7-84. Chapter 7 External Forced Convection

Size: px
Start display at page:

Download "7-84. Chapter 7 External Forced Convection"

Transcription

1 Chapter 7 External Frced Cnvectin 7-99 Wind i blwing ver the rf f a hue. The rate f heat tranfer thrugh the rf and the ct f thi heat l fr -h perid are t be deterined. Auptin Steady perating cnditin exit. The critical eynld nuber i e cr = 0. 3 Air i an ideal ga with cntant prpertie. The preure f air i at. pertie Auing a fil teperature f 0C, the prpertie f air are (Table A W/. C Air Analyi The eynld nuber i e L L - / (60000/ 3600 /( /.3380 Ty = 00 K which i greater than the critical eynld nuber. Thu we have cbined lainar and turbulent flw. Then the Nuelt nuber and the heat tranfer cefficient are deterined t be hl Nu (0.037e L 87 [0.037( ]( W/. C h Nu ( W/. C L 0 In teady peratin, heat tranfer fr the r t the rf (by cnvectin and radiatin ut be equal t the heat tranfer fr the rf t the urrunding (by cnvectin and radiatin, which ut be equal t the heat tranfer thrugh the rf by cnductin. That i, Q Q Q Q r t rf, cnv+rad rf, cnd rf t urrunding, cnv+rad Taing the inner and uter urface teperature f the rf t be T,in and T,ut, repectively, the quantitie abve can be expreed a Q h A ( T T A ( T T ( W/. C(300 (0T C Q r t rf,cnv+rad Q rf,cnd A rf t urr,cnv+rad T h, in i L r, in (0.9(300 (.670 T A ( T, ut, ut (0.9(300 (.670 r 8, in T, in T, ( W/. C( T urr A ( T 8, ut W/.K (0 73K T urr W/.K ( T Slving the equatin abve iultaneuly give Q 8,0 W 8.03W, T in 0.6C, andt,, ut ut 73K ( T (00K, in 73K (3.0 W/. C(300 ( T 3. C, ut The ttal aunt f natural ga cnuptin during a -hur perid i Q Q ttal t (8.03J/(3600 ther Qga.7 ther ,00J Finally, the ney lt thrugh the rf during that perid i Mney lt (.7 ther( $0.60/ ther $9. = 60 /h T = 0C, ut, in 0 C Q Tin = 0C 7-8

2 Chapter 7 External Frced Cnvectin 7-00 Stea i flwing in a tainle teel pipe while air i flwing acr the pipe. The rate f heat l fr the tea per unit length f the pipe i t be deterined. Auptin Steady perating cnditin exit. Air i an ideal ga with cntant prpertie. 3 The preure f air i at. pertie Auing a fil teperature f 0C, the prpertie f air are (Table A W/. C,.60 - /, and Analyi The uter diaeter f inulated pipe i D =.6+3.=.6 c = 0.6. The eynld nuber i Steel pipe D (/(0.6 Di = D = c e 3.0 D =.6 c.60 / Inulatin The Nuelt nuber fr flw acr a cylinder i deterined fr = 0.3 Nu and 0.6e 0.3 / 0. / 0.6(3.0 ( / 3 / 0. / h D 3 / e 8,000 / / , W/C Nu ( W/ C 0.6 Area f the uter urface f the pipe per length f the pipe i A D L ( 0.6( 0.36 / / In teady peratin, heat tranfer fr the tea thrugh the pipe and the inulatin t the uter urface (by firt cnvectin and then cnductin ut be equal t the heat tranfer fr the uter urface t the urrunding (by iultaneu cnvectin and radiatin. That i, Q Q Q pipe and inulatin urface t urrunding Uing the theral reitance netwr, heat tranfer fr the tea t the uter urface i expreed a cnv, i 0.099C/W h A (80 W/. C (0.0 ( and Q pipe inulatin pipe andin i i ln( r / r ln(.3 / 0.00C/W L ( W/. C( ln( r3 / r ln(.8 / C/W L (0.038W/. C( cnv, i T T pipe inulatin Heat tranfer fr the uter urface can be expreed a Q h A ( T T A ( T T urfacet urr,cnv+rad urr (0.3(0.36 (0T C ( C/W (.670 urr 8 W/.K ( T (.0W/. C( K ( T (3 73K 3 C Slving the tw equatin abve iultaneuly, the urface teperature and the heat tranfer rate per length f the pipe are deterined t be T 9.9C and Q 60. W (per length D i Air 3C, / Stea, 0C D 7-8

3 Chapter 7 External Frced Cnvectin 7-0 A pherical tan filled with liquid nitrgen i exped t wind. The rate f evapratin f the liquid nitrgen due t heat tranfer fr the air i t be deterined fr three cae. Auptin Steady perating cnditin exit. adiatin effect are negligible. 3 Air i an ideal ga with cntant prpertie. The preure f air i at. pertie The prpertie f air at at preure and the free trea teperature f 0C are (Table A- 0.0W/. 96 C g/. g/ Analyi (a When there i n inulatin, D = D i =, and the eynld nuber i (0000/3600/ ( e D / The Nuelt nuber i deterined fr Nu - 6 / 6 0.e 0.06e / 3 0. / / 6 6 / ( (.93 0 ( W/. C and h Nu ( W/. C D The rate f heat tranfer t the liquid nitrgen i Q ha ( T T h( D ( T T (.66 W/. C[ ( ] The rate f evapratin f liquid nitrgen then bece Q 9. J/ Q h 0.80 g/ h 98J/g.030 (0 ( 96 C 9,00W (b Nte that after inulatin the uter urface teperature and diaeter will change. Therefre we need t evaluate dynaic vicity at a new urface teperature which we will aue t be -00C. At -00C,.890 e D Nu g/.. Nting that D = D 0 =., the Nuelt nuber bece (0000/3600/ ( e e / / / / 6 6 / ( ( ( W/. C and h Nu (90.7W/. C D. The rate f heat tranfer t the liquid nitrgen i Wind 0C 0 /h.890 Inulatin 6 D i D Nitrgen tan -96C 7-86

4 A D (..8 T T,tan T T,tan Q inulatin r r cnv r r ha [0 ( 96] C (.0 (0.03W/. C(.0 ( (.7W/. C(.8 The rate f evapratin f liquid nitrgen then bece Q 7.36J/ Q h g/ h 98J/g Chapter 7 External Frced Cnvectin 736W (c We ue the dynaic vicity value at the new etiated urface teperature f 0C t be.790 e D Nu g/.. Nting that D = D 0 =.0 in thi cae, the Nuelt nuber bece (0 000/3600/( e e / / / / 6 6 / ( (.96 0 ( W/. C and h Nu ( W/. C D.0 The rate f heat tranfer t the liquid nitrgen i A D (.0.8 T T,tan T T,tan Q inulatin r r cnv r r ha [0 ( 96] C (.0 (0.0000W/. C(.0 ( (0.73W/. C(.8 The rate f evapratin f liquid nitrgen then bece Q 0.07J/ Q h.38 0 h 98J/g - g/ W 7-87

5 Chapter 7 External Frced Cnvectin 7-0 A pherical tan filled with liquid xygen i exped t abient wind. The rate f evapratin f the liquid xygen due t heat tranfer fr the air i t be deterined fr three cae. Auptin Steady perating cnditin exit. adiatin effect are negligible. 3 Air i an ideal ga with cntant prpertie. 7 The preure f air i at. pertie The prpertie f air at at preure and the free trea teperature f 0C are (Table A- 0.0W/. 83C g/. g/ Analyi (a When there i n inulatin, D = D i =, and the eynld nuber i (0000/3600/ ( e D / The Nuelt nuber i deterined fr Nu - / 6 0.e 0.06e / 3 0. / / 6 6 / ( (.93 0 ( W/. C and h Nu (0 3.9 W/. C D The rate f heat tranfer t the liquid xygen i Q ha ( T T h( D ( T T (3.9W/. C[ ( ] The rate f evapratin f liquid xygen then bece Q. J/ Q h g/ h 3J/g.00 (0 ( 83 C,37W (b Nte that after inulatin the uter urface teperature and diaeter will change. Therefre we need t evaluate dynaic vicity at a new urface teperature which we will aue t be -00C. At -00C,.890 g/.. Nting that D = D 0 =., the Nuelt nuber bece e D Nu (0000/3600/ ( e e / / / / 6 6 / ( ( ( W/. C and h Nu (90.7W/. C D. The rate f heat tranfer t the liquid nitrgen i Wind 0C 0 /h.890 Inulatin D i D Oxygen tan -83C 7-88

6 A D (..8 T T,tan T T,tan Q inulatin r r cnv r r ha [0 ( 83] C (.0 (0.03W/. C(.0( (.7W/. C(.8 The rate f evapratin f liquid nitrgen then bece Q 6.98J/ Q h 0.03 g/ h 3J/g Chapter 7 External Frced Cnvectin 698W (c Again we ue the dynaic vicity value at the etiated urface teperature f 0C t be.790 e D Nu g/.. Nting that D = D 0 =.0 in thi cae, the Nuelt nuber bece (0 000/3600/( e e / / / / 6 6 / ( (.96 0 ( W/. C and h Nu ( W/. C D.0 The rate f heat tranfer t the liquid nitrgen i A D (.0.8 T T,tan T T,tan Q inulatin r r cnv r r ha [0 ( 83] C (.0 (0.0000W/. C(.0 ( (0.73W/. C(.8 The rate f evapratin f liquid xygen then bece Q 0.08J/ Q h. 0 h 3J/g - g/ W 7-89

7 Chapter 7 External Frced Cnvectin 7-03 A circuit bard hue 80 clely paced lgic chip n ne ide. All the heat generated i cnducted acr the circuit bard and i diipated fr the bac ide f the bard t the abient air, which i frced t flw ver the urface by a fan. The teperature n the tw ide f the circuit bard are t be deterined. Auptin Steady perating cnditin exit. The critical eynld nuber i e cr = 0. 3 adiatin effect are negligible. Air i an ideal ga with cntant prpertie. 7 The preure f air i at. pertie Auing a fil teperature f 0C, the prpertie f air are (Table A W/. C Analyi The eynld nuber i e L L / (00/ 60 /( / which i le than the critical eynld nuber. Therefre, the flw i lainar. Uing the prper relatin fr Nuelt nuber, heat tranfer cefficient i deterined t be hl Nu 0.66e L 0.66(7.0 0 ( W/. C h Nu (8. 3.3W/. C L 0.8 The teperature n the tw ide f the circuit bard are Q Q ha ( T T T T ha ( W 30C 39.8C (3.3W/. C(0. (0.8 A QL Q ( T T T T L A ( W( C 39.C (6 W/. C(0. (0.8 T =30C 00 /in T T 7-90

8 Chapter 7 External Frced Cnvectin 7-0E The equivalent wind chill teperature f an envirnent at 0F at variu wind peed are = 0 ph: T 9. ( 9. T ( equiv abient ( 0 F ( 0 ph ph 9F = 0 ph: T equiv ( 0 F ( 0 ph ph.9 F = 30 ph: T equiv ( 0 F ( 30 ph ph 33. F = 0 ph: T equiv ( 0 F ( 0 ph ph 37.7 F In the lat 3 cae, the pern need t be cncerned abut the pibility f freezing. 7-9

9 Chapter 7 External Frced Cnvectin 7-0E "!POBLEM 7-0E" "ANALYSIS" T_equiv=9.-(9.-T_abient*( *el+0.30*qrt(el el [ph] Tabient [F] Tequiv [F]

10 Chapter 7 External Frced Cnvectin F Tequiv [F] F 0 F el [ph] Deign and Eay ble 7-93

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction Chapter 8 Sectin 8.4 thrugh 8.6 Internal Flw: Heat Tranfer Crrelatin T v cu p cp ( rt) k r T T k x r r r r r x In fully-develped regin Neglect axial cnductin u ( rt) r x r r r r r x T v T T T T T u r x

More information

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high Prblem Knwn: Dimensins and materials f the cmpsitin wall, 0 studs each with.5m high Unknwn:. Thermal resistance assciate with wall when surfaces nrmal t the directin f heat flw are isthermal. Thermal resistance

More information

CONVECTION IN MICROCHANNELS

CONVECTION IN MICROCHANNELS CAPER. Intrductin CONVECION IN MICROCANNELS.. Cntinuu and hernaic ythei. Previu chater are baed n tw fundaental autin: () Cntinuu: Navier-Stke equatin, and the energy equatin are alicable () hernaic equilibriu:

More information

ME 315 Exam 2 Wednesday, November 11, 2015 CIRCLE YOUR DIVISION

ME 315 Exam 2 Wednesday, November 11, 2015 CIRCLE YOUR DIVISION ME 315 Exa edneday, Nveber 11, 015 Thi i a cled-bk, cled-nte exainatin. There i a frula heet rvided. Yu are al allwed t bring yur wn ne-age letter ize, dubleided crib heet. Yu ut turn ff all cunicatin

More information

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where 6.55 Given: An inulated cylinder i initially divided int halve y a itn. On either ide the itn i a ga at a knwn tate. The itn i releaed and equiliriu i attained. Find: Deterine the inal reure, inal teerature,

More information

Concept of Reynolds Number, Re

Concept of Reynolds Number, Re Concept of Reynold Nuber, Re Ignore Corioli and Buoyancy and forcing Acceleration Advection Preure Gradient Friction I II III IV u u 1 p i i u ( f u ) b + u t x x x j i i i i i i U U U? U L L If IV <

More information

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79.

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79. hapter 7: 17, 0,, 5,, 5, 7, 0, 7, 66 and 79. 77 A power tranitor mounted on the wall diipate 0.18 W. he urface temperature of the tranitor i to be determined. Aumption 1 Steady operating condition exit.

More information

Chapter 4. Unsteady State Conduction

Chapter 4. Unsteady State Conduction Chapter 4 Unsteady State Cnductin Chapter 5 Steady State Cnductin Chee 318 1 4-1 Intrductin ransient Cnductin Many heat transfer prblems are time dependent Changes in perating cnditins in a system cause

More information

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555.

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555. hapter 1 c) When the average bld velcity in the capillary is reduced by a factr f 10, the delivery f the slute t the capillary is liited s that the slute cncentratin after crit 0.018 c is equal t er at

More information

which represents a straight line whose slope is C 1.

which represents a straight line whose slope is C 1. hapte, Slutin 5. Ye, thi claim i eanable ince in the abence any heat eatin the ate heat tane thugh a plain wall in teady peatin mut be cntant. But the value thi cntant mut be ze ince ne ide the wall i

More information

4.5 Evaporation and Diffusion Evaporation and Diffusion through Quiescent Air (page 286) bulk motion of air and j. y a,2, y j,2 or P a,2, P j,2

4.5 Evaporation and Diffusion Evaporation and Diffusion through Quiescent Air (page 286) bulk motion of air and j. y a,2, y j,2 or P a,2, P j,2 4.5 Evaporation and Diffuion 4.5.4 Evaporation and Diffuion through Quiecent Air (page 86) z bul otion of air and j z diffuion of air (a) diffuion of containant (j) y a,, y j, or P a,, P j, z 1 volatile

More information

3. Internal Flow General Concepts:

3. Internal Flow General Concepts: 3. Internal Flow General Concet: ρ u u 4 & Re Re, cr 2300 μ ν π μ Re < 2300 lainar 2300 < Re < 4000 tranitional Flow Regie : Re > 4000 turbulent Re > 10,000 fully turbulent (d) 1 (e) Figure 1 Boundary

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Nae: CIRCLE YOUR DIVISION: Div. 1 (9:30 a) Div. (11:30 a) Div. 3 (:30 p) Prof. Ruan Prof. Nai Mr. Singh School of Mechanical Engineering Purdue Univerity ME315 Heat and Ma Tranfer Exa # edneday, October

More information

GEOTHERMAL DEICING IN A MINE TUNNEL

GEOTHERMAL DEICING IN A MINE TUNNEL POCEEDINGS, Thirty-Sith rkhp n Getheral eervir Engineering Stanfrd Univerity, Stanfrd, Califrnia, January - February, 0 SGP-T-9 GEOTHEMAL DEICING IN A MINE TUNNEL Anik Tth Univerity f Miklc Miklc-Egyetevar,

More information

th th th The air-fuel ratio is determined by taking the ratio of the mass of the air to the mass of the fuel,

th th th The air-fuel ratio is determined by taking the ratio of the mass of the air to the mass of the fuel, Cheical Reactins 14-14 rpane is burned wi 75 percent excess during a cbustin prcess. The AF rati is t be deterined. Assuptins 1 Cbustin is cplete. The cbustin prducts cntain CO, H O, O, and N nly. rperties

More information

Chapter 9 Compressible Flow 667

Chapter 9 Compressible Flow 667 Chapter 9 Cmpreible Flw 667 9.57 Air flw frm a tank thrugh a nzzle int the tandard atmphere, a in Fig. P9.57. A nrmal hck tand in the exit f the nzzle, a hwn. Etimate (a) the tank preure; and (b) the ma

More information

Short notes for Heat transfer

Short notes for Heat transfer Furier s Law f Heat Cnductin Shrt ntes fr Heat transfer Q = Heat transfer in given directin. A = Crss-sectinal area perpendicular t heat flw directin. dt = Temperature difference between tw ends f a blck

More information

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes. Name Student ID II. [25 pt] Thi quetin cnit f tw unrelated part. Part 1. In the circuit belw, bulb 1-5 are identical, and the batterie are identical and ideal. Bxe,, and cntain unknwn arrangement f linear

More information

THE INFLUENCE OF SURFACE INCLINATION ON THE CALIBRATION OF SURFACE TEMPERATURE SENSORS

THE INFLUENCE OF SURFACE INCLINATION ON THE CALIBRATION OF SURFACE TEMPERATURE SENSORS Prceeding, XVII IMEKO Wrld Cngre, June 22 27, 2003, Dubrvnik, Cratia Prceeding, XVII IMEKO Wrld Cngre, June 22 27, 2003, Dubrvnik, Cratia XVII IMEKO Wrld Cngre Metrlgy in the 3 rd Millennium June 22 27,

More information

Steady State Conduction

Steady State Conduction ECE309 Intrductin t Thermdynamics and Heat Transfer Spring 005 Tutrial # 7 Steady State Cnductin Prblem 1 Cnsider a naked persn standing in a rm at 0 C with an expsed surface area f 17m The deep bdy temperature

More information

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body Chapter 1 Radiation Heat ranfer Special opic: Heat ranfer from the Human Body 1-7C Ye, roughly one-third of the metabolic heat generated by a peron who i reting or doing light work i diipated to the environment

More information

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

Chapter 3. Electric Flux Density, Gauss s Law and Divergence Chapter 3. Electric Flu Denity, Gau aw and Diergence Hayt; 9/7/009; 3-1 3.1 Electric Flu Denity Faraday Eperiment Cncentric phere filled with dielectric material. + i gien t the inner phere. - i induced

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Continuous Flow Stirred Tank Reactor (CSTR)

NONISOTHERMAL OPERATION OF IDEAL REACTORS Continuous Flow Stirred Tank Reactor (CSTR) he 47 Fall 2005 LEURE 7 NONISOHERML OPERION OF IDEL REORS ntinuu Flw Stirred ank Reactr (SR) F, Q V F r F, Q V F Figure : Scheatic f SR with acket and cil uptin: Hgeneu yte a) Single Reactin υ 0 b) Steady

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

An Experimental Study for Mixed Convection through a Circular Tube Filled with Porous Media and Fixed Horizontally and Inclined

An Experimental Study for Mixed Convection through a Circular Tube Filled with Porous Media and Fixed Horizontally and Inclined www.ccenet.rg/ma Mdern Applied Science Vl., N. ; April 0 An Experimental Study fr Mixed Cnvectin thrugh a Circular Tube Filled with Pru Media and Fixed Hrizntally and Inclined Taheen Ahmad Taheen Mechanical

More information

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CANKAYA UNIVERSITY FACUTY OF ENGINEERING MECHANICA ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CHAPTER-3 EXAMPES 1) Cnsider a slab f thicness as illustrated in figure belw. A fluid at temperature T 1 with

More information

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II Steady Heat ansfe ebuay, 7 Steady Heat ansfe wit Cnductin and Cnvectin ay Caett Mecanical Engineeing 375 Heat ansfe ebuay, 7 Outline eview last lectue Equivalent cicuit analyses eview basic cncept pplicatin

More information

Compressibility Effects

Compressibility Effects Definitin f Cmpressibility All real substances are cmpressible t sme greater r lesser extent; that is, when yu squeeze r press n them, their density will change The amunt by which a substance can be cmpressed

More information

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 ) + - Hmewrk 0 Slutin ) In the circuit belw: a. Find the magnitude and phase respnse. b. What kind f filter is it? c. At what frequency is the respnse 0.707 if the generatr has a ltage f? d. What is the

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions:

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions: NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flw Reactr T T T T F j, Q F j T m,q m T m T m T m Aumptin: 1. Hmgeneu Sytem 2. Single Reactin 3. Steady State Tw type f prblem: 1. Given deired prductin rate,

More information

MODULE 5 Lecture No: 5 Extraterrestrial Radiation

MODULE 5 Lecture No: 5 Extraterrestrial Radiation 1 P age Principle and Perfrmance f Slar Energy Thermal Sytem: A Web Cure by V.V.Satyamurty MODULE 5 Lecture N: 5 Extraterretrial Radiatin In Mdule 5, Lecture N. 5 deal with 5.1 INTRODUCTION 5. EXTRA TERRESTRIAL

More information

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Study Group Report: Plate-fin Heat Exchangers: AEA Technology Study Grup Reprt: Plate-fin Heat Exchangers: AEA Technlgy The prblem under study cncerned the apparent discrepancy between a series f experiments using a plate fin heat exchanger and the classical thery

More information

1. Introduction: A Mixing Problem

1. Introduction: A Mixing Problem CHAPTER 7 Laplace Tranfrm. Intrductin: A Mixing Prblem Example. Initially, kg f alt are dilved in L f water in a tank. The tank ha tw input valve, A and B, and ne exit valve C. At time t =, valve A i pened,

More information

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets External Flow: Flow over Bluff Object (Cylinder, Sphere, Packed Bed) and Impinging Jet he Cylinder in Cro Flow - Condition depend on pecial feature of boundary layer development, including onet at a tagnation

More information

Chapter 8. Root Locus Techniques

Chapter 8. Root Locus Techniques Chapter 8 Rt Lcu Technique Intrductin Sytem perfrmance and tability dt determined dby cled-lp l ple Typical cled-lp feedback cntrl ytem G Open-lp TF KG H Zer -, - Ple 0, -, -4 K 4 Lcatin f ple eaily fund

More information

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions 3.85 Proble Set 6 Radiation, Intro to Fluid Flow Solution. Radiation in Zirconia Phyical Vapor Depoition (5 (a To calculate thi viewfactor, we ll let S be the liquid zicronia dic and S the inner urface

More information

The Second Law implies:

The Second Law implies: e Send Law ilie: ) Heat Engine η W in H H L H L H, H H ) Ablute eerature H H L L Sale, L L W ) Fr a yle H H L L H 4) Fr an Ideal Ga Cyle H H L L L δ reerible ree d Claiu Inequality δ eerible Cyle fr a

More information

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment Presented at the COMSOL Cnference 2008 Hannver University f Parma Department f Industrial Engineering Numerical Simulatin f the Thermal Respsne Test Within the Cmsl Multiphysics Envirnment Authr : C. Crradi,

More information

2 Principles of Heat Transfer and Thermodynamics N 2. and H 2. r fr. 1.4 kj/kgk for carbohydrates. 1.6 kj/kgk for proteins. c p. 1.

2 Principles of Heat Transfer and Thermodynamics N 2. and H 2. r fr. 1.4 kj/kgk for carbohydrates. 1.6 kj/kgk for proteins. c p. 1. 2 Principles f Heat ransfer and herdynaics 17 2 Principles f Heat ransfer and herdynaics In this Chapter thse principles which are iprtant fr essential technical calculatins in dairy practice have been

More information

Chapter 2 Analysis of Power System Stability by Classical Methods

Chapter 2 Analysis of Power System Stability by Classical Methods Chapter Analyi f wer Syte Stability by Claical Methd.1 Claical Mdel A dicued in the previu Chapter, the firt tep in analyzing pwer tability i t repreent the pwer yte cpnent atheatically. The iplet yet

More information

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o. ecture 13 - Bt C-C Cnverter Pwer Electrnic Step-Up r Bt cnverter eliver C pwer frm a lwer vltage C level ( ) t a higher la vltage. i i i + v i c T C (a) + R (a) v 0 0 i 0 R1 t n t ff + t T i n T t ff =

More information

TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS

TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS AN 10-18 Applicatin Nte 10-18 PAYNE ENGINEERING TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS q = (h c + h r ) A (T s - T amb ) TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS Thyristr cntrls - mre cmmnly called

More information

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit : TRANSFORMERS Definitin : Transfrmers can be defined as a static electric machine which cnverts electric energy frm ne ptential t anther at the same frequency. It can als be defined as cnsists f tw electric

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry Chapter 19 lectrchemistry Part I Dr. Al Saadi 1 lectrchemistry What is electrchemistry? It is a branch f chemistry that studies chemical reactins called redx reactins which invlve electrn transfer. 19.1

More information

Disclaimer: This lab write-up is not

Disclaimer: This lab write-up is not Diclaier: Thi lab write-up i nt t be cpied, in whle r in part, unle a prper reference i ade a t the urce. (It i trngly recended that yu ue thi dcuent nly t generate idea, r a a reference t explain cplex

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

Name: Date: Class: a. How many barium ions are there per formula unit (compound)? b. How many nitride ions are there per formula unit (compound)?

Name: Date: Class: a. How many barium ions are there per formula unit (compound)? b. How many nitride ions are there per formula unit (compound)? NOTES Name: Date: Class: Lessn 15 Part 2: Binary II Inic Bnding, Plyatmic Ins Bx 1: 1. Ba 3N 2 is the frmula fr. (name) a. Hw many barium ins are there per frmula unit (cmpund)? b. Hw many nitride ins

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data Benha University Cllege f Engineering at Banha Department f Mechanical Eng. First Year Mechanical Subject : Fluid Mechanics M111 Date:4/5/016 Questins Fr Final Crrective Examinatin Examiner: Dr. Mhamed

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

An Empirical Study of Frost Accumulation Effects on Louvered-Fin, Microchannel Heat Exchangers

An Empirical Study of Frost Accumulation Effects on Louvered-Fin, Microchannel Heat Exchangers Purdue Univerity Purdue e-pub Internatinal Refrigeratin and Air Cnditining Cnference Schl f Mechanical Engineering 4 An Empirical Study f Frt Accumulatin Effect n Luvered-Fin, Micrchannel Heat Exchanger

More information

Chapter 11: Atmosphere

Chapter 11: Atmosphere Chapter 11: Atmsphere Sectin 1: Atmspheric Basics Objectives 1. Describe the cmpsitin f the atmsphere. 2. Cmpare and cntrast the varius layers f the atmsphere. 3. Identify three methds f transferring energy

More information

1) p represents the number of holes present. We know that,

1) p represents the number of holes present. We know that, ECE650R : Reliability Physics f Nanelectrnic Devices Lecture 13 : Features f FieldDependent NBTI Degradatin Date : Oct. 11, 2006 Classnte : Saakshi Gangwal Review : Pradeep R. Nair 13.0 Review In the last

More information

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1.

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1. .P. Holman:.09) T ur : 0 Ue table - to determine the hape factor for thi problem. D :.m r : 0.5m π r S : T phere : 0 r D S 7.0 m :.7 m Ue eq. - to calculate the heat lo. q : S T phere T ur q 57.70 .P.

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell 6.5 Natural Cnvectin in Enclsures Enclsures are finite spaces bunded by walls and filled with fluid. Natural cnvectin in enclsures, als knwn as internal cnvectin, takes place in rms and buildings, furnaces,

More information

LECTURE 4 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION 2.0 SOURCES OF HEAT IN MINES 3.0 STRATA HEAT

LECTURE 4 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION 2.0 SOURCES OF HEAT IN MINES 3.0 STRATA HEAT LECTURE 4 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION 2.0 SOURCES OF HEAT IN MINES 3.0 STRATA HEAT 3.1 Gethermal Step and Gethermal Gradient 3.2 Thermal Cnductivity f Rcks 3.3 Heat Flux

More information

Coupled Inductors and Transformers

Coupled Inductors and Transformers Cupled nductrs and Transfrmers Self-nductance When current i flws thrugh the cil, a magnetic flux is prduced arund it. d d di di v= = = dt di dt dt nductance: = d di This inductance is cmmnly called self-inductance,

More information

UNITS FOR THERMOMECHANICS

UNITS FOR THERMOMECHANICS UNITS FOR THERMOMECHANICS 1. Conitent Unit. Every calculation require a conitent et of unit. Hitorically, one et of unit wa ued for mechanic and an apparently unrelated et of unit wa ued for heat. For

More information

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit. EEL6246 Pwer Electrnics II Chapter 6 Lecture 6 Dr. Sam Abdel-Rahman ZVS Bst Cnverter The quasi-resnant bst cnverter by using the M-type switch as shwn in Fig. 6.29(a) with its simplified circuit shwn in

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Lesson 8 Types of Matter

Lesson 8 Types of Matter Lessn 8 Types f Matter D Nw 6Ga, 6I 10.30.18 Take ut HW 6.13 t be checked. In CJ, cpy dwn inf frm CJ bard. Keep CJs ut and pen n desk. On DO NOW PAGE #4, cpy and answer the questins: 1. In KCl (aq), is

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

7.0 Heat Transfer in an External Laminar Boundary Layer

7.0 Heat Transfer in an External Laminar Boundary Layer 7.0 Heat ransfer in an Eternal Laminar Bundary Layer 7. Intrductin In this chapter, we will assume: ) hat the fluid prperties are cnstant and unaffected by temperature variatins. ) he thermal & mmentum

More information

HCB-3 Edition. Solutions Chapter 12 Problems. SOLUTION: Refer to saturated steam table (Table A3-SI) and superheated steam table (Table A4-SI)

HCB-3 Edition. Solutions Chapter 12 Problems. SOLUTION: Refer to saturated steam table (Table A3-SI) and superheated steam table (Table A4-SI) HCB- Editin 12.1 Slutins Chapter 12 Prbles GIVEN: Fllwing table fr water: T (C p (kpa v ( /kg Phase 60 (1.25 (2 ( 175 (4 Saturated vapr 00 00 (5 (6 100 10 (7 (8 (9 (10 0.001097 Saturated vapr 1000 10 (11

More information

SOLUTIONS SET 1 MATHEMATICS CLASS X

SOLUTIONS SET 1 MATHEMATICS CLASS X Tp Careers & Yu SOLUTIONS SET MTHEMTICS CLSS X. 84 7 Prime factrs f 84 are, and 7.. Sum f zeres 5 + 4 Prduct f zeres 5 4 0 Required plynmial x ( )x + ( 0) x + x 0. Given equatin is x + y 0 Fr x, y L.H.S

More information

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer Suppleental Material for Tranport Proce and Separation Proce Principle hapter 7 Principle of Unteady - State and onvective Ma Tranfer Thi chapter cover different ituation where a tranfer i taking place,

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Physics 231 Lecture 31

Physics 231 Lecture 31 Physics 31 Lecture 31 Mi Main pints f tday s lecture: Heat and heat capacity: Q = cmδt Phase transitins and latent heat: Q = LΔm Mechanisms f heat flw. Cnductive heat flw ΔQ kat ( T1 ) H = = Δt L Examples

More information

Flipping Physics Lecture Notes: AP Physics 1 Review of Kinematics

Flipping Physics Lecture Notes: AP Physics 1 Review of Kinematics Flipping Phyic Lecture Nte: AP Phyic 1 Review f Kinematic AP i a regitered trademark f the Cllege Bard, which wa nt invlved in the prductin f, and de nt endre, thi prduct. Intrductry Cncept: Vectr: Magnitude

More information

Chapter 8. The Steady Magnetic Field 8.1 Biot-Savart Law

Chapter 8. The Steady Magnetic Field 8.1 Biot-Savart Law hapter 8. The teady Magnetic Field 8. Bit-avart Law The surce f steady magnetic field a permanent magnet, a time varying electric field, a direct current. Hayt; /9/009; 8- The magnetic field intensity

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Q.1. x A =0.8, ε A =δ A *y A = 0.8*5=4 (because feed contains 80 mol% A, y A = 0.8, δ A =((6-1)/1)=5) k= 0.3 hr -1. So, θ = hr Q.

Q.1. x A =0.8, ε A =δ A *y A = 0.8*5=4 (because feed contains 80 mol% A, y A = 0.8, δ A =((6-1)/1)=5) k= 0.3 hr -1. So, θ = hr Q. Q.1 k [ 1 ln(1 x)] x x =.8, ε =δ *y =.8*5=4 (becaue feed contain 8 mol%, y =.8, δ =((6-1)/1)=5) k=. hr -1 So, θ = 16.157 hr Q.2 Q.2 Continue (c) V PFR

More information

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011 Excluive Technlgy Feature Eliminate The Guewrk When Selecting Primary Switch DD aacitr by Ed Wenzel, STMicrelectrnic, Schaumburg, ll. SSUE: May 2011 A rimary witch, ued fr ff-line alicatin, ften cntain

More information

A Kinetic Model Framework for Combined Diffusion and Adsorption Processes

A Kinetic Model Framework for Combined Diffusion and Adsorption Processes BRINKMANN, E.A. and KING, R.P. A kinetic del fraewrk fr cbined diffuin and adrptin prcee. APCOM 87. Prceeding f the Twentieth Internatinal Sypiu n the Applicatin f Cputer and Matheatic in the Mineral Indutrie.

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Matheatic Reviion Guide Introduction to Differential Equation Page of Author: Mark Kudlowki MK HOME TUITION Matheatic Reviion Guide Level: A-Level Year DIFFERENTIAL EQUATIONS Verion : Date: 3-4-3 Matheatic

More information

A Comparison of Correlations for Heat Transfer from Inclined Pipes

A Comparison of Correlations for Heat Transfer from Inclined Pipes A Comparion of Correlation for Heat Tranfer from Inclined Pipe Krihperad Manohar Department of Mechanical and Manufacturing Engineering The Univerity of the Wet Indie St. Augutine, Trinidad and Tobago

More information

Chapter 6. Dielectrics and Capacitance

Chapter 6. Dielectrics and Capacitance Chapter 6. Dielectrics and Capacitance Hayt; //009; 6- Dielectrics are insulating materials with n free charges. All charges are bund at mlecules by Culmb frce. An applied electric field displaces charges

More information

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd NAME: DUE DATE: JULY 2 nd AP Chemistry SUMMER REV: Half-Life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng

More information

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008 Phy 1: General Physics II 1 hapter 18 rksheet 3/0/008 Thermal Expansin: 1. A wedding ring cmpsed f pure gld (inner diameter = 1.5 x 10 - m) is placed n a persn s finger (diameter = 1.5 x 10 - m). Bth the

More information

Operational Use of the Model Crocus

Operational Use of the Model Crocus Operatinal Use f the Mdel Crcus by French Avalanche Frecast Services E.Brun Meterlgie Natinale Centre d'etudes de la Neige BP 44 Dmaine Universitaire 3842 St-Martin d 'eres France ntrductin Since 1971

More information

Frequency Response of Amplifiers

Frequency Response of Amplifiers 類比電路設計 (3349-004 Frequency epne f Aplifier h-uan an Natinal hun-h Univerity epartent f Electrical Eneer Overview ead B azavi hapter 6 ntrductin n thi lecture, we tudy the repne f le-tae and differential

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 2100 Circuit Analysis Lessn 25 Chapter 9 & App B: Passive circuit elements in the phasr representatin Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 2100 Circuit Analysis Lessn

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Tranfer Example 1. Melt Spinning of Polymer fiber 2. Heat tranfer in a Condener 3. Temperature control of a Re-entry vehicle Fiber pinning The fiber pinning proce preent a unique engineering

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

LECTURE From Measurement of Pressure and Quantity of Air in. 7.2 From Measurement of Pressure and Quantities in the

LECTURE From Measurement of Pressure and Quantity of Air in. 7.2 From Measurement of Pressure and Quantities in the LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 NATURAL VENTILATION.0 PRODUCTION OF NATURAL VENTILATION 3.0 DENSITY DIFFERENCE BETWEEN THE AIR OF TWO SHAFTS 4.0 DEFINITION OF NATURAL VENTILATING

More information

Y.J. Cho **, Hazim Awbi** & Taghi Karimipanah* *) Fresh AB, SWEDEN **) University of Reading, UK

Y.J. Cho **, Hazim Awbi** & Taghi Karimipanah* *) Fresh AB, SWEDEN **) University of Reading, UK The Characteristics f Wall Cnfluent Jets fr Ventilated Enclsures 9 th Internatinal Cnference n Air Distributin in Rs niversity f Cibra PORTGAL Y.J. Ch **, Hazi Awbi** & Taghi Kariipanah* *) Fresh AB, SWEDEN

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Harmonic Motion (HM) Oscillation with Laminar Damping

Harmonic Motion (HM) Oscillation with Laminar Damping Harnic Mtin (HM) Oscillatin with Lainar Daping If yu dn t knw the units f a quantity yu prbably dn t understand its physical significance. Siple HM r r Hke' s Law: F k x definitins: f T / T / Bf x A sin

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w Islated, Clsed and Open Systems 9.1 Energy as a Reactant r a Prduct 9.2 Transferring Heat and Ding Wrk 9.5 Heats f Reactin and Calrimetry 9.6 Hess s Law and Standard Heats f Reactin 9.7 Heats f Reactin

More information

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES PREFERRED RELIABILITY PAGE 1 OF 5 PRACTICES PRACTICE NO. PT-TE-1409 THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC Practice: Perfrm all thermal envirnmental tests n electrnic spaceflight hardware in a flight-like

More information

å Q d = 0 T dq =0 ò T reversible processes 1

å Q d = 0 T dq =0 ò T reversible processes 1 δ reeribe ree d Caiu Inequaity fr an Irreeribe Cye eeribe Cye fr a CaiuInequaity fr a yemed f a reeribe andan irreeribe re irre re Entry Definitin and Cange DEFINE A POPEY S S re irre S S S ENOPY reeribe

More information

Time varying fields and Maxwell's equations Chapter 9

Time varying fields and Maxwell's equations Chapter 9 Tie varying fields and Maxwell's equatins hapter 9 Dr. Naser Abu-Zaid Page 9/7/202 FARADAY LAW OF ELETROMAGNETI INDUTION A tie varying agnetic field prduces (induces) a current in a clsed lp f wire. The

More information

Heat Management Methodology for Successful UV Processing on Heat Sensitive Substrates

Heat Management Methodology for Successful UV Processing on Heat Sensitive Substrates Heat Management Methdlgy fr Successful UV Prcessing n Heat Sensitive Substrates Juliet Midlik Prime UV Systems Abstract: Nw in 2005, UV systems pssess heat management cntrls that fine tune the exthermic

More information

Richard s Transformations

Richard s Transformations 4/27/25 Rihard Tranfrmatin.d /7 Rihard Tranfrmatin Reall the put impedane f hrt-iruited and peniruited tranmiin le tub. j tan β, β t β, β Nte that the put impedane are purely reatie jut like lumped element!

More information

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes ecture Phy 798S Spring 6 Steven Anlage The heart and oul of uperconductivity i the Meiner Effect. Thi feature uniquely ditinguihe uperconductivity fro any other tate of atter. Here we dicu oe iple phenoenological

More information