Frequency Response of Amplifiers

Size: px
Start display at page:

Download "Frequency Response of Amplifiers"

Transcription

1 類比電路設計 ( Frequency epne f Aplifier h-uan an Natinal hun-h Univerity epartent f Electrical Eneer Overview ead B azavi hapter 6 ntrductin n thi lecture, we tudy the repne f le-tae and differential aplifier the frequency da Fllw a review f baic cncept, we analyze the hih-frequency behavir f cn-urce and cn-ate tae and urce fllwer Next, we deal with cacde and differential aplifier Fally, we cnider the effect f active current irrr n the frequency repne f differential pair Anal-ircuit e 6- h-uan an / EE, NHU

2 Miller effect Applicatin f Miller effect t a flat ipedance That i, Anal-ircuit e 6- h-uan an / EE, NHU Aciatin f ple with nde acade f aplifier A A The verall tranfer functin can be written a ( N P We ay ay each nde the circuit cntribute ne ple t the tranfer functin The ple i detered by the ttal capacitance een fr each nde t rund ultiplied by the ttal reitance een at the nde t rund n eneral, the tranfer functin i iven a where each ple with ne nde f the circuit, ie, j τ j, where τ j i the prduct f the capacitance and reitance een at nde j t rund ( Aj Av j j j j Anal-ircuit e 6-3 h-uan an / EE, NHU

3 n-urce tae Hih-frequency del f a tae (Aue λ 0 and M perate aturatin At the put nde, the ttal capacitance een fr t rund i equal t G ( A v G, where A v The put ple i [ ( ] G (Miller ultiplicatin G At the put nde, the ttal capacitance een t rund i equal t B ( A v G B G The put ple i ( B G Anal-ircuit e 6-4 h-uan an / EE, NHU n-urce tae (cnt d Mdel fr calculatin f put ipedance (f i relative lare, the effect f i nelected The put ple: where eq G G eq G G G G G Thu, the put ple i ruhly equal t ( G G eq G B Fally, we urie that the tranfer functin i ( Anal-ircuit e 6-5 h-uan an / EE, NHU

4 n-urce tae (cnt d Equivalent circuit f tae ( ( G ξ G ( G [ ( ( ] ( G 0 where ξ G G G B G B G B 0 zer Nte the tranfer functin i f ecnd rder even thruh the circuit cnta three capacitr While the denatr appear rather cplicated, it can yield tuitive exprein fr the tw ple, p and p, if we aue p << p Writ the denatr a p p p p p p G G B ple Anal-ircuit e 6-6 h-uan an / EE, NHU n-urce tae (cnt d f p i uch farther fr p (ie, p << p, then We bta p p p p p p p p p ( ( p ( G G G G G f ( G G i neliible, then f G >> ( G ( G B /, B then G G B B ( G G ( G B ( G G p G [ ( ] G G p ( GG GB ( G B G B G B Anal-ircuit e 6-7 h-uan an / EE, NHU

5 n-urce tae (cnt d Feedfrward path thruh G The tranfer functin exhibit a zer iven by z / G cated the riht half plane, the zer arie fr direct cupl f the put t the put thruh G at very hih frequency Nte that a zer the riht half plane trduce tability iue feedback aplifier Anal-ircuit e 6-8 h-uan an / EE, NHU n-urce tae (cnt d alculatin f the zer a tae er: ( 0 z Fr a fite, thi ean that ( z 0 and hence the put can be hrted t rund at the frequency with n current Therefre, the current thruh G and M are equal and ppite: G z That i, z / G Anal-ircuit e 6-9 h-uan an / EE, NHU

6 n-urce tae (cnt d nput ipedance At hih frequency, the effect f the put nde ut be taken t accunt ( G B ( G B ( hence G At frequencie where ( G B << and B <<,, dicat that the put ( G ipedance i priarily capacitive G B n fact, if G i lare, it prvide a lw-ipedance path between the ate and dra f M, yield the equivalent circuit that / and appear parallel with the put Anal-ircuit e 6-0 h-uan an / EE, NHU urce fllwer urce fllwer G [ G ( G] Tranfer functin: ( G ( G GG G ( G G er: The tranfer functin cnta a zer the left half plane Thi i becaue the al cnducted by G at hih frequencie add with the ae plarity t the al prduced by the tric tranitr Ple: f the tw ple f the tranfer functin are aued far apart, then the da ple i p G G G G Al, if 0, then p / ( G Anal-ircuit e 6- h-uan an / EE, NHU

7 urce fllwer (cnt d nput ipedance G i red, we have G Anal-ircuit e G b G G b At relative lw frequencie, b >> and G b b b b G b dicat that the equivalent put capacitance i equal t G b / ( b By Miller apprxiatin: The lw-frequency a A v / ( b Thu, eq G ( A v G b / ( b, and, ttal At hih-frequencie, b << and G 6- h-uan an / EE, NHU G G G b b Neative reitr urce fllwer (cnt d Output ipedance G i nelected, G G G G At lw frequencie, / At very hih frequencie,, becaue G hrt the ate and urce > < Anal-ircuit e 6-3 h-uan an / EE, NHU

8 6-4 h-uan an / EE, NHU Anal-ircuit e urce fllwer (cnt d Equivalent put ipedance f a urce fllwer f, fd, and : Take /, /, then That i, the dependence f upn iplie that if a urce fllwer i driven by a lare reitance, then it exhibit ubtantial ductive behavir G G G G 6-5 h-uan an / EE, NHU Anal-ircuit e n-ate tae G tae at hih frequencie nput ipedance, where ce nw depend n, it i difficult t aciate a ple with the put nde b, where G B (, where G B At lw frequency, Thu, An iprtant prperty f G tae i that it exhibit n Miller ultiplicatin f capacitance, ptentially achiev a wide band ( ( b b v A ( ( ( ( A b b b v ( b b r

9 n-ate tae (cnt d G tae Tranfer functin: ( r ( ( The a at lw frequencie i equal t r nput ipedance: r b A r creae, apprache /( b and hence the put ple can be defed a p, b r [ r ( r ] ( b r Anal-ircuit e 6-6 h-uan an / EE, NHU acde tae Hih-frequency del f a cacde tae acde tae tae (put ipedance G tae (uppre the iller effect Ga: A Nde A: Nde : Nde : p, A p, p, b G b b G b G B B G ( B G n actual de, p, i typically chen t be farther fr the ri than the ther tw Thi chice play an iprtant rle the tability f p ap Anal-ircuit e 6-7 h-uan an / EE, NHU

10 6-8 h-uan an / EE, NHU Anal-ircuit e acde tae (cnt d iplified del f a cacde tae with a current urce ( / ( G ( / ( fr r >> and r / >> (ie, >, hence We can fd that the ple at nde i iven by / Nelect G and, we have ( r r, where r ( ( ( ( r r r r / 6-9 h-uan an / EE, NHU Anal-ircuit e ifferential pair ifferential pair Equivalent circuit fr cn-de put f the put ple i uch farther fr the ri than i the ple at nde P, the cn-de rejectin f the circuit derade cniderably at hih frequencie ( 3, r A P M v Half-circuit equivalent

11 ifferential pair (cnt d Effect f hih-frequency upply nie differential pair f the upply vltae cnta hih-frequency nie and the circuit exhibit iatche, the reult cn-de ditance at nde P lead t a differential nie cpnent at the put A trade-ff between vltae headr and M: T iize the headr cnued by M 3, it width i axiized, trduc ubtantial capacitance at the urce f M and M and derad the hih-frequency M The iue bece re eriu at lw upply vltae Anal-ircuit e 6-0 h-uan an / EE, NHU ifferential pair (cnt d ifferential pair with current-urce lad Nde G i an ac rund The put ple i iven by ( r r 3, the dant ple Anal-ircuit e 6- h-uan an / EE, NHU

12 ifferential pair (cnt d Hih-frequency behavir f differential pair with active current irrr Mirrr ple: 3 p, E E, where E dente the ttal capacitance at E t rund E : G3, G4, B3, B, and the iller effect f G and G4 Anal-ircuit e 6- h-uan an / EE, NHU ifferential pair (cnt d Hih-frequency del f differential pair with active current irrr Theven equivalent: N r N, r N Aued / P << r P, E P E ( and 4 E r r P N E E P ( r, we have NrN ( P E [( r r r ( r ] ( r r N P P E P P N ce the iller ple i typical quite hiher anitude than the put ple, we et P N P p P ( rn rp ( r N r P E r P ( P r N P and p E ( r N r P fr P r N >> Anal-ircuit e 6-3 h-uan an / EE, NHU

13 ifferential pair (cnt d n additin, there i a zer with a P anitude f the left half E plane The appearance f uch a zer i that the circuit cnit f a lw path (M, M 3 and M 4 parallel with a fat path (M and M epreent the tw path, we have A ( / p( / p A0( / p ( / ( / p 0 p A0 / That i, the yte exhibit a zer at p p Anal-ircuit e 6-4 h-uan an / EE, NHU ifferential pair (cnt d etere the zer (ethd Fr zer frequency, 0 and 4 We have 4 P E 4 E ( P E Thu, P E E ( P E z P E Anal-ircuit e 6-5 h-uan an / EE, NHU

General Considerations Miller Effect Association of Poles with Nodes Common Source Stage Source Follower Differential Pair

General Considerations Miller Effect Association of Poles with Nodes Common Source Stage Source Follower Differential Pair Frequency epone of Aplifier General onideration Miller Effect Aociation of Pole with Node oon ource tage ource Follower ifferential Pair Haan Abouhady Univerity of Pari I eference B. azavi, eign of Analog

More information

Microelectronic Circuits II. Ch 8 : Frequency Response

Microelectronic Circuits II. Ch 8 : Frequency Response Micrelectrnic ircuit II h 8 : Frequency ene 8. -Frequency ene f S & E Amlifier NU EE 8.- Intrductin - ain i cntant indeendent f the frequency f the inut nal à infinite andidth à Nt true, - midand : ain

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 EEN474/704: (nal) VSI ircuit Desin Sprin 0 ecture 3: Flded ascde & Tw Stae Miller OT Sa Paler nal & Mixed-Sinal enter Texas &M University nnunceents Exa dates reinder Exa is n pr. 0 Exa 3 is n May 3 (3PM-5PM)

More information

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes. Name Student ID II. [25 pt] Thi quetin cnit f tw unrelated part. Part 1. In the circuit belw, bulb 1-5 are identical, and the batterie are identical and ideal. Bxe,, and cntain unknwn arrangement f linear

More information

Section J8b: FET Low Frequency Response

Section J8b: FET Low Frequency Response ection J8b: FET ow Frequency epone In thi ection of our tudie, we re o to reiit the baic FET aplifier confiuration but with an additional twit The baic confiuration are the ae a we etiated ection J6 of

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design Introduction to CMO F Interated Circuit Dein III. Low Noie Aplifier Introduction to CMO F Interated Circuit Dein Fall 0, Prof. JianJun Zhou III- Outline Fiure of erit Baic tructure Input and output atchin

More information

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o. ecture 13 - Bt C-C Cnverter Pwer Electrnic Step-Up r Bt cnverter eliver C pwer frm a lwer vltage C level ( ) t a higher la vltage. i i i + v i c T C (a) + R (a) v 0 0 i 0 R1 t n t ff + t T i n T t ff =

More information

ECEN326: Electronic Circuits Fall 2017

ECEN326: Electronic Circuits Fall 2017 EEN36: Electronic ircuits Fall 07 ecture 5: Frequency esponse a Palero Analo & Mixed-al enter Texas A&M University Announceents HW5 due / Exa /6 9:0-0:0 (0 extra utes) losed book w/ one standard note sheet

More information

CHAPTER 9 FREQUENCY RESPONSE

CHAPTER 9 FREQUENCY RESPONSE TE 9 FEQUENY ESONSE hapte Outline 9. w Fequency epne the S and E pliie 9. ntenal apacitive Eect and the ih Fequency del 9. ih Fequency epne the S and E pliie 9.4 Tl the nalyi the ih Fequency epne pliie

More information

ECEN326: Electronic Circuits Fall 2017

ECEN326: Electronic Circuits Fall 2017 ECEN36: Electronic Circuits Fall 07 Lecture 7: Feedback Sa Palero Analo & Mixed-Sal Center Texas A&M University Announceents Hoework 7 due /9 Exa 3 / 8:00-0:00 Closed book w/ one standard note sheet 8.5

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 EEN474/704: (Anal) LSI cut De S 08 Lectue 8: Fequency ene Sa Pale Anal & Mxed-Sal ente Texa A&M Unety Annunceent & Aenda HW Due Ma 6 ead aza hate 3 & 6 Annunceent & Aenda n-suce A Fequency ene Oen-cut

More information

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator Oscillatr Intrductin f Oscillatr Linear Oscillatr Wien Bridge Oscillatr Phase-Shift Oscillatr L Oscillatr Stability Oscillatrs Oscillatin: an effect that repeatedly and regularly fluctuates abut the mean

More information

Copyright Paul Tobin 63

Copyright Paul Tobin 63 DT, Kevin t. lectric Circuit Thery DT87/ Tw-Prt netwrk parameters ummary We have seen previusly that a tw-prt netwrk has a pair f input terminals and a pair f utput terminals figure. These circuits were

More information

Measurement and Instrumentation Lecture Note: Strain Measurement

Measurement and Instrumentation Lecture Note: Strain Measurement 0-60 Meurement nd Intrumenttin Lecture Nte: Strin Meurement eview f Stre nd Strin Figure : Structure under tenin Frm Fig., xil tre σ, xil trin, trnvere trin t, Pin' rti ν, nd Yung mdulu E re σ F A, dl

More information

Lecture 21. REMINDERS Review session: Fri.11/9,3 5PMin306Soda in 306 (HP Auditorium) Midterm #2 (Thursday 11/15, 3:30 5PM in Sibley Auditorium)

Lecture 21. REMINDERS Review session: Fri.11/9,3 5PMin306Soda in 306 (HP Auditorium) Midterm #2 (Thursday 11/15, 3:30 5PM in Sibley Auditorium) Lecture EMINES eiew session: Fri./9,3 5PM306Soda 306 (HP Auditoriu) Midter # (Thursday /5, 3:30 5PM Sibley Auditoriu) OUTLINE Frequency esponse eiew of basic concepts hih frequency MOSFET odel S stae G

More information

Lecture 17: Frequency Response of Amplifiers

Lecture 17: Frequency Response of Amplifiers ecture 7: Frequency epone of Aplifier Gu-Yeon Wei Diiion of Engineering and Applied Science Harard Unierity guyeon@eec.harard.edu Wei Oeriew eading S&S: Chapter 7 Ski ection ince otly decribed uing BJT

More information

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction Chapter 8 Sectin 8.4 thrugh 8.6 Internal Flw: Heat Tranfer Crrelatin T v cu p cp ( rt) k r T T k x r r r r r x In fully-develped regin Neglect axial cnductin u ( rt) r x r r r r r x T v T T T T T u r x

More information

Analog and Mixed-Signal Center at Texas A&M University. I abc V 1. i o. + g m V 2. Edgar Sánchez-Sinencio

Analog and Mixed-Signal Center at Texas A&M University. I abc V 1. i o. + g m V 2. Edgar Sánchez-Sinencio Anal and Mixed-Sinal enter at Texa A&M Univerity I abc V V + - i Edar Sánchez-Sinenci ELEN 607 (ESS) SPRING 5 Vltae Multitae Trancnductance Apliier Tplie r LV Pwer Supply. Gd vltae ain can be btained uin

More information

Disclaimer: This lab write-up is not

Disclaimer: This lab write-up is not Diclaier: Thi lab write-up i nt t be cpied, in whle r in part, unle a prper reference i ade a t the urce. (It i trngly recended that yu ue thi dcuent nly t generate idea, r a a reference t explain cplex

More information

Limitations for Op Amps due to input signal

Limitations for Op Amps due to input signal ECEN 607 (ESS) Liittin fr Op Ap due t input ignl TANSIENT ESPONSE.- Let u cnider vltge fllwer nd deterine it tep repne Then v in 0 v Thu fr i v (t) i u t r i t Tking the invere Lplce it yield t / v t e

More information

MODULE TITLE : ELECTRONICS TOPIC TITLE : AMPLIFIERS LESSON 1 : FEEDBACK

MODULE TITLE : ELECTRONICS TOPIC TITLE : AMPLIFIERS LESSON 1 : FEEDBACK MODULE TITLE : ELECTONICS TOPIC TITLE : AMPLIFIES LESSON : FEEDBACK EL - 3 - INTODUCTION This lessn trduces the ideas f negative feedback, which we shw can vercme the disadvantages f wide parameter variat

More information

LaPlace Transforms in Design and Analysis of Circuits Part 2: Basic Series Circuit Analysis

LaPlace Transforms in Design and Analysis of Circuits Part 2: Basic Series Circuit Analysis LaPlace Tranfrm in Deign and Analyi f Circuit Part : Baic Serie Circuit Analyi Cure N: E- Credit: PDH Thma G. Bertenhaw, Ed.D., P.E. Cntinuing Educatin and Develpment, Inc. 9 Greyridge Farm Curt Stny Pint,

More information

Nonisothermal Chemical Reactors

Nonisothermal Chemical Reactors he 471 Fall 2014 LEUE 7a Nnithermal hemical eactr S far we have dealt with ithermal chemical reactr and were able, by ug nly a many pecie ma balance a there are dependent react t relate reactr ize, let

More information

Chapter 11 Frequency Response. EE105 - Spring 2007 Microelectronic Devices and Circuits. High Frequency Roll-off of Amplifier. Gain Roll-off Thru C L

Chapter 11 Frequency Response. EE105 - Spring 2007 Microelectronic Devices and Circuits. High Frequency Roll-off of Amplifier. Gain Roll-off Thru C L EE05 - Spr 2007 Microelectronic Devices and ircuits ecture 9 Frequency Response hapter Frequency Response. General onsiderations.2 Hih-Frequency Models of Transistors.3 Frequency Response of S Staes.4

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

Inertial Mass of Charged Elementary Particles

Inertial Mass of Charged Elementary Particles David L. Bergan 1 Inertial Mass Inertial Mass f Charged Eleentary Particles David L. Bergan Cn Sense Science P.O. Bx 1013 Kennesaw, GA 30144-8013 Inertial ass and its prperty f entu are derived fr electrdynaic

More information

Chapter 9 Compressible Flow 667

Chapter 9 Compressible Flow 667 Chapter 9 Cmpreible Flw 667 9.57 Air flw frm a tank thrugh a nzzle int the tandard atmphere, a in Fig. P9.57. A nrmal hck tand in the exit f the nzzle, a hwn. Etimate (a) the tank preure; and (b) the ma

More information

OP AMP CHARACTERISTICS

OP AMP CHARACTERISTICS O AM CHAACTESTCS Static p amp limitatins EFEENCE: Chapter 5 textbk (ESS) EOS CAUSED BY THE NUT BAS CUENT AND THE NUT OFFSET CUENT Op Amp t functin shuld have fr the input terminals a DC path thrugh which

More information

PHYSICS 151 Notes for Online Lecture 4.1

PHYSICS 151 Notes for Online Lecture 4.1 PHYSICS 5 Nte r Online ecture 4. Peridicity Peridic ean that ethin repeat itel. r exaple, eery twenty-ur hur, the ae a cplete rtatin. Heartbeat are an exaple peridic behair. I yu l at heartbeat n an electrcardira,

More information

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical).

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical). Principles f Organic Chemistry lecture 5, page LCAO APPROIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (catin, anin r radical).. Draw mlecule and set up determinant. 2 3 0 3 C C 2 = 0 C 2 3 0 = -

More information

GUC (Dr. Hany Hammad) 9/19/2016

GUC (Dr. Hany Hammad) 9/19/2016 UC (Dr. Hny Hmmd) 9/9/6 ecture # ignl flw grph: Defitin. Rule f Reductin. Mn Rule. ignl-flw grph repreenttin f : ltge urce. ive gle-prt device. ignl Flw rph A ignl-flw grph i grphicl men f prtryg the reltinhip

More information

Richard s Transformations

Richard s Transformations 4/27/25 Rihard Tranfrmatin.d /7 Rihard Tranfrmatin Reall the put impedane f hrt-iruited and peniruited tranmiin le tub. j tan β, β t β, β Nte that the put impedane are purely reatie jut like lumped element!

More information

1) p represents the number of holes present. We know that,

1) p represents the number of holes present. We know that, ECE650R : Reliability Physics f Nanelectrnic Devices Lecture 13 : Features f FieldDependent NBTI Degradatin Date : Oct. 11, 2006 Classnte : Saakshi Gangwal Review : Pradeep R. Nair 13.0 Review In the last

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Example: High-frequency response of a follower

Example: High-frequency response of a follower Example: Hih-requency response o a ollower o When body eects are cluded, db actually appears between dra and round. ce both termals o db are rounded, it does not aect the circuit. o d is also between the

More information

ENG2410 Digital Design Sequential Circuits: Part B

ENG2410 Digital Design Sequential Circuits: Part B ENG24 Digital Design Sequential Circuits: Part B Fall 27 S. Areibi Schl f Engineering University f Guelph Analysis f Sequential Circuits Earlier we learned hw t analyze cmbinatinal circuits We will extend

More information

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below. hapter 4, Slutn. H ( H(, where H π H ( φ H ( tan - ( Th a hghpa lter. The requency repne the ame a that r P.P.4. except that. Thu, the ketche H and φ are hwn belw. H.77 / φ 9 45 / hapter 4, Slutn. H(,

More information

. (7.1.1) This centripetal acceleration is provided by centripetal force. It is directed towards the center of the circle and has a magnitude

. (7.1.1) This centripetal acceleration is provided by centripetal force. It is directed towards the center of the circle and has a magnitude Lecture #7-1 Dynamics f Rtatin, Trque, Static Equilirium We have already studied kinematics f rtatinal mtin We discussed unifrm as well as nnunifrm rtatin Hwever, when we mved n dynamics f rtatin, the

More information

BEAM LOADING EFFECTS IN PROTON LINACS. R. L. G1uckstern Yale University

BEAM LOADING EFFECTS IN PROTON LINACS. R. L. G1uckstern Yale University Octber 21, 1963 BEAM LOADING EFFECTS IN PROTON LINACS R. L. G1ucktern Yale Univerity Intrductin A bunched beam f charged particle paing thrugh a cavity interact with the field in the cavity. It cuple,

More information

PHYSICS 151 Notes for Online Lecture #23

PHYSICS 151 Notes for Online Lecture #23 PHYSICS 5 Ntes fr Online Lecture #3 Peridicity Peridic eans that sething repeats itself. r exaple, eery twenty-fur hurs, the Earth aes a cplete rtatin. Heartbeats are an exaple f peridic behair. If yu

More information

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance summary C = ε A / d = πε L / ln( b / a ) ab C = 4πε 4πε a b a b >> a Chapter 16 Electric Energy and Capacitance Capacitance Q=CV Parallel plates, caxial cables, Earth Series and parallel 1 1 1 = + +..

More information

Chapter 9. Design via Root Locus

Chapter 9. Design via Root Locus Chapter 9 Deign via Rt Lcu Intrductin Sytem perfrmance pecificatin requirement imped n the cntrl ytem Stability Tranient repne requirement: maximum verht, ettling time Steady-tate requirement :.. errr

More information

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC. PHYSIS 536 Experiment 4: D Pwer Supply I. Intrductin The prcess f changing A t D is investigated in this experiment. An integrated circuit regulatr makes it easy t cnstruct a high-perfrmance vltage surce

More information

Harmonic Motion (HM) Oscillation with Laminar Damping

Harmonic Motion (HM) Oscillation with Laminar Damping Harnic Mtin (HM) Oscillatin with Lainar Daping If yu dn t knw the units f a quantity yu prbably dn t understand its physical significance. Siple HM r r Hke' s Law: F k x definitins: f T / T / Bf x A sin

More information

Lecture 2: Single-particle Motion

Lecture 2: Single-particle Motion Lecture : Single-particle Mtin Befre we start, let s l at Newtn s 3 rd Law Iagine a situatin where frces are nt transitted instantly between tw bdies, but rather prpagate at se velcity c This is true fr

More information

6. Frequency Response

6. Frequency Response 6. Frequency esnse eading: Sedra & Sith: hater.6, hater 3.6 and hater 9 (MOS rtins, EE 0, Winter 0, F. Najabadi Tyical Frequency resnse an liier U t nw we have ignred the caacitrs. T include the caacitrs,

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Design of Third-Order Square-Root-Domain Filters Using State-Space Synthesis Method

Design of Third-Order Square-Root-Domain Filters Using State-Space Synthesis Method Deign f Third-Order Square-Rt-Dmain Filter Uing State-Space Synthei Methd Ali Kircay 1, M. Serhat Keerliglu, F. Zuhal Sagi 1 1 Harran Univerity, Electrical and Electrnic Engineering, 63 Sanliurfa, Turkey

More information

INTRODUCTION TO ENZYME KINETICS

INTRODUCTION TO ENZYME KINETICS Bilgy 00; Lecture 0 INTRODUCTION TO ENZYME INETICS enzye actie (catalytic) sites. stabilize substrate binding with sae cllectin f nn-calent interactins which theseles stabilize enzye 3-D cnfratins H-bnds,

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2016

ECEN474/704: (Analog) VLSI Circuit Design Spring 2016 EEN7/70: (nal) VS icuit Desin Spin 06 ectue 0: Siple OT Sa Pale nal & Mixed-Sinal ente Texas &M Uniesity nnunceents H is due tday H is due Ma 0 Exa is n p 9:0-0:5PM (0 exta inutes) lsed bk w/ ne standad

More information

Linearization of the Output of a Wheatstone Bridge for Single Active Sensor. Madhu Mohan N., Geetha T., Sankaran P. and Jagadeesh Kumar V.

Linearization of the Output of a Wheatstone Bridge for Single Active Sensor. Madhu Mohan N., Geetha T., Sankaran P. and Jagadeesh Kumar V. Linearizatin f the Output f a Wheatstne Bridge fr Single Active Sensr Madhu Mhan N., Geetha T., Sankaran P. and Jagadeesh Kumar V. Dept. f Electrical Engineering, Indian Institute f Technlgy Madras, Chennai

More information

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων «Low Noie Aplifier» Φώτης Πλέσσας fplea@e-ce.uth.r F eceiver Antenna BPF LNA BPF Mixer BPF3 IF Ap Deodulator F front end LO LNA De Conideration

More information

Coupled Inductors and Transformers

Coupled Inductors and Transformers Cupled nductrs and Transfrmers Self-nductance When current i flws thrugh the cil, a magnetic flux is prduced arund it. d d di di v= = = dt di dt dt nductance: = d di This inductance is cmmnly called self-inductance,

More information

Mixed Signal IC Design Notes set 4: Broadband Design Techniques

Mixed Signal IC Design Notes set 4: Broadband Design Techniques Mixed Sal C Des Notes set 4: Broadband Des Techniques Mark odwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax Gett ore bandwidth At this pot we have learned

More information

CHAPTER 13 FILTERS AND TUNED AMPLIFIERS

CHAPTER 13 FILTERS AND TUNED AMPLIFIERS HAPTE FILTES AND TUNED AMPLIFIES hapter Outline. Filter Traniion, Type and Specification. The Filter Tranfer Function. Butterworth and hebyhev Filter. Firt Order and Second Order Filter Function.5 The

More information

Lecture 20a. Circuit Topologies and Techniques: Opamps

Lecture 20a. Circuit Topologies and Techniques: Opamps Lecture a Circuit Tplgies and Techniques: Opamps In this lecture yu will learn: Sme circuit tplgies and techniques Intrductin t peratinal amplifiers Differential mplifier IBIS1 I BIS M VI1 vi1 Vi vi I

More information

Dr. Kasra Etemadi February 27, 2007

Dr. Kasra Etemadi February 27, 2007 Dr. Kasra Eteadi February 7, 7 Chapter 4:Transients Chapter 5: Sinusidal Surces Chapter 6: nnsinusidal surces Furier Trasr Transer Functin Filters Lwpass Filters Highpass Filters andpass Filters Surce

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2012

ECEN620: Network Theory Broadband Circuit Design Fall 2012 ECEN60: Netwrk Thery Bradband Circuit Design Fall 01 Lecture 16: VCO Phase Nise Sam Palerm Analg & Mixed-Signal Center Texas A&M University Agenda Phase Nise Definitin and Impact Ideal Oscillatr Phase

More information

General Amplifiers. Analog Electronics Circuits Nagamani A N. Lecturer, PESIT, Bangalore 85. Cascade connection - FET & BJT

General Amplifiers. Analog Electronics Circuits Nagamani A N. Lecturer, PESIT, Bangalore 85.  Cascade connection - FET & BJT Analg lectrnics Circuits Nagamani A N Lecturer, PST, Bangalre 85 mail nagamani@pes.edu General Amplifiers Cascade cnnectin - FT & BJT Numerical Cascde cnnectin arlingtn cnnectin Packaged arlingtn cnnectin

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 2100 Circuit Analysis Lessn 25 Chapter 9 & App B: Passive circuit elements in the phasr representatin Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 2100 Circuit Analysis Lessn

More information

The pn Junction. Φ = n. 2.1 The pn junction under forward bias (steady-state)

The pn Junction. Φ = n. 2.1 The pn junction under forward bias (steady-state) Pwer Electrnic. The pn unctin under frward ia (teady-tate) If the p-regin i externally pitively-iaed with repect t the n-regin a hwn in figure.3, the cl narrw and current flw freely. The emf pitive ptential

More information

7-84. Chapter 7 External Forced Convection

7-84. Chapter 7 External Forced Convection Chapter 7 External Frced Cnvectin 7-99 Wind i blwing ver the rf f a hue. The rate f heat tranfer thrugh the rf and the ct f thi heat l fr -h perid are t be deterined. Auptin Steady perating cnditin exit.

More information

Series and Parallel Resonances

Series and Parallel Resonances Series and Parallel esnances Series esnance Cnsider the series circuit shwn in the frequency dmain. The input impedance is Z Vs jl jl I jc C H s esnance ccurs when the imaginary part f the transfer functin

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Double-Boost DC to DC Converter

Double-Boost DC to DC Converter Dule-Bt D t D nverter JFJ van enurg ), J ae ) and D Niclae ) ) aal Univerity f Technlgy, Faculty f Engineering & Technlgy, P. Bag X0, anderijlark, 900, Suth Africa ) Univerity f Jhanneurg, Pwer & ntrl

More information

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will: Mcrelectrncs Crcut Analyss and Desn Dnald A. Neaen Chapter 4 Basc FET Aplfers In ths chapter, we wll: Inestate a snle-transstr crcut that can aplfy a sall, te-aryn nput snal Deelp sall-snal dels that are

More information

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

Chapter 3. Electric Flux Density, Gauss s Law and Divergence Chapter 3. Electric Flu Denity, Gau aw and Diergence Hayt; 9/7/009; 3-1 3.1 Electric Flu Denity Faraday Eperiment Cncentric phere filled with dielectric material. + i gien t the inner phere. - i induced

More information

T(s) 1+ T(s) 2. Phase Margin Test for T(s) a. Unconditionally Stable φ m = 90 o for 1 pole T(s) b. Conditionally Stable Case 1.

T(s) 1+ T(s) 2. Phase Margin Test for T(s) a. Unconditionally Stable φ m = 90 o for 1 pole T(s) b. Conditionally Stable Case 1. Lecture 49 Danger f Instability/Oscillatin When Emplying Feedback In PWM Cnverters A. Guessing Clsed Lp Stability Frm Open Lp Frequency Respnse Data. T(s) versus T(s) + T(s) 2. Phase Margin Test fr T(s)

More information

Determination of Static Orientation Using IMU Data Revision 1

Determination of Static Orientation Using IMU Data Revision 1 Determinatin f Static Orientatin Usin IMU Data Revisin 1 Determinatin f Static Orientatin frm IMU Accelermeter and Manetmeter Data Intrductin An imprtant applicatin f inertial data is the rientatin determinatin

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-3 Transductin Based n Changes in the Energy Stred in an Electrical ield Department f Mechanical Engineering Example:Capacitive Pressure Sensr Pressure sensitive capacitive device With separatin

More information

Hess Law - Enthalpy of Formation of Solid NH 4 Cl

Hess Law - Enthalpy of Formation of Solid NH 4 Cl Hess Law - Enthalpy f Frmatin f Slid NH 4 l NAME: OURSE: PERIOD: Prelab 1. Write and balance net inic equatins fr Reactin 2 and Reactin 3. Reactin 2: Reactin 3: 2. Shw that the alebraic sum f the balanced

More information

Grumman F-14 Tomcat Control Design BY: Chike Uduku

Grumman F-14 Tomcat Control Design BY: Chike Uduku Grumman F-4 Tmcat Cntrl Deign BY: Chike duku I. Atract SECTIONS II. III. IV. Deign jective eaured Cntant Deign V. Reult VI. VII. Cncluin Cmplete atla Cde I. Atract Deigning cntrller fr fighter jet i a

More information

Micro and Smart Systems

Micro and Smart Systems Micr and Smart Systems Lecture 33 OpAmps Circuits and signal cnditining fr micrsystems devices Prf K.N.Bhat, ECE Department, IISc Bangalre email: knbhat@gmail.cm Tpics fr Discussin Amplifiers and Op Amp

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Introductory Thoughts

Introductory Thoughts Flw Similarity By using the Buckingham pi therem, we have reduced the number f independent variables frm five t tw If we wish t run a series f wind-tunnel tests fr a given bdy at a given angle f attack,

More information

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 24 Prof. Steven Errede LECTURE NOTES 24 MAXWELL S EQUATIONS

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 24 Prof. Steven Errede LECTURE NOTES 24 MAXWELL S EQUATIONS UIUC Physics 435 M Fields & urces I Fall eester, 7 Lecture Ntes 4 Prf. teven rrede LCTUR NOT 4 MAXWLL QUATION Thus far, we have the fllwing fur Maxwell equatins (in differential fr): ivergence and curl

More information

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response.

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response. Due: Mnday Marh 4, 6 at the beginning f la ECE-: Linear Cntrl Sytem Hmewrk ) Fr the fllwing tranfer funtin, determine bth the imule rene and the unit te rene. Srambled Anwer: H ( ) H ( ) ( )( ) ( )( )

More information

Chapter 8. Root Locus Techniques

Chapter 8. Root Locus Techniques Chapter 8 Rt Lcu Technique Intrductin Sytem perfrmance and tability dt determined dby cled-lp l ple Typical cled-lp feedback cntrl ytem G Open-lp TF KG H Zer -, - Ple 0, -, -4 K 4 Lcatin f ple eaily fund

More information

A Kinetic Model Framework for Combined Diffusion and Adsorption Processes

A Kinetic Model Framework for Combined Diffusion and Adsorption Processes BRINKMANN, E.A. and KING, R.P. A kinetic del fraewrk fr cbined diffuin and adrptin prcee. APCOM 87. Prceeding f the Twentieth Internatinal Sypiu n the Applicatin f Cputer and Matheatic in the Mineral Indutrie.

More information

Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors

Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors Indian Jurnal f Pure & Applied Physics Vl. 49 July 20 pp. 494-498 Current/vltage-mde third rder quadrature scillatr emplying tw multiple utputs CCIIs and grunded capacitrs Jiun-Wei Hrng Department f Electrnic

More information

PRINCIPLES AND PRACTICE OF ENGINEERING ELECTRICAL AND COMPUTER ENGINEERING BREADTH MORNING SAMPLE TEST SOLUTIONS

PRINCIPLES AND PRACTICE OF ENGINEERING ELECTRICAL AND COMPUTER ENGINEERING BREADTH MORNING SAMPLE TEST SOLUTIONS PRINCIPES AND PRACTICE OF ENGINEERING EECTRICA AND COMPUTER ENGINEERING BREADTH MORNING SAMPE TEST SOUTIONS Slutin (and Tet) by Kenneth. Kaier, P.E., Ph.D. Prfer ECE Department Kettering Univerity Flint,

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS J.e. Sprtt PLP 924 September 1984 Plasma Studies University f Wiscnsin These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated.

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

Fig.L3.1. A cross section of a MESFET (a) and photograph and electrode layout (b).

Fig.L3.1. A cross section of a MESFET (a) and photograph and electrode layout (b). ECEN 5004, Sprin 2018 Active Microwave Circuit Zoya Popovic, Univerity of Colorado, Boulder LECURE 3 MICROWAVE RANSISOR OVERVIEW AND RANSISOR EQUIVALEN CIRCUIS L3.1. MESFES AND HEMS he ot coonly ued active

More information

Performance Evaluation and Control Technique of Large Ratio DC-DC Converter

Performance Evaluation and Control Technique of Large Ratio DC-DC Converter Internatinal Jurnal n Electrical Engineering and Infrmatic - Vlume, umber, 9 Perfrmance Evaluatin and Cntrl echnique f arge Rati DC-DC Cnverter Agu Purwadi, Ku Adi Nugrh, Firman Sangk, Kadek Fendy Sutrina

More information

Multiple choice questions (1) 1 Tesla = (c) NA -1 (d) NA -1 m -2

Multiple choice questions (1) 1 Tesla = (c) NA -1 (d) NA -1 m -2 Multiple chice questins (1) 1 Tesla = (a) N Am -1 (b) NA -1 m -1 NA -1 (d) NA -1 m - () Tw parallel straiht wires carryin currents in ppsite directin (a)repel each ther (b) attract each ther N effect prduce

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

Root locus ( )( ) The given TFs are: 1. Using Matlab: >> rlocus(g) >> Gp1=tf(1,poly([0-1 -2])) Transfer function: s^3 + 3 s^2 + 2 s

Root locus ( )( ) The given TFs are: 1. Using Matlab: >> rlocus(g) >> Gp1=tf(1,poly([0-1 -2])) Transfer function: s^3 + 3 s^2 + 2 s The given TFs are: 1 1() s = s s + 1 s + G p, () s ( )( ) >> Gp1=tf(1,ply([0-1 -])) Transfer functin: 1 ----------------- s^ + s^ + s Rt lcus G 1 = p ( s + 0.8 + j)( s + 0.8 j) >> Gp=tf(1,ply([-0.8-*i

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

PHYS College Physics II Final Examination Review

PHYS College Physics II Final Examination Review PHYS 1402- Cllege Physics II Final Examinatin Review The final examinatin will be based n the fllwing Chapters/Sectins and will cnsist f tw parts. Part 1, cnsisting f Multiple Chice questins, will accunt

More information

arxiv:hep-ph/ v1 2 Jun 1995

arxiv:hep-ph/ v1 2 Jun 1995 WIS-95//May-PH The rati F n /F p frm the analysis f data using a new scaling variable S. A. Gurvitz arxiv:hep-ph/95063v1 Jun 1995 Department f Particle Physics, Weizmann Institute f Science, Rehvt 76100,

More information

ECEN 4872/5827 Lecture Notes

ECEN 4872/5827 Lecture Notes ECEN 4872/5827 Lecture Ntes Lecture #5 Objectives fr lecture #5: 1. Analysis f precisin current reference 2. Appraches fr evaluating tlerances 3. Temperature Cefficients evaluatin technique 4. Fundamentals

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions:

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions: NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flw Reactr T T T T F j, Q F j T m,q m T m T m T m Aumptin: 1. Hmgeneu Sytem 2. Single Reactin 3. Steady State Tw type f prblem: 1. Given deired prductin rate,

More information