Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008

Size: px
Start display at page:

Download "Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008"

Transcription

1 Phy 1: General Physics II 1 hapter 18 rksheet 3/0/008 Thermal Expansin: 1. A wedding ring cmpsed f pure gld (inner diameter = 1.5 x 10 - m) is placed n a persn s finger (diameter = 1.5 x 10 - m). Bth the ring and the finger are at 7.0. a. The finger and ring are placed in cld running water (5.0 ). Determine the cntractin f the ring and the finger, respectively. Determine the rati f L finger / L ring. Based n yur calculatin, is the ring lser r tighter? b. The finger and ring are placed in warm running water (0.0 ). Determine the rati f L finger / L ring. Based n yur calculatin, is the ring lser r tighter? c. Based n (a) and (b), which apprach, warm vs. cld water, wuld be the mst effective fr remving a tight ring frm a finger? hy? Heat apacity & Heat Transfrmatin:. A lead bullet (m=0.050 kg & V= m 3 ) at 0.0 impacts a blck, made f an ideal thermal insulatr, and cmes t rest at its center. After impact, the temperature f the bullet is 37. a. Hw much heat was needed t raise the bullet t its final temperature? Q = cm T = ( 18 ) 0.050kg 307 =1965 b. hat is the cefficient f vlume expansin (β) fr the bullet? β = 3 α = = c. hat is the vlume f the bullet after it cmes t rest? β V=V T= m = m V =V + V= m m = m d. Hw much additinal heat wuld be needed t melt the bullet? Q = ml f = ( 0.050kg) ( ) 3 3 = e. Hw fast was the bullet traveling prir t hitting the blck? Assume that all mechanical energy in the bullet is translatinal kinetic energy, prir t cntact with the blck and n energy is lst t the blck. Assuming that all heat gain by bullet is due t lss f kinetic energy, K=1965, and the final kinetic energy fr the bullet is K f =0, then K i = K- K f =1965-0=1965

2 Phy 1: General Physics II hapter 18 rksheet 3/0/ A kg piece f cpper at an initial temperature f 0.0 is placed in a water bath and the temperature f the metal is raised t a. Hw much heat was required t raise the temperature f the cpper? Q = cm T = ( 386 ) 0.500kg 80 = b. Hw much mre heat wuld be required t raise the cpper t its melting pint? The melting pint fr cpper is T melt =1083 : ( ) Q = cm T = kg 983 = c. Hw much heat wuld be required t cmpletely melt the piece f cpper, frm an initial temperature f 100.0? Q = Q +Q = kg tt T melt kg Q tt = =.9 10 d. The piece f cpper in (a) is then placed in a thermally islated cntainer, called a calrimeter, cntaining 1.00 kg f water initially at 0.0. hat is the equilibrium temperature f the cpper/water system? Q = -Q c m T = -c m T c m T-0.0 = c m T HO u HO HO HO u u u HO HO u u T = cum c m u HO HO c m u u 1+ c HO m HO = 3.5 e. Suppse the piece f cpper frm (a) were placed in a calrimeter cntaining kg f an unknwn liquid initially at 0.0. The equilibrium temperature f the cpper/liquid system is hat is the specific heat capacity f the unknwn liquid? ( 386 ) ( 0.500kg) ( 69.1 ) c m T c = = = 50 u u u? m? T? ( 0.500kg) ( 10.9 ) f. hat is the identity f the unknwn liquid? Prbably ethyl alchl (verify using yur textbk). Suppse a 0.70 kg piece f irn and a 0.50 kg piece f cpper (bth at initial temperature f ) were placed tgether in a calrimeter cntaining 1.00 kg water (initially at 0.0 ). hat is the final temperature f the water in the calrimeter?

3 Phy 1: General Physics II 3 hapter 18 rksheet 3/0/008 Q = -Q -Q c m T = -c m T -c m T HO Al u HO HO HO Al Al Al u u u T = T = c m T-0.0 = c m +c m T HO HO Al Al u u calm Al+cumu chomh O c m +c m 1+ c HO m HO Al Al u u ( 900 ) ( 0.70kg ) kg ( ) ( 0.50kg) ( 186 ) ( 1.00kg) kg ( 900 ) ( 0.70kg ) + ( 386 ) ( 0.50kg) 1 ( 186 ) ( 1.00kg) kg = A kg glass (c=80 /kg ) cntaining 1.00 L f water (at 0.0 ) is filled with kg f ice (at -5.0 ). a. hat is the mass f the liquid water initially in the glass? m = V = x10 m =1.0 kg kg -3 3 ρ ( 3 ) HO HO HO m b. hat is the equilibrium temperature f the water and glass when all f the ice has melted? Ignre any heat gained frm r lst t the surrundings. Q +Q +Q = -Q -Q ice melt melted HO glass ice micel ice+cicemice ( ) +ch Omice T-0.0 = ch Om HO+cglassmglass T ( ch ) Om ice+chom HO+cglassmglass T = ch Om HO+cglassmglass 0.0 -micel ice-cicemice 5.0 ( ch ) Om HO+cglassmglass 0.0 -micel ice-cicemice 5.0 T = = 11.5 ( ch Om ice+ch Om H O+cglassmglass ) c. A persn then drinks all f the water in the glass. Hw much heat des the water gain as it is warmed up t 37.0 in the digestive tract f the persn? 5 Q HO= chomh O T HO = kg T = ( )

4 Phy 1: General Physics II hapter 18 rksheet 3/0/008 1 st Law f Thermdynamics: 6. An enclsed gas perfrms the fllwing 3 step clsed cycle. a) alculate the wrk perfrmed by the system fr: i) A t B Since P is linear frm A t B: =P V A B avg x10 Pa+1.0x10 Pa A B= 1.0m 5 A B=1.11x10 N m ii) B t P is linear frm B t : =P V B avg B 5 3 = 1.0x10 Pa -1.0m 5 B =-1.0x10 N m 3 B iii) t A P is linear frm t A: =P V A avg A =0 N m A b) hat is the ttal wrk perfrmed by the clsed cycle? net is the area enclsed in the PV graph r alternatively: = + + Net A B B A 3 Net=-9.x10 N m c) Is the net wrk perfrmed by this system ver a cmplete cycle psitive r negative? Explain. net is negative. Net wrk is perfrmed ON the system, since the clsed cycle perates cunter-clckwise. d) alculate the ttal heat absrbed by the system during 1 cycle. Since this is a clsed cycle, E int =0, therefre Q = net =-9x10 3. Heat is released(lst) by the system during ne cycle.

5 Phy 1: General Physics II 5 hapter 18 rksheet 3/0/ An enclsed gas perfrms the fllwing 3 step clsed cycle. a) alculate the wrk perfrmed by the system fr: i) A t B A B=Pavg V=0 N m ii) B t =P V B avg B 5 3 =.00x10 Pa 0.5m 5 B =1.00x10 N m iii) t D D=Pavg V=0 N m ii) D t A =P V D A avg D A 5 3 = 1.00x10 Pa 0.5m D A=-5.0x10 N m b) hat is the ttal wrk perfrmed by the clsed cycle? net is the area enclsed in the PV graph r alternatively: = Net A B B D D A Net=5.0x10 N m B A D c) Is the net wrk perfrmed by this system ver a cmplete cycle psitive r negative? Explain. net is psitive, net wrk is perfrmed BY the system (the clsed cycle perates clckwise). d) alculate the ttal heat absrbed by the system during 1 cycle. Since this is a clsed cycle, E int =0, therefre Q = net =+5.x10. Heat is gained (absrbed) by the system during ne cycle.

6 Phy 1: General Physics II 6 hapter 18 rksheet 3/0/008 Heat Transfer & king: 8. A 0. cm irn pan is used t fry a cylindrical piece f meat (mass = 0.1 kg, 1.5 cm thickness and 10.0 cm diameter). The temperature f the pan is heated t a temperature f 350 F. The thermal cnductivity f the meat is 0.0 /(m. K) and the emissivity f the meat is 0.9. Assume the specific heat capacity f the meat is 3500 /(kg. K). a) hat is the temperature f the pan in elsius & Kelvin? F 9 F ( ) ( ) T = T 3 F = 350 F 3 F =177. F T = K 1K K= 50K b) hat is the area f the frying surface f the meat in m? 0.10m A= π r = π = m c) hen the meat placed n the pan its temperature is raised t a cnstant temperature f 100 and the ppsite face f the meat initially is 5. hat is the rate f cnductive heat flw thrugh the meat? dq A = k dt = 19.9 y s d) hy des the heat f the ht surface f the meat never get warmer than 100 when the meat is mist? The water n the surface limits the surface temperature until it has all evaprated. e) hen enugh heat has passed thrugh the meat, the ppsite face f the meat will reach the temperature f the rm (5 ), what is the temperature at the center f the meat? Assuming the temperature prfile thrugh the meat is linear: T bttm + Ttp T middle= = 37.5 f) hat is the rate f cnductive heat flw thrugh the meat in (e)? dq A = k dt = 15.8 y s g) Hw much ttal heat (energy) has the meat absrbed (cmpared t when the whle piece was at 5 ) when the uter surface is 5? Assuming the temperature prfile thrugh the meat is linear: Q = c m T - 5 = meat meat middle h) hat is the net rate f radiative heat flw frm the meat when the uter surface is at 5 and 5 respectively? hen meat surface temperature is T=5 :

7 Phy 1: General Physics II 7 hapter 18 rksheet 3/0/008 dq = εσ A T - T = m 73.15K K meat rm m K dq = ( ) π hen meat surface temperature is T=5 : dq = -8 εσ A T - T = m 98.15K K meat rm m K π dq = 0 i) If the meat were left n the pan (same side) what wuld be the final equilibrium temperature f the uter surface f the meat? {Hint: Try using the equatin slver feature f yur (r yur neighbr s) TI85/89 calculatr} cnd This is a tugh ne! = net rad ka T -T = A T - T y ( bttm tp ) εσ ( tp rm ) k k k T - T = ( T -T ) = T - T εσ y εσ y εσ y tp rm bttm tp bttm tp k k T = - T + T + T εσ y εσ y tp tp bttm rm T tp 357 K r 8 { I slved this graphically, check it w/ yur calculatr... } j) hat is the net rate f radiative/cnductive heat flw frm the meat when the meat is in thermal equilibrium? The net rate f thermal transfer int the meat is zer, since it is in thermal equilibrium. This can be checked by calculating the radiative heat lss, when meat surface temperature is T=357 K r 137 : dq = -8 εσ A ( T - T ) = ( 0.9 ) ( ) π ( 0.05m ) ( 357K ) - ( 98.15K ) surface rm m K dq = 3. mpare this t the cnductive heat flw acrss the meat: cnd ka = T -T y ( bttm tp ) ( 0. ) π ( 0.05m) dq cnd 0.015m m K = K-357K = 3.

8 Phy 1: General Physics II 8 hapter 18 rksheet 3/0/ The Greenhuse Effect can be analyzed using the radiatin mdel f h 18. Assume that radiatin is the primary mechanism f heat transfer between the earth and the universe, where bth the earth and sun are perfect emitters (ε = 1.0). Use the fllwing values (all ther values can be fund in the back f the textbk): T sun = 5350 K (the average temperature f the surface f the sun) T earth = 88 K (the average temperature f the surface f the earth) a. Determine the rate at which energy is radiated by the sun. dq = -8 8 εσ AT = ( 1.0 ) ( ) m K π m 5350K dq = b. Hw much f the sun s radiant energy reaches the earth? Hint: hat is the intensity (pwer per unit area) at a distance frm the sun f d earth-sun = 1.50x10 11 m? The intensity f sun s radiant energy at the earth is: I = = = m A π m The incident pwer is related t intensity x the effective crss sectinal area f the earth: ( ) dq = IA = crss sectin π m = m c. Hw much f the sun s pwer is absrbed by the earth? Nte: The earth s atmsphere absrbs ~30% f the ttal radiant energy frm the sun. dq absrbed = = d. Hw much pwer (at what energy rate) des the earth radiate? radiated radiated ( ) π ( ) -8 6 = εσat = m 95K m K 17 = e. hat fractin f the earth s radiant energy is reflected back t the surface and reabsrbed? This is the Greenhuse Effect! Assuming the earth is in thermal equilibrium: = - + = 0 earth frm sun radiated re-absrbed = - = re-absrbed radiated frm sun re-absrbed 16 =

9 Phy 1: General Physics II 9 hapter 18 rksheet 3/0/008 f. If there were n reflectin and re-absrptin f radiant energy by the earth, estimate the average temperature f the earth. The temperature (earth surface) fr thermal equilibrium: = - = 0 earth frm sun radiated = AT = ( 1.0) ( ) ( m) T = m K εσ π radiated T = 30K g. If the earth had n atmsphere at all, estimate the average temperature f the surface f the earth. The temperature (earth surface) fr thermal equilibrium: radiated = εσ AT = earth T earth = =5 K εσa 1

Process Engineering Thermodynamics E (4 sp) Exam

Process Engineering Thermodynamics E (4 sp) Exam Prcess Engineering Thermdynamics 42434 E (4 sp) Exam 9-3-29 ll supprt material is allwed except fr telecmmunicatin devices. 4 questins give max. 3 pints = 7½ + 7½ + 7½ + 7½ pints Belw 6 questins are given,

More information

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1 Crdinatr: Sunaidi Wednesday, March 06, 2013 Page: 1 Q1. An 8.00 m lng wire with a mass f 10.0 g is under a tensin f 25.0 N. A transverse wave fr which the wavelength is 0.100 m, and the amplitude is 3.70

More information

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N Q1. A transverse sinusidal wave travelling n a string is given by: y (x,t) = 0.20 sin (2.5 x 80 t) (SI units). The length f the string is 2.0 m and its mass is 1.5 g. What is the magnitude f the tensin

More information

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w Islated, Clsed and Open Systems 9.1 Energy as a Reactant r a Prduct 9.2 Transferring Heat and Ding Wrk 9.5 Heats f Reactin and Calrimetry 9.6 Hess s Law and Standard Heats f Reactin 9.7 Heats f Reactin

More information

Physics 231 Lecture 31

Physics 231 Lecture 31 Physics 31 Lecture 31 Mi Main pints f tday s lecture: Heat and heat capacity: Q = cmδt Phase transitins and latent heat: Q = LΔm Mechanisms f heat flw. Cnductive heat flw ΔQ kat ( T1 ) H = = Δt L Examples

More information

Heat is energy and is measured in joules (J) or kilojoules (kj). The symbol for heat is H.

Heat is energy and is measured in joules (J) or kilojoules (kj). The symbol for heat is H. Causes f Change Calrimetry Hw Des Energy Affect Change? Heat vs. Temerature HEAT TEMPERATURE Definitin: Deends n: Examles: Heat is energy and is measured in jules (J) r kiljules (kj). The symbl fr heat

More information

Short notes for Heat transfer

Short notes for Heat transfer Furier s Law f Heat Cnductin Shrt ntes fr Heat transfer Q = Heat transfer in given directin. A = Crss-sectinal area perpendicular t heat flw directin. dt = Temperature difference between tw ends f a blck

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Thermochemistry. Thermochemistry

Thermochemistry. Thermochemistry Thermchemistry Petrucci, Harwd and Herring: Chapter 7 CHEM 1000A 3.0 Thermchemistry 1 Thermchemistry The study energy in chemical reactins A sub-discipline thermdynamics Thermdynamics studies the bulk

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

EXAM #1 PHYSICAL SCIENCE 103 Spring, 2016

EXAM #1 PHYSICAL SCIENCE 103 Spring, 2016 OBJECTIVES 1. Ft Pressure EXAM #1 PHYSICAL SCIENCE 103 Spring, 2016 Determine the surface area f an bject. Given the weight and surface area, calculate the pressure. 2. Measuring Vlume & Mass Prvided a

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

Physics 262/266. George Mason University. Prof. Paul So

Physics 262/266. George Mason University. Prof. Paul So Physics 262/266 Gerge Masn University Prf. Paul S PHYS 262/266 Annuncements WELCOME TO A NEW SEMESTER! Curse Website - http://cmplex.gmu.edu/www-phys/phys262 - http://cmplex.gmu.edu/www-phys/phys266 Recitatins

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

Energy Inputs and Outputs

Energy Inputs and Outputs Energy Inputs and Outputs Sun Earth ultravilet visible infrared Bth Sun and Earth behave as blackbdies (absrb 100% incident radiatin; emit radiatin at all wavelengths in all directins) Earth receives energy

More information

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C? NOTES: Thermchemistry Part 1 - Heat HEAT- TEMPERATURE - Thermchemistry: the study f energy (in the frm f heat) changes that accmpany physical & chemical changes heat flws frm high t lw (ht cl) endthermic

More information

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26.

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26. CM ROSE-HULMAN INSTITUTE OF TECHNOLOGY Name Circle sectin: 01 [4 th Lui] 02 [5 th Lui] 03 [4 th Thm] 04 [5 th Thm] 05 [4 th Mech] ME301 Applicatins f Thermdynamics Exam 1 Sep 29, 2017 Rules: Clsed bk/ntes

More information

EXAM #1 PHYSICAL SCIENCE 103 FALLF, 2017

EXAM #1 PHYSICAL SCIENCE 103 FALLF, 2017 OBJECTIVES 1. Ft Pressure EXAM #1 PHYSICAL SCIENCE 103 FALLF, 2017 Determine the surface area f an bject. Given the weight and surface area, calculate the pressure. 2. Measuring Vlume & Mass Prvided a

More information

Fill in your name and ID No. in the space above. There should be 11 pages (including this page and the last page which is a formula page).

Fill in your name and ID No. in the space above. There should be 11 pages (including this page and the last page which is a formula page). ENGR -503 Name: Final Exam, Sem. 03C ID N.: /6/003 3:30 5:30 p.m. Rm N.: 7B Fill in yur name and ID N. in the space abve. There shuld be pages (including this page and the last page which is a frmula page).

More information

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd NAME: DUE DATE: JULY 2 nd AP Chemistry SUMMER REV: Half-Life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng

More information

Semester 2 AP Chemistry Unit 12

Semester 2 AP Chemistry Unit 12 Cmmn In Effect and Buffers PwerPint The cmmn in effect The shift in equilibrium caused by the additin f a cmpund having an in in cmmn with the disslved substance The presence f the excess ins frm the disslved

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Chemistry 114 First Hour Exam

Chemistry 114 First Hour Exam Chemistry 114 First Hur Exam Please shw all wrk fr partial credit Name: (4 pints) 1. (12 pints) Espress is made by frcing very ht water under high pressure thrugh finely grund, cmpacted cffee. (Wikipedia)

More information

AP Chemistry Assessment 2

AP Chemistry Assessment 2 AP Chemistry Assessment 2 DATE OF ADMINISTRATION: January 8 January 12 TOPICS COVERED: Fundatinal Tpics, Reactins, Gases, Thermchemistry, Atmic Structure, Peridicity, and Bnding. MULTIPLE CHOICE KEY AND

More information

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CANKAYA UNIVERSITY FACUTY OF ENGINEERING MECHANICA ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CHAPTER-3 EXAMPES 1) Cnsider a slab f thicness as illustrated in figure belw. A fluid at temperature T 1 with

More information

Chapter 11: Atmosphere

Chapter 11: Atmosphere Chapter 11: Atmsphere Sectin 1: Atmspheric Basics Objectives 1. Describe the cmpsitin f the atmsphere. 2. Cmpare and cntrast the varius layers f the atmsphere. 3. Identify three methds f transferring energy

More information

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol Recitatin 06 Mixture f Ideal Gases 1. Chapter 5: Exercise: 69 The partial pressure f CH 4 (g) is 0.175 atm and that f O 2 (g) is 0.250 atm in a mixture f the tw gases. a. What is the mle fractin f each

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high Prblem Knwn: Dimensins and materials f the cmpsitin wall, 0 studs each with.5m high Unknwn:. Thermal resistance assciate with wall when surfaces nrmal t the directin f heat flw are isthermal. Thermal resistance

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

Specific Heat of Substances

Specific Heat of Substances Specific Heat f Substances EXPERIMENT Equipment 1. MeasureNet temperature prbe. Tw 110 alchl r mercury thermmeters 3. Tw 1 z (355 ml) styrfam cups 4. One 3 3 cardbard lid with a 1 cm diameter hle in the

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

Chapter 4. Unsteady State Conduction

Chapter 4. Unsteady State Conduction Chapter 4 Unsteady State Cnductin Chapter 5 Steady State Cnductin Chee 318 1 4-1 Intrductin ransient Cnductin Many heat transfer prblems are time dependent Changes in perating cnditins in a system cause

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Coupled Inductors and Transformers

Coupled Inductors and Transformers Cupled nductrs and Transfrmers Self-nductance When current i flws thrugh the cil, a magnetic flux is prduced arund it. d d di di v= = = dt di dt dt nductance: = d di This inductance is cmmnly called self-inductance,

More information

ES201 - Examination 2 Winter Adams and Richards NAME BOX NUMBER

ES201 - Examination 2 Winter Adams and Richards NAME BOX NUMBER ES201 - Examinatin 2 Winter 2003-2004 Adams and Richards NAME BOX NUMBER Please Circle One : Richards (Perid 4) ES201-01 Adams (Perid 4) ES201-02 Adams (Perid 6) ES201-03 Prblem 1 ( 12 ) Prblem 2 ( 24

More information

CHEM 103 Calorimetry and Hess s Law

CHEM 103 Calorimetry and Hess s Law CHEM 103 Calrimetry and Hess s Law Lecture Ntes March 23, 2006 Prf. Sevian Annuncements Exam #2 is next Thursday, March 30 Study guide, practice exam, and practice exam answer key are already psted n the

More information

Accelerated Chemistry POGIL: Half-life

Accelerated Chemistry POGIL: Half-life Name: Date: Perid: Accelerated Chemistry POGIL: Half-life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng as

More information

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1 Ph 13: General Phsics III 6/14/007 Chapter 8 Wrksheet 1 Magnetic Fields & Frce 1. A pint charge, q= 510 C and m=110-3 m kg, travels with a velcit f: v = 30 ˆ s i then enters a magnetic field: = 110 T ˆj.

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving. Sectin 3.2: Many f yu WILL need t watch the crrespnding vides fr this sectin n MyOpenMath! This sectin is primarily fcused n tls t aid us in finding rts/zers/ -intercepts f plynmials. Essentially, ur fcus

More information

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK Thermdynamics EAS 204 Spring 2004 Class Mnth Day Chapter Tpic Reading Due 1 January 12 M Intrductin 2 14 W Chapter 1 Cncepts Chapter 1 19 M MLK Hliday n class 3 21 W Chapter 2 Prperties Chapter 2 PS1 4

More information

Lecture 4. The First Law of Thermodynamics

Lecture 4. The First Law of Thermodynamics Lecture 4. The First Law f Thermdynamics THERMODYNAMICS: Basic Cncepts Thermdynamics: (frm the Greek therme, meaning "heat" and, dynamis, meaning "pwer") is the study f energy cnversin between heat and

More information

Q x = cos 1 30 = 53.1 South

Q x = cos 1 30 = 53.1 South Crdinatr: Dr. G. Khattak Thursday, August 0, 01 Page 1 Q1. A particle mves in ne dimensin such that its psitin x(t) as a functin f time t is given by x(t) =.0 + 7 t t, where t is in secnds and x(t) is

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

CHAPTER 13 Temperature and Kinetic Theory. Units

CHAPTER 13 Temperature and Kinetic Theory. Units CHAPTER 13 Temperature and Kinetic Thery Units Atmic Thery f Matter Temperature and Thermmeters Thermal Equilibrium and the Zerth Law f Thermdynamics Thermal Expansin Thermal Stress The Gas Laws and Abslute

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Experiment #3. Graphing with Excel

Experiment #3. Graphing with Excel Experiment #3. Graphing with Excel Study the "Graphing with Excel" instructins that have been prvided. Additinal help with learning t use Excel can be fund n several web sites, including http://www.ncsu.edu/labwrite/res/gt/gt-

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes Chapter 17: hermdynamics: Spntaneus and Nnspntaneus Reactins and Prcesses Learning Objectives 17.1: Spntaneus Prcesses Cmparing and Cntrasting the hree Laws f hermdynamics (1 st Law: Chap. 5; 2 nd & 3

More information

Honors Physics Final Review Summary

Honors Physics Final Review Summary Hnrs Physics Final Review Summary Wrk Dne By A Cnstant Frce: Wrk describes a frce s tendency t change the speed f an bject. Wrk is dne nly when an bject mves in respnse t a frce, and a cmpnent f the frce

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

Lecture 16 Thermodynamics II

Lecture 16 Thermodynamics II Lecture 16 Thermdynamics II Calrimetry Hess s Law Enthalpy r Frmatin Cpyright 2013, 2011, 2009, 2008 AP Chem Slutins. All rights reserved. Fur Methds fr Finding H 1) Calculate it using average bnd enthalpies

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

MIDTERM EXAM SOLUTIONS

MIDTERM EXAM SOLUTIONS MIDTERM EXAM SOLUTIONS Science A30 The Atmsphere March 0, 008 INSTRUCTIONS WRITE YOUR NAME ON EVERY PAGE. Exam will last 80 minutes. Cmplete the prblems directly n the exam. Extra paper available if needed.

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 6 Hmewrk Questins TEXTBOOK HOMEWORK 6.25 A 27.7-g sample f the radiatr clant ethylene glycl releases 688 J f heat. What was the initial temperature f the sample if the final temperature

More information

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law Sectin 5.8 Ntes Page 1 5.8 Expnential Grwth and Decay Mdels; Newtn s Law There are many applicatins t expnential functins that we will fcus n in this sectin. First let s lk at the expnential mdel. Expnential

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are psted at http://www.physics.hi-state.edu/~humanic/ Infrmatin fr Physics 1201 Midterm I Wednesday, February 20 1) Frmat: 10 multiple chice questins (each wrth 5 pints) and tw shw-wrk

More information

C Nitrogen and others. D Oxygen and carbon

C Nitrogen and others. D Oxygen and carbon 6.5A Knw that an element is a pure substance represented by chemical symbls. Knw AN ELEMENT IS A PURE SUBSTANCE REPRESENTED BY CHEMICAL SYMBOLS Element a pure substance that cannt be brken dwn chemically

More information

Chem 75 February 16, 2017 Exam 2 Solutions

Chem 75 February 16, 2017 Exam 2 Solutions 1. (6 + 6 pints) Tw quick questins: (a) The Handbk f Chemistry and Physics tells us, crrectly, that CCl 4 bils nrmally at 76.7 C, but its mlar enthalpy f vaprizatin is listed in ne place as 34.6 kj ml

More information

Introduction to Smith Charts

Introduction to Smith Charts Intrductin t Smith Charts Dr. Russell P. Jedlicka Klipsch Schl f Electrical and Cmputer Engineering New Mexic State University as Cruces, NM 88003 September 2002 EE521 ecture 3 08/22/02 Smith Chart Summary

More information

CLASS XI SET A PHYSICS

CLASS XI SET A PHYSICS PHYSIS. If the acceleratin f wedge in the shwn arrangement is a twards left then at this instant acceleratin f the blck wuld be, (assume all surfaces t be frictinless) a () ( cs )a () a () cs a If the

More information

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 October 8, Please grade the following questions: 1 or 2

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 October 8, Please grade the following questions: 1 or 2 CEE 371 Octber 8, 2009 Exam #1 Clsed Bk, ne sheet f ntes allwed Please answer ne questin frm the first tw, ne frm the secnd tw and ne frm the last three. The ttal ptential number f pints is 100. Shw all

More information

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1 Crdinatr: Al-Shukri Thursday, May 05, 2011 Page: 1 1. Particles A and B are electrically neutral and are separated by 5.0 μm. If 5.0 x 10 6 electrns are transferred frm particle A t particle B, the magnitude

More information

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s)

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s) Chapter 9 - Stichimetry Sectin 9.1 Intrductin t Stichimetry Types f Stichimetry Prblems Given is in mles and unknwn is in mles. Given is in mles and unknwn is in mass (grams). Given is in mass and unknwn

More information

CHM112 Lab Graphing with Excel Grading Rubric

CHM112 Lab Graphing with Excel Grading Rubric Name CHM112 Lab Graphing with Excel Grading Rubric Criteria Pints pssible Pints earned Graphs crrectly pltted and adhere t all guidelines (including descriptive title, prperly frmatted axes, trendline

More information

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 March 10, Please grade the following questions: 1 or 2

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 March 10, Please grade the following questions: 1 or 2 CEE 371 March 10, 2009 Exam #1 Clsed Bk, ne sheet f ntes allwed Please answer ne questin frm the first tw, ne frm the secnd tw and ne frm the last three. The ttal ptential number f pints is 100. Shw all

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Stage 6 PROMPT sheet. 2 > -2 We say 2 is bigger than -2-2 < 2 We say -2 is less than 2. 6/2 Negative numbers. l l l l l l l

Stage 6 PROMPT sheet. 2 > -2 We say 2 is bigger than -2-2 < 2 We say -2 is less than 2. 6/2 Negative numbers. l l l l l l l Stage 6 PROMPT sheet 6/ Place value in numbers t 0millin The psitin f the digit gives its size Ten millins Millins Hundred thusands Ten thusands thusands hundreds tens units 4 5 6 7 8 Example The value

More information

o o IMPORTANT REMINDERS Reports will be graded largely on their ability to clearly communicate results and important conclusions.

o o IMPORTANT REMINDERS Reports will be graded largely on their ability to clearly communicate results and important conclusions. BASD High Schl Frmal Lab Reprt GENERAL INFORMATION 12 pt Times New Rman fnt Duble-spaced, if required by yur teacher 1 inch margins n all sides (tp, bttm, left, and right) Always write in third persn (avid

More information

PRE-ASSESSMENT LEARNING EVALUATION

PRE-ASSESSMENT LEARNING EVALUATION St Andrew s Academy Mathematics Department S2 COURSE BLOCK 3 PRE-ASSESSMENT LEARNING EVALUATION S2 BLOCK 3 LEARNING EVALUATION Red Amber Green Revisin Exercise NUMBER I can use nn-calculatr strategies

More information

/ / Chemistry. Chapter 1 Chemical Foundations

/ / Chemistry. Chapter 1 Chemical Foundations Name Chapter 1 Chemical Fundatins Advanced Chemistry / / Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change? Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S

More information

Work, Energy, and Power

Work, Energy, and Power rk, Energy, and Pwer Physics 1 There are many different TYPES f Energy. Energy is expressed in JOULES (J 419J 4.19 1 calrie Energy can be expressed mre specifically by using the term ORK( rk The Scalar

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution 39th Internatinal Physics Olympiad - Hani - Vietnam - 8 Theretical Prblem N. /Slutin Slutin. The structure f the mrtar.. Calculating the distance TG The vlume f water in the bucket is V = = 3 3 3 cm m.

More information

Examples: Everything in the universe is made up of matter. How atoms are form the. Solids Liquids Gases. The a substance has, If a substance has

Examples: Everything in the universe is made up of matter. How atoms are form the. Solids Liquids Gases. The a substance has, If a substance has Matter What is Matter? Examples: Everything in the universe is made up f matter Hw atms are frm the The States f Matter There are main states f matter Slids Liquids Gases What causes the different States

More information

3. Classify the following Numbers (Counting (natural), Whole, Integers, Rational, Irrational)

3. Classify the following Numbers (Counting (natural), Whole, Integers, Rational, Irrational) After yu cmplete each cncept give yurself a rating 1. 15 5 2 (5 3) 2. 2 4-8 (2 5) 3. Classify the fllwing Numbers (Cunting (natural), Whle, Integers, Ratinal, Irratinal) a. 7 b. 2 3 c. 2 4. Are negative

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

Steady State Conduction

Steady State Conduction ECE309 Intrductin t Thermdynamics and Heat Transfer Spring 005 Tutrial # 7 Steady State Cnductin Prblem 1 Cnsider a naked persn standing in a rm at 0 C with an expsed surface area f 17m The deep bdy temperature

More information

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q Chemistry Ntes Lecture 15 [st] 3/6/09 IMPORTANT NOTES: -( We finished using the lecture slides frm lecture 14) -In class the challenge prblem was passed ut, it is due Tuesday at :00 P.M. SHARP, :01 is

More information