External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

Size: px
Start display at page:

Download "External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets"

Transcription

1 External Flow: Flow over Bluff Object (Cylinder, Sphere, Packed Bed) and Impinging Jet he Cylinder in Cro Flow - Condition depend on pecial feature of boundary layer development, including onet at a tagnation point and eparation, a well a tranition to turbulence. - Stagnation point: Location of zero velocity ( u 0) and maximum preure. - Followed by boundary layer development under a favorable preure gradient ( dp / dx 0 ) and hence acceleration of the free tream flow ( du / dx 0 ). - A the rear of the cylinder i approached, the preure mut begin to increae. Hence, there i a minimum in the preure ditribution, p(x), after which boundary layer development occur under the influence of an advere preure gradient ( dp / dx 0, du / dx 0). - Separation occur when the velocity gradient du / dy reduce to zero y0

2 And i accompanied by flow reveral and a downtream wake. - Location of eparation depend on boundary layer tranition. V V Re - What feature differentiate boundary development for the flat plate in parallel flow from that for flow over a cylinder? - Force impoed by the flow i due to the combination of friction and form drag. he dimenionle form of the drag force i C F A ( V f / ) Figure 7.8

3 - Heat ranfer Conideration - he Local Nuelt Number: 5 - How doe the local Nuelt number vary with for Re 10? What condition are aociated with maxima and minima in the variation? - he Average Nuelt Number ( Nu h / k ): Zukauka (197) Nu m n Pr C Re Pr Pr 1/4 0.7 Pr Re 10 where all propertie except Pr are evaluated at. Churchill and Berntein (1977) propoed for all Re Pr 0. Nu Re 1/ Pr 1/ 3 1 (0.4 / Pr) / 3 1/ 4 Re / 8 4 / 5

4 Cylinder of Noncircular Cro Section: 1/ 3 Nu C Re m Pr C,m able 7.3

5 Flow Acro ube Bank - A common geometry for two-fluid heat exchanger. Aligned and Staggered Array: Aligned: V S S V max Staggered: V S S V max if S or, V S S V max if S

6 - Flow Condition: How do convection coefficient vary from row-to-row in an array? How do flow condition differ between the two configuration? Why hould an aligned array not be ued for S /S L < 0.7? Average Nuelt Number for an Iothermal Array: Zukauka (197) Nu C C,m able 7.7 able 7.8 C m 0.36 C Re,max Pr Pr/ Pr All propertie are evaluated at i o / except for Pr. 1/ 4

7 - Fluid Outlet emperature ( ): o P i o C S VN N h exp N N L N What may be aid about a o N? - otal Heat Rate: ha lm q N( L) A o i o i lm ln ) ( ) ( - Preure rop:

8 p V N X f L max X, f Figure 7.13 and 7.14

9 he Sphere and Packed Bed Flow over a phere - Boundary layer development i imilar to that for flow over a cylinder, involving tranition and eparation. Whitaker (197) recommend Nu 1/ / /4 0.4Re 0.06Re Pr / 0.71Pr Re ( / ) 3. All propertie except are evaluated at. - What are the limiting value of the Nuelt number and the convection coefficient for low flow over mall phere. -C Figure Ga Flow through a Packed Bed -Flow i characterized by tortuou path through a bed of fixed particle. -Large urface area per unit volume render configuration deirable for the tranfer and torage of thermal energy. -For a packed bed of phere: j H.06 Re void fraction q ha p, tlm A p, t total urface area of particle - o i ha p, t exp VAc, bc p

10 A c, b cro-ectional area of bed

11

12 Ga Jet Impingement - Characterized by large convection coefficient and ued for cooling and heating in numerou manufacturing, electronic and aeronautic application. - Flow and Heat ranfer for a Circular or Rectangular Jet: Significant Feature: - Mixing and velocity profile development in the free jet. - Stagnation point and zone. - Velocity profile development in the wall jet. - Local Nuelt number ditribution: - Average Nuelt number: hh Nu f (Re, Pr, Ar, H / h ) k V e h Re, A r from Fig Correlation Section 7.7.

13 Jet Array - What i the nature and effect of jet interaction and dicharge condition? - Nuelt number correlation for array of circular and lot jet Section 7.7..

14 Problem 7.63: Cooling of extruded copper wire by convection and radiation. KNOWN: Velocity, diameter, initial temperature and propertie of extruded wire. emperature and velocity of air. emperature of urrounding. FIN: (a) ifferential equation for temperature ditribution (x) along the wire, (b) Exact olution for negligible radiation and correponding value of temperature at precribed length ( x = L = 5m) of wire, (c) Effect of radiation on temperature of wire at precribed length. Effect of wire velocity and emiivity on temperature ditribution. ASSUMPIONS: (1) Negligible variation of wire temperature in radial direction, () Negligible effect of axial conduction along the wire, (3) Contant propertie, (4) Radiation exchange between mall urface and large encloure,

15 (5) Motion of wire ha a negligible effect on the convection coefficient (V e << V). PROPERIES: 3 Copper: 8900 kg/m, 400 J / kg K, Air: k W/m K, 310 m /, Pr C p ANALYSIS: (a) Applying conervation of energy to a tationary control urface, through which the wire move, teady-tate condition exit and E E 0. in out Hence, with inflow due to advection and outflow due to advection, convection and radiation, V A C V A C ( d) dq e c p e c p conv dq rad / 4C d dx h 0 Ve εσ p 4 4 h d 4 εσ ur (1) dx VeCp Alternatively, if the control urface i fixed to the wire, condition are tranient and the energy balance i of the form, 4 4 dx h εσ d dt p ur 4 h εσ C E 4 out E t dx Cp 4 4 ividing the left- and right-hand ide of the equation by dx/dt and Ve dx/dt, repectively, Eq. (1) i obtained. (b) Neglecting radiation, eparating variable and integrating, Eq. (1) become ur ur, or d dt i d ρ 4h V C e p 0 x dx ln i 4hx ρvec p

16 4hx (i )exp( ) () ρv C with V 5 m/ m Re 833, m / the Churchill-Berntein correlation yield e p Nu 1/ 0.6(833) (0.69) 0.3 / 3 1 (0.4 / 0.69) 1/ 3 1/ k W/m K m Hence, applying Eq. () at x = L, 5 / 8 4 / 5 h Nu W/m K C (575 C)exp 8900 kg/m 0. m/0.005 m400 J/kg K W/m K 5 m o 3 c) Numerically integrating from x = 0 to x = L = 5.0m, we obtain o 309 C Hence, radiation make a dicernable contribution to cooling of the wire. Parametric condition reveal the following ditribution Wire temperature, (C) Wire temperature, (C) itance from extruder exit, x(m) itance from extruder exit, x(m) Ve=0.5 m / Ve=0. m / Ve=0.1 m / ep=0.8 ep=0.55 ep=0 he peed with which the wire i drawn from the extruder ha a ignificant influence on the temperature ditribution. he temperature decay decreae with increaing V e due to the increaing effect of advection on energy tranfer in the x direction. he effect of the urface emiivity i le pronounced, although, a

17 expected, the temperature decay become more pronounced with increaing. COMMENS: (1) A critical parameter in wire extruion procee i the coiling temperature, that i, the temperature at which the wire may be afely coiled for ubequent torage or hipment. he larger the production rate (V e ), the longer the cooling ditance needed to achieve a deired coiling temperature. () Cooling may be enhanced by increaing the cro-flow velocity, and the pecific effect of V may alo be explored.

18 Problem 7.78 Meaurement of combution ga temperature with a pherical thermocouple junction. KNOWN: Velocity and temperature of combution gae. iameter and emiivity of thermocouple junction. Combutor temperature. FIN: (a) ime to achieve 98% of maximum thermocouple temperature rie for negligible radiation, (b) Steady-tate thermocouple temperature, (c) Effect of ga velocity and thermocouple emiivity on meaurement error. ASSUMPIONS: (1) Validity of lumped capacitance analyi, () Contant propertie, (3) Negligible conduction through lead wire, (4) Radiation exchange between mall urface and a large encloure (part b and c). PROPERIES: hermocouple: , k = 100 W/mK, c = 385 J/kgK, = 890

19 kg/m 3 ; Gae: k = 0.05 W/mK, = m /, Pr = ANALYSIS: (a) If the lumped capacitance analyi may be ued, it follow from Equation 5.5 that ρvc i ρc t ln ln(50) ha 6h Neglecting the vicoity ratio correlation for variable property effect, ue of V = 5 m/ with the Whitaker correlation yield h 1/ /3 0.4 Nu (0.4Re 0.06Re )Pr, k with V 5 m/(0.001m) Re ν 5010 m / /3 1/ W/m K h m (100) W/m K ince Bi = ued. (r /3)/k = , the lumped capacitance method may be h o m 890 kg/m 385 J/kg K 638 W/m K t ln(50) 6.83 (b) Performing an energy balance on the junction, q conv = q rad. Hence, evaluating radiation exchange from Equation 1.7 and with = 0.5, ha 4 4 ε A σ( ) W/m K 1000 K 38 W/m K (400) K 936K Parametric calculation to determine the effect of V and yield the following reult: c

20 emperature, (K) 950 emperature, (K) Velocity, V(m/) Emiivity Emiivity, epilon = 0.5 Velocity, V = 5 m/ Since the temperature recorded by the thermocouple junction increae with increaing V and decreaing, the meaurement error, -, decreae with increaing V and decreaing. he error i due to net radiative tranfer from the junction (which depree ) and hence hould decreae with decreaing. For a precribed heat lo, the temperature difference ( - ) decreae with decreaing convection reitance, and hence with increaing h(v). COMMENS: o infer the actual ga temperature (1000 K) from the meaured reult (936 K), correction would have to be made for radiation exchange with the cold urrounding. What meaure may be taken to reduce the error aociated with radiation effect?

External Forced Convection :

External Forced Convection : External Forced Convection : Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets Chapter 7 Sections 7.4 through 7.8 7.4 The Cylinder in Cross Flow Conditions depend on special

More information

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79.

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79. hapter 7: 17, 0,, 5,, 5, 7, 0, 7, 66 and 79. 77 A power tranitor mounted on the wall diipate 0.18 W. he urface temperature of the tranitor i to be determined. Aumption 1 Steady operating condition exit.

More information

A Comparison of Correlations for Heat Transfer from Inclined Pipes

A Comparison of Correlations for Heat Transfer from Inclined Pipes A Comparion of Correlation for Heat Tranfer from Inclined Pipe Krihperad Manohar Department of Mechanical and Manufacturing Engineering The Univerity of the Wet Indie St. Augutine, Trinidad and Tobago

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION ME 315 Exam 3 8:00-9:00 PM Thurday, Aril 16, 009 Thi i a cloed-book, cloed-note examination. There i a formula heet at the back. You mut turn off all communication device before tarting thi exam, and leave

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

Conduction Heat transfer: Unsteady state

Conduction Heat transfer: Unsteady state Conduction Heat tranfer: Unteady tate Chapter Objective For olving the ituation that Where temperature do not change with poition. In a imple lab geometry where temperature vary alo with poition. Near

More information

Module 1: Learning objectives

Module 1: Learning objectives Heat and Ma Tranfer Module 1: Learning objective Overview: Although much of the material of thi module will be dicued in greater detail, the objective of thi module i to give you a reaonable overview of

More information

QUESTION ANSWER. . e. Fourier number:

QUESTION ANSWER. . e. Fourier number: QUESTION 1. (0 pts) The Lumped Capacitance Method (a) List and describe the implications of the two major assumptions of the lumped capacitance method. (6 pts) (b) Define the Biot number by equations and

More information

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body Chapter 1 Radiation Heat ranfer Special opic: Heat ranfer from the Human Body 1-7C Ye, roughly one-third of the metabolic heat generated by a peron who i reting or doing light work i diipated to the environment

More information

Time-Dependent Conduction :

Time-Dependent Conduction : Time-Dependent Conduction : The Lumped Capacitance Method Chapter Five Sections 5.1 thru 5.3 Transient Conduction A heat transfer process for which the temperature varies with time, as well as location

More information

Determination of Flow Resistance Coefficients Due to Shrubs and Woody Vegetation

Determination of Flow Resistance Coefficients Due to Shrubs and Woody Vegetation ERDC/CL CETN-VIII-3 December 000 Determination of Flow Reitance Coefficient Due to hrub and Woody Vegetation by Ronald R. Copeland PURPOE: The purpoe of thi Technical Note i to tranmit reult of an experimental

More information

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 7: External Forced Convection Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Distinguish between

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Nae: CIRCLE YOUR DIVISION: Div. 1 (9:30 a) Div. (11:30 a) Div. 3 (:30 p) Prof. Ruan Prof. Nai Mr. Singh School of Mechanical Engineering Purdue Univerity ME315 Heat and Ma Tranfer Exa # edneday, October

More information

PROBLEM Node 5: ( ) ( ) ( ) ( )

PROBLEM Node 5: ( ) ( ) ( ) ( ) PROBLEM 4.78 KNOWN: Nodal network and boundary conditions for a water-cooled cold plate. FIND: (a) Steady-state temperature distribution for prescribed conditions, (b) Means by which operation may be extended

More information

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1.

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1. .P. Holman:.09) T ur : 0 Ue table - to determine the hape factor for thi problem. D :.m r : 0.5m π r S : T phere : 0 r D S 7.0 m :.7 m Ue eq. - to calculate the heat lo. q : S T phere T ur q 57.70 .P.

More information

Exam 1 Solutions. +4q +2q. +2q +2q

Exam 1 Solutions. +4q +2q. +2q +2q PHY6 9-8-6 Exam Solution y 4 3 6 x. A central particle of charge 3 i urrounded by a hexagonal array of other charged particle (>). The length of a ide i, and charge are placed at each corner. (a) [6 point]

More information

Chapter 10: Steady Heat Conduction

Chapter 10: Steady Heat Conduction Chapter 0: Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another hermodynamics gives no indication of

More information

A Single Particle Thermal Model for Lithium Ion Batteries

A Single Particle Thermal Model for Lithium Ion Batteries A Single Particle Thermal Model for Lithium Ion Batterie R. Painter* 1, B. Berryhill 1, L. Sharpe 2 and S. Keith Hargrove 2 1 Civil Engineering, Tenneee State Univerity, Nahville, TN, USA 2 Mechanical

More information

Radiation Heat Transfer

Radiation Heat Transfer CM30 ranport I Part II: Heat ranfer Radiation Heat ranfer Profeor Faith Morrion Department of Chemical Engineering Michigan echnological Univerity CM30 ranport Procee and Unit Operation I Part : Heat ranfer

More information

MECH 375, Heat Transfer Handout #5: Unsteady Conduction

MECH 375, Heat Transfer Handout #5: Unsteady Conduction 1 MECH 375, Heat Transfer Handout #5: Unsteady Conduction Amir Maleki, Fall 2018 2 T H I S PA P E R P R O P O S E D A C A N C E R T R E AT M E N T T H AT U S E S N A N O PA R T I - C L E S W I T H T U

More information

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties.

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties. PROBLEM 5.5 KNOWN: Diameter and radial temperature of AISI 00 carbon steel shaft. Convection coefficient and temperature of furnace gases. FIND: me required for shaft centerline to reach a prescribed temperature.

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Tranfer Example 1. Melt Spinning of Polymer fiber 2. Heat tranfer in a Condener 3. Temperature control of a Re-entry vehicle Fiber pinning The fiber pinning proce preent a unique engineering

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 6 th Edition, John Wiley and Sons Chapter 7 External

More information

Chapter 7: External Forced Convection

Chapter 7: External Forced Convection Chapter 7: External Forced Convection Yoav Peles Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute Copyright The McGraw-Hill Companies, Inc. Permission required

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. External Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Drag and Heat Transfer in External flow Fluid flow over solid bodies is responsible

More information

Types of Heat Transfer

Types of Heat Transfer ype of Heat ranfer * Dvz Dt x k d dx v S * * v Gr z HH vap lat uject in the coure conduction (Fourier Law) forced convection (due to flow) ource term free convection (fluid motion due to denity variation

More information

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow Green-Kubo formula with ymmetrized correlation function for quantum ytem in teady tate: the hear vicoity of a fluid in a teady hear flow Hirohi Matuoa Department of Phyic, Illinoi State Univerity, Normal,

More information

Performance analysis of heat exchanger with different types of fins

Performance analysis of heat exchanger with different types of fins 1. www.ierjournal.org International Engineering Reearch Journal (IERJ) Special Iue 3 Page 3-370, 201, ISSN 2395-121 ISSN 2395-121 Performance analyi of heat exchanger with different type of fin #1 Mi.

More information

3. Internal Flow General Concepts:

3. Internal Flow General Concepts: 3. Internal Flow General Concet: ρ u u 4 & Re Re, cr 2300 μ ν π μ Re < 2300 lainar 2300 < Re < 4000 tranitional Flow Regie : Re > 4000 turbulent Re > 10,000 fully turbulent (d) 1 (e) Figure 1 Boundary

More information

ME 3560 Fluid Mechanics

ME 3560 Fluid Mechanics Sring 018 ME 3560 Fluid Mechanic Chater III. Elementary Fluid Dynamic The Bernoulli Equation 1 Sring 018 3.1 Newton Second Law A fluid article can exerience acceleration or deceleration a it move from

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II External Flows 1 Introduction In this chapter we will consider several fundamental flows, namely: the flat plate, the cylinder, the sphere, several other body shapes, and banks

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

PROBLEM 7.2 1/3. (b) The local convection coefficient, Eq. 7.23, and heat flux at x = L are 1/2 1/3

PROBLEM 7.2 1/3. (b) The local convection coefficient, Eq. 7.23, and heat flux at x = L are 1/2 1/3 PROBLEM 7. KNOWN: Temperature and velocity of engine oil. Temperature and length of flat plate. FIND: (a) Velocity and thermal boundary layer thickness at trailing edge, (b) Heat flux and surface shear

More information

SOLUTION MANUAL CHAPTER 12

SOLUTION MANUAL CHAPTER 12 SOLUION MANUAL CHAPER CONEN SUBSECION PROB NO. In-ext Concept Quetion a-g Concept problem - Brayton cycle, ga turbine - Regenerator, Intercooler, nonideal cycle 5-9 Ericon cycle 0- Jet engine cycle -5

More information

2.7 Aerosols and coagulation

2.7 Aerosols and coagulation 1 Note on 1.63 Advanced Environmental Fluid Mechanic Intructor: C. C. Mei, 1 ccmei@mit.edu, 1 617 53 994 December 1,.7 Aerool and coagulation [Ref]: Preent, Kinetic Theory of Gae Fuch, Mechanic of Aerool

More information

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3 CEE 34 Aut 004 Midterm # Anwer all quetion. Some data that might be ueful are a follow: ρ water = 1000 kg/m 3 = 1.94 lug/ft 3 water = 9810 N/m 3 = 6.4 lb/ft 3 1 kw = 1000 N-m/ 1. (10) A 1-in. and a 4-in.

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Analysis of cavitating flow through a venturi

Analysis of cavitating flow through a venturi Vol. 0(), pp. 67-7, June, 0 DOI: 0.897/SRE0.60 Article Number:BFBED8 ISSN 99-8 Copyright 0 Author() retain the copyright of thi article http://www.academicjournal.org/sre Scientific Reearch and Eay Full

More information

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient Ŕ periodica polytechnica Mechanical Engineering 54/1 21 15 2 doi: 1.3311/pp.me.21-1.3 web: http:// www.pp.bme.hu/ me c Periodica Polytechnica 21 RESERCH RTICLE Calculation of the temperature of boundary

More information

Fluid-structure coupling analysis and simulation of viscosity effect. on Coriolis mass flowmeter

Fluid-structure coupling analysis and simulation of viscosity effect. on Coriolis mass flowmeter APCOM & ISCM 11-14 th December, 2013, Singapore luid-tructure coupling analyi and imulation of vicoity effect on Corioli ma flowmeter *Luo Rongmo, and Wu Jian National Metrology Centre, A*STAR, 1 Science

More information

Determination of Flow Resistance Coefficients Due to Shrubs and Woody Vegetation

Determination of Flow Resistance Coefficients Due to Shrubs and Woody Vegetation December 000 Determination of Flow Reitance Coefficient Due to hrub and Woody Vegetation by Ronald R. Copeland PURPOE: The purpoe of thi Technical Note i to tranmit reult of an experimental invetigation

More information

Blackbody radiation. Main radiation laws. Sun as an energy source. Solar spectrum and solar constant.

Blackbody radiation. Main radiation laws. Sun as an energy source. Solar spectrum and solar constant. Lecture 3. lackbody radiation. Main radiation law. Sun a an energy ource. Solar pectrum and olar contant. Objective:. Concept of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium..

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

PROBLEM 9.3. KNOWN: Relation for the Rayleigh number. FIND: Rayleigh number for four fluids for prescribed conditions. SCHEMATIC:

PROBLEM 9.3. KNOWN: Relation for the Rayleigh number. FIND: Rayleigh number for four fluids for prescribed conditions. SCHEMATIC: PROBEM.3 KNOWN: Relation for the Rayleigh number. FIND: Rayleigh number for four fluids for prescribed conditions. ASSUMPTIONS: (1 Perfect gas behavior for specified gases. PROPERTIES: Table A-4, Air (400K,

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 Next Topic Internal Flow» Velocity Boundary Layer Development» Thermal Boundary Layer Development» Energy Balance Velocity Boundary Layer Development Velocity

More information

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation Chapter 7 Eternal Forced Convection N f ( *,, Pr) N f (, Pr) he Empirical Method he empirical correlation N C he vale of C, m, n are often independent of natre of the flid m Pr n he vale of C, m, n var

More information

Given A gas turbine power plant operating with air-standard Brayton cycle

Given A gas turbine power plant operating with air-standard Brayton cycle ME-200 Fall 2017 HW-38 1/4 Given A ga turbine power plant operating with air-tandard Brayton cycle Find For ientropic compreion and expanion: (a) Net power (kw) produced by the power plant (b) Thermal

More information

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used? 1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?. During unsteady state heat transfer, can the temperature

More information

Potential energy of a spring

Potential energy of a spring PHYS 7: Modern Mechanic Spring 0 Homework: It i expected that a tudent work on a a homework #x hortly after lecture #x, ince HWx i on material of LECx. While the due date for HW are typically et to about

More information

Mass Transfer (Stoffaustausch) Fall Semester 2014

Mass Transfer (Stoffaustausch) Fall Semester 2014 Ma Tranfer (Stoffautauch) Fall Semeter 4 Tet 5 Noember 4 Name: Legi-Nr.: Tet Duration: 45 minute Permitted material: NOT permitted: calculator copy of Culer book Diffuion ( nd or rd edition) printout of

More information

Types of Heat Transfer

Types of Heat Transfer Type of Heat Tranfer Dv Dt x = k dt dx v T S 2 * * ( v GrT * z = + z H vap lat uject in the coure conduction (Fourier Law forced convection (due to flow ource term free convection (fluid motion due to

More information

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model.

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model. Excerpt from the Proceeding of the COMSOL Conference 2010 Boton Modeling of Tranport and Reaction in a Catalytic Bed Uing a Catalyt Particle Model. F. Allain *,1, A.G. Dixon 1 1 Worceter Polytechnic Intitute

More information

DYNAMICS OF ROTATIONAL MOTION

DYNAMICS OF ROTATIONAL MOTION DYNAMICS OF ROTATIONAL MOTION 10 10.9. IDENTIFY: Apply I. rad/rev SET UP: 0 0. (400 rev/min) 419 rad/ 60 /min EXECUTE: 0 419 rad/ I I (0 kg m ) 11 N m. t 800 EVALUATE: In I, mut be in rad/. 10.. IDENTIFY:

More information

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 4: Transient Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Assess when the spatial

More information

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical INDUCTION MOTO 1 CONSTUCTION Baic part of an AC motor : rotor, tator, encloure The tator and the rotor are electrical circuit that perform a electromagnet. CONSTUCTION (tator) The tator - tationary part

More information

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases.

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases. ME 323 Sample Final Exam. 120pts total True/False. Circle the correct answer. (1pt each, 7pts total) 1. A solid angle of 2π steradians defines a hemispherical shell. T F 2. The Earth irradiates the Sun.

More information

Empirical Co - Relations approach for solving problems of convection 10:06:43

Empirical Co - Relations approach for solving problems of convection 10:06:43 Empirical Co - Relations approach for solving problems of convection 10:06:43 10:06:44 Empirical Corelations for Free Convection Use T f or T b for getting various properties like Re = VL c / ν β = thermal

More information

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation Chapter 7 Eternal Forced Convection N f ( *,Re,Pr) N f (Re,Pr) he Empirical Method he empirical correlation N C Re he vale of C, m, n are often independent of natre of the flid m Pr n he vale of C, m,

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time.

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time. PROBLEM 5.1 NOWN: Electrical heater attached to backside of plate while front surface is exposed to convection process (T,h); initially plate is at a uniform temperature of the ambient air and suddenly

More information

MODULE 4: ABSORPTION

MODULE 4: ABSORPTION MODULE 4: ABSORPTION LECTURE NO. 3 4.4. Deign of packed tower baed on overall ma tranfer coefficient * From overall ma tranfer equation, N K ( y y ) one can write for packed tower a N A K y (y-y*) Then,

More information

University of Rome Tor Vergata

University of Rome Tor Vergata University of Rome Tor Vergata Faculty of Engineering Department of Industrial Engineering THERMODYNAMIC AND HEAT TRANSFER HEAT TRANSFER dr. G. Bovesecchi gianluigi.bovesecchi@gmail.com 06-7259-727 (7249)

More information

ELECTROMAGNETIC WAVES AND PHOTONS

ELECTROMAGNETIC WAVES AND PHOTONS CHAPTER ELECTROMAGNETIC WAVES AND PHOTONS Problem.1 Find the magnitude and direction of the induced electric field of Example.1 at r = 5.00 cm if the magnetic field change at a contant rate from 0.500

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

Computation of Velocity, Pressure and Temperature Profiles in a Cryogenic Turboexpander

Computation of Velocity, Pressure and Temperature Profiles in a Cryogenic Turboexpander HMT-6-C8 8 th National & 7 th ISHMT-ASME Heat and Ma Tranfer Conference January 4-6, 6 IIT Guwahati, India Computation of Velocity, Preure and Temperature Profile in a Cryogenic Turboexpander Subrata K.

More information

ME 322 Worksheet Winter 2007 Introduction to Compressible Flow

ME 322 Worksheet Winter 2007 Introduction to Compressible Flow ME 3 Workheet Winter 007 Introduction to Compreible Flow 1. A two-liter cylindrical tank, 10 cm in diameter, ha a piton that fit perfectly. The piton doe not leak, and there i no friction between the piton

More information

Thermal Contact Resistance of Non-Conforming Rough Surfaces Part 2: Thermal Model

Thermal Contact Resistance of Non-Conforming Rough Surfaces Part 2: Thermal Model Thermal Contact Reitance of Non-Conforming Rough Surface Part 2: Thermal Model M. Bahrami J. R. Culham M. M. Yovanovich G. E. Schneider Department of Mechanical Engineering Microelectronic Heat Tranfer

More information

Forced Convection Around Obstacles

Forced Convection Around Obstacles Chapter 4 Forced Convection Around Obstacles 4.1. Description of the flow This chapter is devoted to heat transfer on bodies immersed in a stream. We consider a solid characterized by the length scale

More information

Heat Transfer. Solutions for Vol I _ Classroom Practice Questions. Chapter 1 Conduction

Heat Transfer. Solutions for Vol I _ Classroom Practice Questions. Chapter 1 Conduction Heat ransfer Solutions for Vol I _ lassroom Practice Questions hapter onduction r r r K K. ns: () ase (): Higher thermal conductive material is inside and lo thermal conductive material is outside K K

More information

Research Article EFFECT OF PITCH SPACING OF DELTA-WINGLETS ON THERMAL CHARACTERISTICS IN A HEAT EXCHANGER TUBE

Research Article EFFECT OF PITCH SPACING OF DELTA-WINGLETS ON THERMAL CHARACTERISTICS IN A HEAT EXCHANGER TUBE Tranaction of the TSME (2016) Vol. 4, No. 2, 166 174 Journal of Reearch and Application in Mechanical Engineering Copyright 2016 by TSME ISSN 2229-2152 print DOI: 10.14456/jrame.2016.17 Reearch Article

More information

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C)

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C) PROBLEM 1.2 KNOWN: Inner surface temperature and thermal conductivity of a concrete wall. FIND: Heat loss by conduction through the wall as a function of ambient air temperatures ranging from -15 to 38

More information

Numerical analysis of heating characteristics of a slab in a bench scale reheating furnace

Numerical analysis of heating characteristics of a slab in a bench scale reheating furnace International Journal of Heat and Ma Tranfer 5 (27) 219 223 Technical Note Numerical analyi of heating characteritic of a lab in a bench cale reheating furnace Sang Heon Han a, *, Seung Wook Baek a, Sang

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

Australian Solar Cooling Interest Group (ausscig) Conference 2013

Australian Solar Cooling Interest Group (ausscig) Conference 2013 Autralian Solar Cooling Interet Group (auscig) Conference 1 Timothy Anderon1,Mike Duke, and Jame Caron 1 School of Engineering, Auckland Univerity of Technology School of Engineering, Univerity of Waikato

More information

Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March :00 to 8:00 PM

Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March :00 to 8:00 PM Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March 2008 7:00 to 8:00 PM Instructions: This is an open-book eam. You may refer to your course tetbook, your class notes and your graded

More information

Lecture 7 Grain boundary grooving

Lecture 7 Grain boundary grooving Lecture 7 Grain oundary grooving The phenomenon. A polihed polycrytal ha a flat urface. At room temperature, the urface remain flat for a long time. At an elevated temperature atom move. The urface grow

More information

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b .6 A upercritical team power plant ha a high preure of 0 Ma and an exit condener temperature of 50 C. he maximum temperature in the boiler i 000 C and the turbine exhaut i aturated vapor here i one open

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

Spot-on: Safe Fuel/Air Compression

Spot-on: Safe Fuel/Air Compression Spot-on: Safe Fuel/Air Compreion Problem preented by Robert Hart and Kevin Hughe Veeder-Root Participant: Jeffrey Bank Joeph Fehribach Alitair Fitt John Ockendon Colin Pleae Don Schwendeman Burt Tilley

More information

In Chapter 6 we considered the general and theoretical aspects of forced

In Chapter 6 we considered the general and theoretical aspects of forced cen58933_ch07.qxd 9/4/2002 12:12 PM Page 367 EXTERNAL FORCED CONVECTION CHAPTER 7 In Chapter 6 we considered the general and theoretical aspects of forced convection, with emphasis on differential formulation

More information

HEAT STORAGE CAPABILITY ON ASYMMETRICALLY COOLED WALL BY TRANSIENT HEAT FLOW

HEAT STORAGE CAPABILITY ON ASYMMETRICALLY COOLED WALL BY TRANSIENT HEAT FLOW HEAT STORAGE CAPABILITY ON ASYMMETRICALLY COOLED WALL BY TRANSIENT HEAT FLOW L. Hach 1, Y.Katoh 2 1 Intitute of Applied Phyic and Mathematic, Faculty of Chemical Engineering, Univerity of Pardubice, 532

More information

MAE320-HW7A. 1b). The entropy of an isolated system increases during a process. A). sometimes B). always C). never D).

MAE320-HW7A. 1b). The entropy of an isolated system increases during a process. A). sometimes B). always C). never D). MAE0-W7A The homework i due Monday, November 4, 06. Each problem i worth the point indicated. Copying o the olution rom another i not acceptable. (). Multiple choice (0 point) a). Which tatement i invalid

More information

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions 3.85 Proble Set 6 Radiation, Intro to Fluid Flow Solution. Radiation in Zirconia Phyical Vapor Depoition (5 (a To calculate thi viewfactor, we ll let S be the liquid zicronia dic and S the inner urface

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 10 August 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 10 August 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 0 August 2005 Final Examination R. Culham & M. Bahrami This is a 2 - /2 hour, closed-book examination. You are permitted to use one 8.5 in. in. crib

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume Analysis 4. Differential Analysis of Fluid Flow 5. Viscous

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: June 13, 2008 time: 14.00-17.00 Note: There are 4 questions in total. The first one consists of independent subquestions. If possible and necessary, guide numbers

More information

Characterization of the heat transfer in open-cell metal foam

Characterization of the heat transfer in open-cell metal foam Characterization of the heat tranfer in open-cell metal foam C. Briano-Calcagno, J. Fontánez-Delgado & N. Dukhan Department of Mechanical Engineering, Univerity of Puerto Rico Mayagüez, Mayagüez, P.R.,

More information

Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases

Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases Scotton P. Rossi D. University of Padova, Department of Geosciences Excerpt from the Proceedings of the 2012 COMSOL Conference

More information

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Internal Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction Pipe circular cross section. Duct noncircular cross section. Tubes small-diameter

More information