that sin q 3 cos q 3

More information

7.1 Right Triangle Trigonometry; Applications Objectives

7.1 Right Triangle Trigonometry; Applications Objectives Objectives 1. Find the Value of Trigonometric Functions of Acute Angles Using Right Triangles. Use the Complimentary Angle Theorem 3. Solve Right Triangles 4. Solve Applied Problems 9 November 017 1 Kidoguchi,

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

Proof by induction ME 8

Proof by induction ME 8 Proof by induction ME 8 n Let f ( n) 9, where n. f () 9 8, which is divisible by 8. f ( n) is divisible by 8 when n =. Assume that for n =, f ( ) 9 is divisible by 8 for. f ( ) 9 9.9 9(9 ) f ( ) f ( )

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios 9E. b Using the line of symmetry through A. 1 a. cos 48 = 14.6 So y = 29.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios 9E. b Using the line of symmetry through A. 1 a. cos 48 = 14.6 So y = 29. Trigonometric ratios 9E a b Using the line of symmetry through A y cos.6 So y 9. cos 9. s.f. Using sin x sin 6..7.sin 6 sin x.7.sin 6 x sin.7 7.6 x 7.7 s.f. So y 0 6+ 7.7 6. y 6. s.f. b a Using sin sin

More information

Review exercise

Review exercise Review eercise y cos sin When : 8 y and 8 gradient of normal is 8 y When : 9 y and 8 Equation of normal is y 8 8 y8 8 8 8y 8 8 8 8y 8 8 8 8y 8 8 8 y e ln( ) e ln e When : y e ln and e Equation of tangent

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 . CONCEPTS & FORMULAS. INTRODUCTION Radian The angle subtended at centre of a circle by an arc of length equal to the radius of the circle is radian r o = o radian r r o radian = o = 6 Positive & Negative

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES) MATHEMATICS GRADE SESSION 0 (LEARNER NOTES) TRIGONOMETRY () Learner Note: Trigonometry is an extremely important and large part of Paper. You must ensure that you master all the basic rules and definitions

More information

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M 3 p p 4 p 4 p 6 1 Completes the square to show p 4 p 6 p M1.a Concludes that (p + ) + > 0 for all values

More information

Lesson-3 TRIGONOMETRIC RATIOS AND IDENTITIES

Lesson-3 TRIGONOMETRIC RATIOS AND IDENTITIES Lesson- TRIGONOMETRIC RATIOS AND IDENTITIES Angle in trigonometry In trigonometry, the measure of an angle is the amount of rotation from B the direction of one ray of the angle to the other ray. Angle

More information

AMB121F Trigonometry Notes

AMB121F Trigonometry Notes AMB11F Trigonometry Notes Trigonometry is a study of measurements of sides of triangles linked to the angles, and the application of this theory. Let ABC be right-angled so that angles A and B are acute

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

Chapter 5: Introduction to Limits

Chapter 5: Introduction to Limits Chapter 5: Introduction to Limits Lesson 5.. 5-. 3. Decreases 4. Decreases 5. y = 5-3. a. y = k b. 3 = k! 3 4 = k c. y = 3 4!("3) # y = 3 4! 9 = 7 4 y = 3 4 Review and Preview 5.. 5-4. f () = f () = 5-5.

More information

4-3 Trigonometric Functions on the Unit Circle

4-3 Trigonometric Functions on the Unit Circle Find the exact value of each trigonometric function, if defined. If not defined, write undefined. 9. sin The terminal side of in standard position lies on the positive y-axis. Choose a point P(0, 1) on

More information

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so: Taylor Series 6B a We can evaluate the it directly since there are no singularities: 7+ 7+ 7 5 5 5 b Again, there are no singularities, so: + + c Here we should divide through by in the numerator and denominator

More information

= + then for all n N. n= is true, now assume the statement is. ) clearly the base case 1 ( ) ( ) ( )( ) θ θ θ θ ( θ θ θ θ)

= + then for all n N. n= is true, now assume the statement is. ) clearly the base case 1 ( ) ( ) ( )( ) θ θ θ θ ( θ θ θ θ) Complex numbers mixed exercise i a We have e cos + isin hence i i ( e + e ) ( cos + isin + cos + isin ) ( cos + isin + cos sin) cos Where we have used the fact that cos cos sin sin b We have ia ia ib ib

More information

REVIEW, pages

REVIEW, pages REVIEW, pages 5 5.. Determine the value of each trigonometric ratio. Use eact values where possible; otherwise write the value to the nearest thousandth. a) tan (5 ) b) cos c) sec ( ) cos º cos ( ) cos

More information

( y) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios, Mixed Exercise 9. 2 b. Using the sine rule. a Using area of ABC = sin x sin80. So 10 = 24sinθ.

( y) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios, Mixed Exercise 9. 2 b. Using the sine rule. a Using area of ABC = sin x sin80. So 10 = 24sinθ. Trigonometric ratios, Mixed Exercise 9 b a Using area of ABC acsin B 0cm 6 8 sinθ cm So 0 4sinθ So sinθ 0 4 θ 4.6 or 3 s.f. (.) As θ is obtuse, ABC 3 s.f b Using the cosine rule b a + c ac cos B AC 8 +

More information

Q Scheme Marks AOs. Attempt to multiply out the denominator (for example, 3 terms correct but must be rational or 64 3 seen or implied).

Q Scheme Marks AOs. Attempt to multiply out the denominator (for example, 3 terms correct but must be rational or 64 3 seen or implied). 1 Attempt to multiply the numerator and denominator by k(8 3). For example, 6 3 4 8 3 8 3 8 3 Attempt to multiply out the numerator (at least 3 terms correct). M1 1.1b 3rd M1 1.1a Rationalise the denominator

More information

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 4

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 4 07 00 MT A.. Attempt ANY FIVE of the following : (i) Slope of the line (m) 4 y intercept of the line (c) 0 By slope intercept form, The equation of the line is y m + c y (4) + (0) y 4 MT - GEOMETRY - SEMI

More information

14 April Kidoguchi, Kenneth

14 April Kidoguchi, Kenneth Objectives.. Solve Trigonometric Equations Using a Calculator. 3. Solve Trigonometric Equations Quadratic in Form. 4. Solve Trigonometric Equations Using Fundamental Identities. 5. Solve Trigonometric

More information

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 C3 Exam Workshop 2 Workbook 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 π. Give the value of α to 3 decimal places. (b) Hence write down the minimum value of 7 cos

More information

I, SUMMATIVE ASSESSMENT I, / MATHEMATICS X / Class X

I, SUMMATIVE ASSESSMENT I, / MATHEMATICS X / Class X I, 015-16 SUMMATIVE ASSESSMENT I, 015-16 / MATHEMATICS X / Class X : hours 90 Time Allowed: hours Maximum Marks: 90 JMYCH7I 1.. 1 1 6 10 11.. General Instructions: 1. All questions are compulsory.. The

More information

Constant acceleration, Mixed Exercise 9

Constant acceleration, Mixed Exercise 9 Constant acceleration, Mixed Exercise 9 a 45 000 45 km h = m s 3600 =.5 m s 3 min = 80 s b s= ( a+ bh ) = (60 + 80).5 = 5 a The distance from A to B is 5 m. b s= ( a+ bh ) 5 570 = (3 + 3 + T ) 5 ( T +

More information

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y =

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y = Review exercise The equation of the line is: y y x x y y x x y 8 x+ 6 8 + y 8 x+ 6 y x x + y 0 y ( ) ( x 9) y+ ( x 9) y+ x 9 x y 0 a, b, c Using points A and B: y y x x y y x x y x 0 k 0 y x k ky k x a

More information

( ) ( ) 2 1 ( ) Conic Sections 1 2E. 1 a. 1 dy. At (16, 8), d y 2 1 Tangent is: dx. Tangent at,8. is 1

( ) ( ) 2 1 ( ) Conic Sections 1 2E. 1 a. 1 dy. At (16, 8), d y 2 1 Tangent is: dx. Tangent at,8. is 1 Conic Sections E a y y so At (6, ), d y y ( 6) y 6 y+ 6 y 6+ y+ 6 d y y At, 6 When, y, angent at, is y 6 y 6+ 6+ y 6+ y 6 y y so,, d y At y ( ) y ( ) y y+ y + y+ e 6+ y 6 y 7 7 y 7 so d d y 7 At ( 7, 7),

More information

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 6 Inverse Circular Functions and Trigonometric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 6.2 Trigonometric Equations Linear Methods Zero-Factor Property Quadratic Methods Trigonometric

More information

Verulam School. C3 Trig ms. 0 min 0 marks

Verulam School. C3 Trig ms. 0 min 0 marks Verulam School C3 Trig ms 0 min 0 marks 1. (i) R =, or 3.6 or 3.61 or greater accuracy Attempt recognisable process for finding α [allow sine/cosine muddles] α = 33.7 [or greater accuracy] 3 (ii) Attempt

More information

QUESTION x = 15 answer (3) For drawing the radius vector in the correct quadrant 1/3. sin α > 0 in second quadrant

QUESTION x = 15 answer (3) For drawing the radius vector in the correct quadrant 1/3. sin α > 0 in second quadrant Mathematics/P 7 DoE/Novemer 009() QUESTION 8 8. sin α 8 7 ( 5 ; 8) sin α > 0 in second quadrant y 8 r 7 α α 5 tanα α 8 5 ( Pythagoras) 7 α 5 For drawing the radius vector in the correct quadrant /3 8.

More information

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 2: Coordinate geometry in the (x, y) plane

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 2: Coordinate geometry in the (x, y) plane Mark scheme Pure Mathematics Year 1 (AS) Unit Test : Coordinate in the (x, y) plane Q Scheme Marks AOs Pearson 1a Use of the gradient formula to begin attempt to find k. k 1 ( ) or 1 (k 4) ( k 1) (i.e.

More information

Mark scheme Mechanics Year 1 (AS) Unit Test 7: Kinematics 1 (constant acceleration)

Mark scheme Mechanics Year 1 (AS) Unit Test 7: Kinematics 1 (constant acceleration) 1a Figure 1 General shape of the graph is correct. i.e. horizontal line, followed by negative gradient, followed by a positive gradient. Vertical axis labelled correctly. Horizontal axis labelled correctly.

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 19 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 19 (LEARNER NOTES) MATHEMATICS GRADE SESSION 9 (LEARNER NOTES) TRIGONOMETRY () Learner Note: Trigonometry is an extremely important and large part of Paper. You must ensure that you master all the basic rules and definitions

More information

Chapter 6: Extending Periodic Functions

Chapter 6: Extending Periodic Functions Chapter 6: Etending Periodic Functions Lesson 6.. 6-. a. The graphs of y = sin and y = intersect at many points, so there must be more than one solution to the equation. b. There are two solutions. From

More information

1a States correct answer: 5.3 (m s 1 ) B1 2.2a 4th Understand the difference between a scalar and a vector. Notes

1a States correct answer: 5.3 (m s 1 ) B1 2.2a 4th Understand the difference between a scalar and a vector. Notes 1a States correct answer: 5.3 (m s 1 ) B1.a 4th Understand the difference between a scalar and a vector. 1b States correct answer: 4.8 (m s 1 ) B1.a 4th Understand the difference between a scalar and a

More information

Ch. 4 - Trigonometry Quiz Review

Ch. 4 - Trigonometry Quiz Review Class: _ Date: _ Ch. 4 - Trigonometry Quiz Review 1. Find the quadrant in which the given angle lies. 154 a. Quadrant I b. Quadrant II c. Quadrant III d. Quadrant IV e. None of the above 2. Find the supplement

More information

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M = 3 p p+ 4 = p + 4 p+ 6 1 ( )( ) ( )( ) ( ) Completes the square to show p + 4p+ 6= p+ + M1.a Concludes that

More information

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1 Regent College Maths Department Core Mathematics Trapezium Rule C Integration Page Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

As we know, the three basic trigonometric functions are as follows: Figure 1

As we know, the three basic trigonometric functions are as follows: Figure 1 Trigonometry Basic Functions As we know, the three basic trigonometric functions are as follows: sin θ = cos θ = opposite hypotenuse adjacent hypotenuse tan θ = opposite adjacent Where θ represents an

More information

Increasing and Decreasing Functions and the First Derivative Test

Increasing and Decreasing Functions and the First Derivative Test Section 3.3 Increasing and Decreasing Functions and the First Derivative Test 3 Section 3.3 Increasing and Decreasing Functions and the First Derivative Test. f 8 3. 3, Decreasing on:, 3 3 3,,, Decreasing

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Solutions to Homework Problems from Section 7.5 of Stewart

Solutions to Homework Problems from Section 7.5 of Stewart Solutions to Homewk Problems from Section 7.5 of Stewart The solutions of the basic equations cos k, sin k, tan k are as follows:. If k is a number such that k, then the solutions of the equation cos k

More information

Version 1.0. General Certificate of Education (A-level) June Mathematics MPC3. (Specification 6360) Pure Core 3. Final.

Version 1.0. General Certificate of Education (A-level) June Mathematics MPC3. (Specification 6360) Pure Core 3. Final. Version.0 General Certificate of Education (A-level) June 0 Mathematics MPC3 (Specification 6360) Pure Core 3 Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together

More information

Version 1,0. General Certificate of Education (A-level) June 2012 MPC3. Mathematics. (Specification 6360) Pure Core 3. Mark Scheme

Version 1,0. General Certificate of Education (A-level) June 2012 MPC3. Mathematics. (Specification 6360) Pure Core 3. Mark Scheme Version,0 General Certificate of Education (A-level) June 0 Mathematics MPC (Specification 660) Pure Core Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with the

More information

Paper Reference. Core Mathematics C3 Advanced. Monday 16 June 2014 Morning Time: 1 hour 30 minutes

Paper Reference. Core Mathematics C3 Advanced. Monday 16 June 2014 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Monday 16 June 2014 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

More information

Pure Mathematics Year 1 (AS) Unit Test 1: Algebra and Functions

Pure Mathematics Year 1 (AS) Unit Test 1: Algebra and Functions Pure Mathematics Year (AS) Unit Test : Algebra and Functions Simplify 6 4, giving your answer in the form p 8 q, where p and q are positive rational numbers. f( x) x ( k 8) x (8k ) a Find the discriminant

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

General Certificate of Education Advanced Level Examination January 2010

General Certificate of Education Advanced Level Examination January 2010 General Certificate of Education Advanced Level Eamination January 00 Mathematics MPC3 Unit Pure Core 3 Friday 5 January 00.30 pm to 3.00 pm For this paper you must have: an 8-page answer book the blue

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 1

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 1 07 00 MT A.. Attempt ANY FIVE of the following : (i) Slope of the line (m) 5 intercept of the line (c) B slope intercept form, The equation of the line is m + c 5 () + ( ) 5 MT - GEOMETRY - SEMI PRELIM

More information

Math 1060 Midterm 2 Review Dugopolski Trigonometry Edition 3, Chapter 3 and 4

Math 1060 Midterm 2 Review Dugopolski Trigonometry Edition 3, Chapter 3 and 4 Math 1060 Midterm Review Dugopolski Trigonometry Edition, Chapter and.1 Use identities to find the exact value of the function for the given value. 1) sin α = and α is in quadrant II; Find tan α. Simplify

More information

Finds the value of θ: θ = ( ). Accept awrt θ = 77.5 ( ). A1 ft 1.1b

Finds the value of θ: θ = ( ). Accept awrt θ = 77.5 ( ). A1 ft 1.1b 1a States that a = 4. 6 + a = 0 may be seen. B1 1.1b 4th States that b = 5. 4 + 9 + b = 0 may be seen. B1 1.1b () Understand Newton s first law and the concept of equilibrium. 1b States that R = i 9j (N).

More information

25 More Trigonometric Identities Worksheet

25 More Trigonometric Identities Worksheet 5 More Trigonometric Identities Worksheet Concepts: Trigonometric Identities Addition and Subtraction Identities Cofunction Identities Double-Angle Identities Half-Angle Identities (Sections 7. & 7.3)

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Sec 4 Maths. SET A PAPER 2 Question

Sec 4 Maths. SET A PAPER 2 Question S4 Maths Set A Paper Question Sec 4 Maths Exam papers with worked solutions SET A PAPER Question Compiled by THE MATHS CAFE 1 P a g e Answer all the questions S4 Maths Set A Paper Question Write in dark

More information

Honors Precalculus A. Semester Exam Review

Honors Precalculus A. Semester Exam Review Semester Eam Review Honors Precalculus A Semester Eam Review 015-016 MCPS 015 016 1 Semester Eam Review The semester A eamination for Honors Precalculus consists of two parts. Part 1 is selected response

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 2 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS (1) ( points) Solve the equation x 1 =. Solution: Since x 1 =, x 1 = or x 1 =. Solving for x, x = 4 or x = 2. (2) In the triangle below, let a = 4,

More information

Trigonometric Identities Exam Questions

Trigonometric Identities Exam Questions Trigonometric Identities Exam Questions Name: ANSWERS January 01 January 017 Multiple Choice 1. Simplify the following expression: cos x 1 cot x a. sin x b. cos x c. cot x d. sec x. Identify a non-permissible

More information

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 8: Exponentials and Logarithms

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 8: Exponentials and Logarithms a Substitutes (, 00) into the equation. Substitutes (5, 50) into the equation. Makes an attempt to solve the expressions by division. For 3 example, b (or equivalent) seen. 8 00 ab 6th 5 50 ab Solves for

More information

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 8: Exponentials and Logarithms

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 8: Exponentials and Logarithms Mark scheme Pure Mathematics Year (AS) Unit Test 8: Exponentials and Logarithms a Substitutes (, 00) into the equation. Substitutes (5, 50) into the equation. Makes an attempt to solve the expressions

More information

Version 1.0. General Certificate of Education (A-level) January 2011 MPC3. Mathematics. (Specification 6360) Pure Core 3.

Version 1.0. General Certificate of Education (A-level) January 2011 MPC3. Mathematics. (Specification 6360) Pure Core 3. Version.0 General Certificate of Education (A-level) January 0 Mathematics MPC (Specification 660) Pure Core Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1 1 w z k k States or implies that 4 i TBC Uses the definition of argument to write 4 k π tan 1 k 4 Makes an attempt to solve for k, for example 4 + k = k is seen. M1.a Finds k = 6 (4 marks) Pearson Education

More information

Core Mathematics 2 Trigonometry

Core Mathematics 2 Trigonometry Core Mathematics 2 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 2 1 Trigonometry Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

More information

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2 Trigonometry 1st Semester Review Packet (#) Name Find the exact value of the trigonometric function. Do not use a calculator. 1) sec A) B) D) ) tan - 5 A) -1 B) - 1 D) - Find the indicated trigonometric

More information

A level Exam-style practice

A level Exam-style practice A level Exam-style practice 1 a e 0 b Using conservation of momentum for the system : 6.5 40 10v 15 10v 15 3 v 10 v 1.5 m s 1 c Kinetic energy lost = initial kinetic energy final kinetic energy 1 1 6.5

More information

Version 1.0: abc. General Certificate of Education. Mathematics MPC3 Pure Core 3. Mark Scheme examination - January series

Version 1.0: abc. General Certificate of Education. Mathematics MPC3 Pure Core 3. Mark Scheme examination - January series Version.0: 008 abc General Certificate of Education Mathematics 660 MPC Pure Core Mark Scheme 008 eamination - January series Mark schemes are prepared by the Principal Eaminer and considered, together

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

PhysicsAndMathsTutor.com PMT

PhysicsAndMathsTutor.com PMT PhysicsAndMathsTutor.com PMT Version.0: 006 General Certificate of Education abc Mathematics 660 MPC Pure Core Mark Scheme 006 eamination - January series Mark schemes are prepared by the Principal Eaminer

More information

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac Basic Math Formulas Arithmetic operations (ab means ab) Powers and roots a(b + c)= ab + ac a+b c = a b c + c a b + c d = ad+bc bd a b = a c d b d c a c = ac b d bd a b = a+b ( a ) b = ab (y) a = a y a

More information

Differentiation 9I. 1 a. sin x 0 for 0 x π. So f ( x ) is convex on the interval. [0, π]. f ( x) 6x 6 0 for x 1. So f ( x ) is concave for all x

Differentiation 9I. 1 a. sin x 0 for 0 x π. So f ( x ) is convex on the interval. [0, π]. f ( x) 6x 6 0 for x 1. So f ( x ) is concave for all x Differentiation 9I a f ( ) f ( ) 6 6 f ( ) 6 ii f ( ) is concave when f ( ) sin for π So f ( ) is concave on the interval [, π]. i f ( ) is conve when f ( ) 6 6 for So f ( ) is conve for all or on the

More information

Mark Scheme (Results) Summer Pearson Edexcel GCE In Mechanics M1 (6677/01)

Mark Scheme (Results) Summer Pearson Edexcel GCE In Mechanics M1 (6677/01) Mark Scheme (Results) Summer 2017 Pearson Edexcel GCE In Mechanics (6677/01) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK s largest awarding body. We provide

More information

weebly.com/ Core Mathematics 3 Trigonometry

weebly.com/ Core Mathematics 3 Trigonometry http://kumarmaths. weebly.com/ Core Mathematics 3 Trigonometry Core Maths 3 Trigonometry Page 1 C3 Trigonometry In C you were introduced to radian measure and had to find areas of sectors and segments.

More information

Mathematics (JAN13MPC301) General Certificate of Education Advanced Level Examination January Unit Pure Core TOTAL

Mathematics (JAN13MPC301) General Certificate of Education Advanced Level Examination January Unit Pure Core TOTAL Centre Number Candidate Number For Eaminer s Use Surname Other Names Candidate Signature Eaminer s Initials Mathematics Unit Pure Core Wednesday January General Certificate of Education Advanced Level

More information

Algebra II B Review 5

Algebra II B Review 5 Algebra II B Review 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measure of the angle below. y x 40 ο a. 135º b. 50º c. 310º d. 270º Sketch

More information

0606 ADDITIONAL MATHEMATICS

0606 ADDITIONAL MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International General Certificate of Secondary Education MARK SCHEME for the March 06 series 0606 ADDITIONAL MATHEMATICS 0606/ Paper, maimum raw mark 80 This

More information

a b = a a a and that has been used here. ( )

a b = a a a and that has been used here. ( ) Review Eercise ( i j+ k) ( i+ j k) i j k = = i j+ k (( ) ( ) ) (( ) ( ) ) (( ) ( ) ) = i j+ k = ( ) i ( ( )) j+ ( ) k = j k Hence ( ) ( i j+ k) ( i+ j k) = ( ) + ( ) = 8 = Formulae for finding the vector

More information

Inverse Trigonometric Functions

Inverse Trigonometric Functions Inverse Trigonometric Functions. Inverse of a function f eists, if function is one-one and onto, i.e., bijective.. Trignometric functions are many-one functions but these become one-one, onto, if we restrict

More information

PMT. Version. General Certificate of Education (A-level) January 2013 MPC3. Mathematics. (Specification 6360) Pure Core 3. Final.

PMT. Version. General Certificate of Education (A-level) January 2013 MPC3. Mathematics. (Specification 6360) Pure Core 3. Final. Version General Certificate of Education (A-level) January Mathematics MPC (Specification 66) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with

More information

Advanced Math (2) Semester 1 Review Name SOLUTIONS

Advanced Math (2) Semester 1 Review Name SOLUTIONS dvanced Math (2) Semester Review Name SOLUTIONS IMPORTNT!!!!! PLESE EMIL ME IF YOU FIND TYPO!. Find the value of x to the nearest yard. 53 YRDS x 5 yards 32 cos32 = 5 x 5 x = cos32 x = 53 yards 2. In D,

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

A2 MATHEMATICS HOMEWORK C3

A2 MATHEMATICS HOMEWORK C3 Name Teacher A2 MATHEMATICS HOMEWORK C3 Mathematics Department September 2014 Version 1.1 Contents Contents... 2 Introduction... 3 HW1 Algebraic Fractions... 4 HW2 Mappings and Functions... 6 HW3 The Modulus

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

C4 mark schemes - International A level (150 minute papers). First mark scheme is June 2014, second mark scheme is Specimen paper

C4 mark schemes - International A level (150 minute papers). First mark scheme is June 2014, second mark scheme is Specimen paper C4 mark schemes - International A level (0 minute papers). First mark scheme is June 04, second mark scheme is Specimen paper. (a) f (.).7, f () M Sign change (and f ( ) is continuous) therefore there

More information

10. Trigonometric equations

10. Trigonometric equations 0 EP-Program - Strisuksa School - Roi-et Math : Trigonometry () Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 00 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 0. Trigonometric

More information

Mathematics Revision Guide. Shape and Space. Grade C B

Mathematics Revision Guide. Shape and Space. Grade C B Mathematics Revision Guide Shape and Space Grade C B 1 A of = b h 2 Area 6cm = 10 6 2 = 60 2 8cm = 30cm 2 6cm 12cm A of = (a+b) h 2 = (6+12) 5 2 = (18) 5 2 = 90 2 = 4 2 7cm 1 6cm A of = π r r = π 6 6 =

More information

SPM Past Year Questions : AM Form 5 Chapter 5 Trigonometric Functions

SPM Past Year Questions : AM Form 5 Chapter 5 Trigonometric Functions SPM 1993 SPM PAST YEAR QUESTIONS ADDITIONAL MATHEMATICS FORM 5 CHAPTER 5 : TRIGONOMETRIC FUNCTIONS 1. Solve the equation sec x = 3 tan x for 0 x 360. [5 marks]. Given that tan θ = 1, without using a calculator,

More information

Trigonometric Identities. Sum and Differences

Trigonometric Identities. Sum and Differences Trigonometric Identities Sum and Differences WARNING: While viewing this pdf, the viewer may experience the following: 1.) Shock.) Confusion.) Denial 4.) Disbelief 5.) I never learned this 6.) Fear 7.)

More information

School Year

School Year AP Calculus AB Assignment 06 07 School Year In order to ensure that our AP Calculus classes meet the standards required by the College Board, it is strongly recommended that all calculus students complete

More information

Mark Scheme (Results) January Pearson Edexcel International Advanced Level. Core Mathematics 3 (6665A) January 2014 (IAL)

Mark Scheme (Results) January Pearson Edexcel International Advanced Level. Core Mathematics 3 (6665A) January 2014 (IAL) January 014 (IAL) Mark (Results) January 014 Pearson Edecel International Advanced Level Core Mathematics (6665A) January 014 (IAL) Edecel and BTEC Qualifications Edecel and BTEC qualifications are awarded

More information

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal) TRIG REVIEW NOTES Convert from radians to degrees: multiply by 0 180 Convert from degrees to radians: multiply by 0. 180 Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents

More information

π 2π More Tutorial at 1. (3 pts) The function y = is a composite function y = f( g( x)) and the outer function y = f( u)

π 2π   More Tutorial at 1. (3 pts) The function y = is a composite function y = f( g( x)) and the outer function y = f( u) 1. ( pts) The function y = is a composite function y = f( g( )). 6 + Identify the inner function u = g( ) and the outer function y = f( u). A) u = g( ) = 6+, y = f( u) = u B) u = g( ) =, y = f( u) = 6u+

More information