CHAPTER 9 FREQUENCY RESPONSE

Size: px
Start display at page:

Download "CHAPTER 9 FREQUENCY RESPONSE"

Transcription

1 TE 9 FEQUENY ESONSE hapte Outline 9. w Fequency epne the S and E pliie 9. ntenal apacitive Eect and the ih Fequency del 9. ih Fequency epne the S and E pliie 9.4 Tl the nalyi the ih Fequency epne pliie 9.5 le k at the ih Fequency epne 9.6 ih Fequency epne the and acde pliie NTUEE Electnic.. u 9

2 Fequency epne apliie idband: The equency ane inteet apliie ae capacit can be teated a ht cicuit and all capacit can be teated a pen cicuit ain i cntant and can be btained by all nal analyi w equency band: ain dp at equencie lwe than ae capacit can n lne be teated a ht cicuit The ain ll i ainly due t cuplin and by pa capacit ih equency band: ain dp at equencie hihe than Sall capacit can n lne teated a pen cicuit The ain ll i ainly due t paaitic capacitance the OSFET and JT NTUEE Electnic.. u 9

3 9. w Fequency epne the S and E pliie The S apliie Sall nal analyi: NTUEE Electnic.. u 9 S d d S d

4 eteinin the lwe d equency uplin and by pa capacit eult in a hih pa equency epne with thee ple the ple ae uiciently epaated de plt can be ued t evaluate the epne iplicity The lwe d equency i the hihet equency ple i typically the hihet equency ple due t all eitance the ple ae lcated clely The lwe d equency ha t be evaluated by the tane unctin which i e cplicated eteinin the ple equency by inpectin educe t ze nide each capacit epaately teat the the capacit a ht cicuit Find the ttal eitance between the teinal Selectin value cuplin and by pa capacit Thee capacit ae typically equied dicete apliie den S i it deteined t atiy needed and ae chen uch that ple ae 5 t 0 tie lwe than NTUEE Electnic.. u 9 4

5 The E apliie Sall nal analyi nidein the eect each capacit epaately nidein nly : NTUEE Electnic.. u 9 5

6 nidein nly E : nidein nly : NTUEE Electnic.. u 9 6 e E e E e b E e b

7 eteinin the lwe d equency uplin and by pa capacit eult in a hih pa equency epne with thee ple The lwe d equency i iply the hihet equency ple i the ple ae uiciently epaated The hihet equency ple i typically due t the all eitance E n appxiatin the lwe d equency i iven by Selectin value the cuplin and by pa capacit Thee capacit ae typically equied dicete apliie den E i it deteined t atiy needed and ae chen uch that ple ae 5 t 0 tie lwe than NTUEE Electnic.. u 9 7 E E

8 9. ntenal apacitive Eect and the ih Fequency del The OSFET device Thee ae baically tw type intenal capacitance in the OSFET ate capacitance eect: the ate electde a paallel plate capacit with ate xide in the iddle Junctin capacitance eect: the ucebdy and dainbdy ae pn junctin at evee bia The ate capacitive eect OSFET in tide ein: W OSFET in atuatin ein: W OSFET in cut ein: Ovelap capacitance: W v x v x v x v v v b W x The junctin capacitance Junctin capacitance include cpnent the btt ide and the ide wall The ipliied expein ae iven by b b0 S 0 db db0 0 NTUEE Electnic.. u 9 8

9 The hih equency OSFET del b b db n x v W W x x W b0 S db0 W v v x n x W Sipliied hih equency OSFET del Suce and bdy teinal ae hted play an iptant le in the apliie equency epne db i nelected t ipliy the analyi NTUEE Electnic.. u 9 9

10 The unity ain equency T The equency at which the cuent ain bece unity typically ued a an indicat t evaluate the hih equency capability Salle paaitic capacitance and ae deiable hihe unity ain equency i T i The unity ain equency can al be expeed a T T W nx W n x O n 4 O n W x The unity ain equency i tnly inluenced by the channel lenth ihe unity ain equency can be achieved a iven OSFET by inceain the bia cuent the vedive vltae NTUEE Electnic.. u 9 0

11 The JT evice ih equency hybid del: The bae chain diuin capacitance de : The bae eitte junctin capacitance je : The cllect bae junctin capacitance : The cut unity ain equency: NTUEE Electnic.. u 9 T F F de j0 je c 0 0 T T e b c e b b c h h 0

12 9. ih Fequency epne the S and E pliie The cn uce apliie idband ain: Fequency epne: The cn uce apliie ha ne ze and tw ple at hihe equencie The apliie ain all at equencie beynd idband The apliie bandwidth i deined by the d equency which i typically evaluated by the dinant ple the lwet equency ple in the tane unctin NTUEE Electnic.. u 9

13 Sipliied analyi technique uin the ain i nealy cntant Find the equivalent capacitance at the input with identical [ ] eq eq ille eect Nelect the all cuent at the utput { [ ]} [ ] The dinant ple i nally deteined by eq The equency epne the cn uce apliie i appxiated by a ST NTUEE Electnic.. u 9

14 The cn eitte apliie Sipliied analyi equency epne ille eect: eplacin with eq The epne i appxiated by a ST {[ ][ ]} NTUEE Electnic.. u 9 4

15 9.4 Ueul Tl the nalyi the ih Fequency epne pliie eteinin the uppe d equency eneal tane unctin the apliie The uppe d equency dinant ple epne One the ple i uch lwe equency than any the the ple and ze inant ple: the lwet equency ple i at leat 4 away the neaet ple ze NTUEE Electnic.. u 9 5 n F 4 4 j F F

16 Open cicuit tie cntant ethd t evaluate apliie bandwidth eneal tane unctin the apliie Open cicuit tie cntant exact lutin: inant ple appxiatin: ille Thee technique t eplace the bidin capacitance The equivalent input and utput ipedance ae: NTUEE Electnic.. u 9 6 n b n i i i b i i i n b b n n n b b b a a a F K K K

17 Tie cntant ethd* technique ued t deteine the ceicient the tane unctin the cicuit F eteinin b : b n b b a a Set all independent uce ze 0 ii: the equivalent eitance in paallel with i by teatin the the capacit a pen cicuit eteinin b : b Set all independent uce ze j ii: the equivalent eitance in paallel with i by teatin j ht and the the capacit pen a b n n NTUEE Electnic.. u 9 7

18 9.5 le k at the ih Fequency epne Exact analyi by tane unctin Tane unctin the apliie: Step : deine ndal vltae Step : ind banch cuent Step : K equatin Step 4: tane unctin by lvin the linea equatin le and ze: NTUEE Electnic.. u 9 8 ] [ } ] {[ ] [ } ] {[ ] [ ] [ ] [ ] [

19 nalyi by uin pen cicuit tie cntant Open cicuit tie cntant: NTUEE Electnic.. u 9 9 ] [ ] [

20 nalyi by uin ille Thee idin capacitance i eplaced by and Tane unctin and : Open cicuit tie cntant analyi baed n ille equivalent cicuit: NTUEE Electnic.. u 9 0 K K K K in ] [ in in in ] [ ] [

21 S apliie with a all uce eitance The cae whee uce eitance i ze 0 The tane unctin the apliie: [ idband ain: ] The tane unctin ha ne ple and ne ze [ ] idband ain and ze ae vitually unchaned The lwet equency ple n lne exit ain bandwidth pduct: ain ll beynd 0 ddecade The ain bece 0 d at t : t NTUEE Electnic.. u 9

22 9.6 ih Fequency epne the and acde pliie ih equency epne the apliie The equency epne by nelectin : idband ain: le: [ The uppe d equency Typically hihe than the S apliie The equency epne includin : Open cicuit tie cntant ethd in [ in ] ] NTUEE Electnic.. u 9

23 ih equency epne the cacde apliie Open cicuit tie cntant ethd: apacitance ee a eitance apacitance ee a eitance apacitance db + ee a eitance d apacitance + ee a eitance d d Eective tie cntant in [ ] d The uppe d equency: n the cae a lae : [ d d] db d The it te dinate i the ille ultiplie i lae typically with lae d and all t the de i needed extended bandwidth The idband ain dp a the value deceae tade exit between ain and bandwidth { [ d] d db } NTUEE Electnic.. u 9

24 n the cae a all : The it te bece neliible and the thid te dinate lae t the de 0 can be ued t bt the apliie ain n the cae ze : t Suay S and cacde apliie NTUEE Electnic.. u 9 4

25 ih equency epne the bipla cacde apliie The iila analyi technique can be applied bipla cacde apliie. NTUEE Electnic.. u 9 5

26 9.7 ih Fequency epne the Suce and Eitte Fllwe The uce llwe: w equency idband ain and utput eitance: ih equency chaacteitic: ih equency ze: Output bece 0 at = = ih equency ze: = T tanit unity ain equency The d equency : NTUEE Electnic.. u 9 6

27 The eitte llwe: w equency idband ain and utput eitance: e [ e ] ih equency chaacteitic: ih equency ze: Output bece 0 at = = e ih equency ze: = e T tanit unity ain equency The d equency : [ ] e NTUEE Electnic.. u 9 7

28 9.8 ih Fequency epne ieential pliie eitively aded OS ieential pliie: ieential de peatin: Ue dieential hal cicuit analyi dentical t the cae cn uce apliie an be appxiated by a dinant ple yte n de peatin: Ue cn de hal cicuit analyi The capacitance SS i niicant SS eult in a ze at lwe equency Othe capacitance hih equency ple and ze c c SS SS SS SS SS SS SS SS SS NTUEE Electnic.. u 9 8

29 n de ejectin ati : The equency dependence can be evaluated deceae at hihe equencie due t the ple d and the ze c NTUEE Electnic.. u 9 9

30 ctive aded OS ieential pliie: ieential de peatin: Equivalent capacitance: Tancnductance : The ple and ze ae at vey hih equencie in ple and ze nea unity ain equency NTUEE Electnic.. u 9 0 x db db db db T T id id id d d id id d id

31 The tane unctin the apliie: The dinant ple i typically id id id n de peatin: y takin SS int accunt the id band cn de ain: c SS SS SS SS SS 4 SS 4 ntibute t a ze at lwe equency n de ejectin ati : deceae due t the dinant ple d and the ze c NTUEE Electnic.. u 9

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have CHATER 7 Slutin f Execie E7. F Equatin 7.5, we have B gap Ki ( t ) c( θ) + Ki ( t ) c( θ 0 ) + Ki ( t ) c( θ 40 a b c ) Uing the expein given in the Execie tateent f the cuent, we have B gap K c( ωt )c(

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2016

ECEN474/704: (Analog) VLSI Circuit Design Spring 2016 EEN7/70: (nal) VS icuit Desin Spin 06 ectue 0: Siple OT Sa Pale nal & Mixed-Sinal ente Texas &M Uniesity nnunceents H is due tday H is due Ma 0 Exa is n p 9:0-0:5PM (0 exta inutes) lsed bk w/ ne standad

More information

which represents a straight line whose slope is C 1.

which represents a straight line whose slope is C 1. hapte, Slutin 5. Ye, thi claim i eanable ince in the abence any heat eatin the ate heat tane thugh a plain wall in teady peatin mut be cntant. But the value thi cntant mut be ze ince ne ide the wall i

More information

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi Eecses Fequency espnse EE 0, Fall 0, F. Najabad Eecse : Fnd the d-band an and the lwe cut- equency the aple belw. µ n (W/ 4 A/, t 0.5, λ 0, 0 µf, and µf Bth capacts ae lw- capacts. F. Najabad, EE0, Fall

More information

Frequency Response of Amplifiers

Frequency Response of Amplifiers 類比電路設計 (3349-004 Frequency epne f Aplifier h-uan an Natinal hun-h Univerity epartent f Electrical Eneer Overview ead B azavi hapter 6 ntrductin n thi lecture, we tudy the repne f le-tae and differential

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design f Analg Integated Cicuits Opeatinal Aplifies Design f Analg Integated Cicuits Fall 01, D. Guxing Wang 1 Outline Mdel f Opeatinal Aplifies Tw Stage CMOS Op Ap Telescpic Op Ap Flded-Cascde Op Ap Refeence

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 EEN474/704: (Anal) LSI cut De S 08 Lectue 8: Fequency ene Sa Pale Anal & Mxed-Sal ente Texa A&M Unety Annunceent & Aenda HW Due Ma 6 ead aza hate 3 & 6 Annunceent & Aenda n-suce A Fequency ene Oen-cut

More information

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi Execises f Cascde plifies ECE 0, Fall 0, F. Najabadi F. Najabadi, ECE0, Fall 0 /6 Execise : Cpute assue and Eey Cascde stae inceases by uble Cascde Execise : Cpute all indicated s, s, and i s. ssue tansists

More information

Microelectronics Circuit Analysis and Design. ac Equivalent Circuit for Common Emitter. Common Emitter with Time-Varying Input

Microelectronics Circuit Analysis and Design. ac Equivalent Circuit for Common Emitter. Common Emitter with Time-Varying Input Micelectnics Cicuit Analysis and Design Dnald A. Neamen Chapte 6 Basic BJT Amplifies In this chapte, we will: Undestand the pinciple f a linea amplifie. Discuss and cmpae the thee basic tansist amplifie

More information

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2 cte La ean S&S (5e: Sec. 7. S&S (6e: Sec. 8. In nteate ccuts, t s ffcult t fabcate essts. Instea, aplfe cnfuatns typcally use acte las (.e. las ae w acte eces. Ths can be ne usn a cuent suce cnfuatn,.e.

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 EEN474/704: (nal) VSI ircuit Desin Sprin 0 ecture 3: Flded ascde & Tw Stae Miller OT Sa Paler nal & Mixed-Sinal enter Texas &M University nnunceents Exa dates reinder Exa is n pr. 0 Exa 3 is n May 3 (3PM-5PM)

More information

Design of CMOS Analog Integrated Circuits. Basic Building Block

Design of CMOS Analog Integrated Circuits. Basic Building Block Desin of CMOS Analo Inteated Cicuits Fanco Malobeti Basic Buildin Block F. Malobeti : Desin of CMOS Analo Inteated Cicuits - Basic Buildin Block INERTER WITH ACTIE LOAD The simplest fom of ain stae, the

More information

Example

Example hapte Exaple.6-3. ---------------------------------------------------------------------------------- 5 A single hllw fibe is placed within a vey lage glass tube. he hllw fibe is 0 c in length and has a

More information

HRW 7e Chapter 13 Page 1 of 5

HRW 7e Chapter 13 Page 1 of 5 HW 7e Chapte Pae o 5 Halliday/enick/Walke 7e Chapte Gaitation The manitude o the oce o one paticle on the othe i ien by F = Gm m /, whee m and m ae the mae, i thei epaation, and G i the unieal aitational

More information

Microelectronic Circuits II. Ch 8 : Frequency Response

Microelectronic Circuits II. Ch 8 : Frequency Response Micrelectrnic ircuit II h 8 : Frequency ene 8. -Frequency ene f S & E Amlifier NU EE 8.- Intrductin - ain i cntant indeendent f the frequency f the inut nal à infinite andidth à Nt true, - midand : ain

More information

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470 Assignment 7 Paallel Resnance OBJECTIVE T investigate the paallel cnnectin f R,, and C. EQUIPMENT REQUIRED Qty Appaatus 1 Electicity & Electnics Cnstuct EEC470 1 Basic Electicity and Electnics Kit EEC471-1

More information

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where 6.55 Given: An inulated cylinder i initially divided int halve y a itn. On either ide the itn i a ga at a knwn tate. The itn i releaed and equiliriu i attained. Find: Deterine the inal reure, inal teerature,

More information

6. Frequency Response

6. Frequency Response 6. Frequency esnse eading: Sedra & Sith: hater.6, hater 3.6 and hater 9 (MOS rtins, EE 0, Winter 0, F. Najabadi Tyical Frequency resnse an liier U t nw we have ignred the caacitrs. T include the caacitrs,

More information

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

ANALOG ELECTRONICS DR NORLAILI MOHD NOH 24 ANALOG LTRONIS lass 5&6&7&8&9 DR NORLAILI MOHD NOH 3.3.3 n-ase cnfguatn V V Rc I π π g g R V /p sgnal appled t. O/p taken f. ted t ac gnd. The hybd-π del pdes an accuate epesentatn f the sall-sgnal

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Senss and Actuats Intductin t senss Sande Stuij (s.stuij@tue.nl) Depatment f Electical Engineeing Electnic Systems AMPLIFIES (Chapte 5.) Infmatin pcessing system nncntact sens cntact sens abslute sens

More information

5. Differential Amplifiers

5. Differential Amplifiers 5. iffeential plifies eain: Sea & Sith: Chapte 8 MOS ptins an Chapte.. ECE, Winte, F. Najabai iffeential an Cn-Me Sinals Cnsie a linea iuit with TWO inputs By supepsitin: efine: iffeene iffeential Me Cn

More information

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r 1 Intductin t Pe Unit Calculatins Cnside the simple cicuit f Figue 1 in which a lad impedance f L 60 + j70 Ω 9. 49 Ω is cnnected t a vltage suce. The n lad vltage f the suce is E 1000 0. The intenal esistance

More information

Can a watch-sized electromagnet deflect a bullet? (from James Bond movie)

Can a watch-sized electromagnet deflect a bullet? (from James Bond movie) Can a peon be blown away by a bullet? et' ay a bullet of a 0.06 k i ovin at a velocity of 300 /. And let' alo ay that it ebed itelf inide a peon. Could thi peon be thut back at hih peed (i.e. blown away)?

More information

ECEN326: Electronic Circuits Fall 2017

ECEN326: Electronic Circuits Fall 2017 ECEN6: Electnic Cicuits Fall 07 Lectue : Diffeential Aplifies Sa Pale Anal & Mixed-Sinal Cente Texas A&M Uniesity Annunceents Lab Use the updated Lab specs psted n the website Get the actual 6 lab kit

More information

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi Eercses r Frequency espnse EE 0, Wnter 0, F. Najabad Eercse : A Mdy the crcut belw t nclude a dnant ple at 00 Mz ( 00 Ω, k, k, / 00 Ω, λ 0, and nre nternal capactances the MOS. pute the dnant ple n the

More information

Dr. Kasra Etemadi February 27, 2007

Dr. Kasra Etemadi February 27, 2007 Dr. Kasra Eteadi February 7, 7 Chapter 4:Transients Chapter 5: Sinusidal Surces Chapter 6: nnsinusidal surces Furier Trasr Transer Functin Filters Lwpass Filters Highpass Filters andpass Filters Surce

More information

RESONANCE SERIES RESONANT CIRCUITS. 5/2007 Enzo Paterno 1

RESONANCE SERIES RESONANT CIRCUITS. 5/2007 Enzo Paterno 1 ESONANCE SEIES ESONANT CICUITS 5/007 Enzo Pateno ESONANT CICUITS A vey impotant cicuit, used in a wide vaiety o electical and electonic systems today (i.e. adio & television tunes), is called the esonant

More information

Lesson #15. Section BME 373 Electronics II J.Schesser

Lesson #15. Section BME 373 Electronics II J.Schesser Feedack and Ocillatr Len # Tranient and Frequency Repne Sectin 9.6- BME 373 Electrnic II J.Scheer 78 Cled-Lp Gain in the Frequency Dmain ume that th the pen-lp gain, and the eedack, β are unctin requency

More information

Exercises for Differential Amplifiers. ECE 102, Fall 2012, F. Najmabadi

Exercises for Differential Amplifiers. ECE 102, Fall 2012, F. Najmabadi Execises f iffeential mplifies ECE 0, Fall 0, F. Najmabai Execise : Cmpute,, an G if m, 00 Ω, O, an ientical Q &Q with µ n C x 8 m, t, λ 0. F G 0 an B F G. epeat the execise f λ 0. -. This execise shws

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

PHYSICS 151 Notes for Online Lecture 4.1

PHYSICS 151 Notes for Online Lecture 4.1 PHYSICS 5 Nte r Online ecture 4. Peridicity Peridic ean that ethin repeat itel. r exaple, eery twenty-ur hur, the ae a cplete rtatin. Heartbeat are an exaple peridic behair. I yu l at heartbeat n an electrcardira,

More information

Tutorial 5 Drive dynamics & control

Tutorial 5 Drive dynamics & control UNIVERSITY OF NEW SOUTH WALES Electic Dive Sytem School o Electical Engineeing & Telecommunication ELEC463 Electic Dive Sytem Tutoial 5 Dive dynamic & contol. The ollowing paamete ae known o two high peomance

More information

6. Cascode Amplifiers and Cascode Current Mirrors

6. Cascode Amplifiers and Cascode Current Mirrors 6. Cascde plfes and Cascde Cuent Ms Seda & Sth Sec. 7 (MOS ptn (S&S 5 th Ed: Sec. 6 MOS ptn & ne fequency espnse ECE 0, Fall 0, F. Najabad Cascde aplfe s a ppula buldn blck f ICs Cascde Cnfuatn CG stae

More information

Lecture #2 : Impedance matching for narrowband block

Lecture #2 : Impedance matching for narrowband block Lectue # : Ipedance atching f nawband blck ichad Chi-Hsi Li Telephne : 817-788-848 (UA) Cellula phne: 13917441363 (C) Eail : chihsili@yah.c.cn 1. Ipedance atching indiffeent f bandwidth ne pat atching

More information

Phys 331: Ch 9,.1-.3 Noninertial Frames: Acceleration, Ties

Phys 331: Ch 9,.1-.3 Noninertial Frames: Acceleration, Ties Py 33: C 9,.-.3 Nninetial ae: cceleatin, Tie i., /6 9.-. Nninetial ae: cceleatin, Tide, nula Velcity n., /9 9.4-.5 Nninetial ae: Tie deivative, Newtn nd. HW9a (9., 9.8) Nn-inetial ae Say yu dwn t te e

More information

OP AMP CHARACTERISTICS

OP AMP CHARACTERISTICS O AM CHAACTESTCS Static p amp limitatins EFEENCE: Chapter 5 textbk (ESS) EOS CAUSED BY THE NUT BAS CUENT AND THE NUT OFFSET CUENT Op Amp t functin shuld have fr the input terminals a DC path thrugh which

More information

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems CHAPTER 3: One-Dimenional Steady-State Conduction one pimay diection in which heat tanfe (geneally the mallet dimenion) imple model good epeentation fo olving engineeing poblem 3. Plane Wall 3.. hot fluid

More information

Radiation Resistance of System G( Iron Torus is not used as we can see ) ( ) 2

Radiation Resistance of System G( Iron Torus is not used as we can see ) ( ) 2 THE FNAL NVESTGATON ON TORS EXPERMENT N AQNO S SET P n the llwing invetigatin, we ae ging t exaine the equatin Syte G, accding t Pe Aquin clai. THE EQATONS FOR THE TORS EXPERMENT ARE THE FOLLOW: Velcity

More information

Lab 4: Frequency Response of CG and CD Amplifiers.

Lab 4: Frequency Response of CG and CD Amplifiers. ESE 34 Electronics aboratory B Departent of Electrical and Coputer Enineerin Fall 2 ab 4: Frequency esponse of CG and CD Aplifiers.. OBJECTIVES Understand the role of input and output ipedance in deterinin

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design Introduction to CMO F Interated Circuit Dein III. Low Noie Aplifier Introduction to CMO F Interated Circuit Dein Fall 0, Prof. JianJun Zhou III- Outline Fiure of erit Baic tructure Input and output atchin

More information

CHAPTER 17. Exercises. Using the expressions given in the Exercise statement for the currents, we have

CHAPTER 17. Exercises. Using the expressions given in the Exercise statement for the currents, we have CHATER 7 Execie E7. F Equtin 7.5, we hve B gp Ki ( t ) c( θ) + Ki ( t ) c( θ 0 ) + Ki ( t ) c( θ 40 b c ) Uing the expein given in the Execie tteent f the cuent, we hve B gp K c( ωt )c( θ ) + K c( ωt 40

More information

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

( ) Physics 1401 Homework Solutions - Walker, Chapter 9 Phyic 40 Conceptual Quetion CQ No Fo exaple, ey likely thee will be oe peanent deoation o the ca In thi cae, oe o the kinetic enegy that the two ca had beoe the colliion goe into wok that each ca doe on

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic ircuit Frequency epone hapter 7 A. Kruger Frequency epone- ee page 4-5 of the Prologue in the text Important eview co Thi lead to the concept of phaor we encountered in ircuit In Linear

More information

ME 236 Engineering Mechanics I Test #4 Solution

ME 236 Engineering Mechanics I Test #4 Solution ME 36 Enineein Mechnics I est #4 Slutin Dte: id, M 14, 4 ie: 8:-1: inutes Instuctins: vein hptes 1-13 f the tetbk, clsed-bk test, clcults llwed. 1 (4% blck ves utwd ln the slt in the pltf with speed f

More information

β A Constant-G m Biasing

β A Constant-G m Biasing p 2002 EE 532 Anal IC Des II Pae 73 Cnsan-G Bas ecall ha us a PTAT cuen efeence (see p f p. 66 he nes) bas a bpla anss pes cnsan anscnucance e epeaue (an als epenen f supply lae an pcess). Hw h we achee

More information

Analog and Mixed-Signal Center at Texas A&M University. I abc V 1. i o. + g m V 2. Edgar Sánchez-Sinencio

Analog and Mixed-Signal Center at Texas A&M University. I abc V 1. i o. + g m V 2. Edgar Sánchez-Sinencio Anal and Mixed-Sinal enter at Texa A&M Univerity I abc V V + - i Edar Sánchez-Sinenci ELEN 607 (ESS) SPRING 5 Vltae Multitae Trancnductance Apliier Tplie r LV Pwer Supply. Gd vltae ain can be btained uin

More information

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes. Name Student ID II. [25 pt] Thi quetin cnit f tw unrelated part. Part 1. In the circuit belw, bulb 1-5 are identical, and the batterie are identical and ideal. Bxe,, and cntain unknwn arrangement f linear

More information

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si 1 Esaki Diode hen the concentation of impuity atoms in a pn-diode is vey high, the depletion laye width is educed to about 1 nm. Classically, a caie must have an enegy at least equal to the potential-baie

More information

Second Order Fuzzy S-Hausdorff Spaces

Second Order Fuzzy S-Hausdorff Spaces Inten J Fuzzy Mathematical Achive Vol 1, 013, 41-48 ISSN: 30-34 (P), 30-350 (online) Publihed on 9 Febuay 013 wwweeachmathciog Intenational Jounal o Second Ode Fuzzy S-Haudo Space AKalaichelvi Depatment

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 6345 Sping 05 Po. David R. Jackson ECE Dept. Notes Oveview This set o notes teats cicula polaization, obtained b using a single eed. L W 0 0 W ( 0, 0 ) L Oveview Goals: Find the optimum dimensions

More information

Laser Doppler Velocimetry (LDV)

Laser Doppler Velocimetry (LDV) AeE 545 cla note #1 Lae Dopple elocimety (LD) Pat - 01 Hui Hu Depatment o Aeopace Engineeing, Iowa State Univeity Ame, Iowa 50011, U.S.A Technique o Flow elocity Meauement Intuive technique Pitot-tatic

More information

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo Infeence fo A One Way Factoial Expeiment By Ed Stanek and Elaine Puleo. Intoduction We develop etimating equation fo Facto Level mean in a completely andomized one way factoial expeiment. Thi development

More information

Section J8b: FET Low Frequency Response

Section J8b: FET Low Frequency Response ection J8b: FET ow Frequency epone In thi ection of our tudie, we re o to reiit the baic FET aplifier confiuration but with an additional twit The baic confiuration are the ae a we etiated ection J6 of

More information

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will: Mcrelectrncs Crcut Analyss and Desn Dnald A. Neaen Chapter 4 Basc FET Aplfers In ths chapter, we wll: Inestate a snle-transstr crcut that can aplfy a sall, te-aryn nput snal Deelp sall-snal dels that are

More information

EE 434 Lecture 16. Small signal model Small signal applications in amplifier analysis and design

EE 434 Lecture 16. Small signal model Small signal applications in amplifier analysis and design EE 434 Lecture 16 Sall sinal odel Sall sinal applications in aplifier analysis and desin Quiz 13 The of an n-channel OS transistor that has a quiescent current of 5A was easured to be 10A/. If the lenth

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Sensos an ctuatos Intouction to sensos Sane Stuijk (s.stuijk@tue.nl) Depatment of Electical Engineeing Electonic Systems PITIE SENSORS (hapte 3., 7., 9.,.6, 3., 3.) 3 Senso classification type / quantity

More information

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II Steady Heat ansfe ebuay, 7 Steady Heat ansfe wit Cnductin and Cnvectin ay Caett Mecanical Engineeing 375 Heat ansfe ebuay, 7 Outline eview last lectue Equivalent cicuit analyses eview basic cncept pplicatin

More information

r ˆr F = Section 2: Newton s Law of Gravitation m 2 m 1 Consider two masses and, separated by distance Gravitational force on due to is

r ˆr F = Section 2: Newton s Law of Gravitation m 2 m 1 Consider two masses and, separated by distance Gravitational force on due to is Section : Newton s Law of Gavitation In 1686 Isaac Newton published his Univesal Law of Gavitation. This explained avity as a foce of attaction between all atte in the Univese, causin e.. apples to fall

More information

3-7 FLUIDS IN RIGID-BODY MOTION

3-7 FLUIDS IN RIGID-BODY MOTION 3-7 FLUIDS IN IGID-BODY MOTION S-1 3-7 FLUIDS IN IGID-BODY MOTION We ae almost eady to bein studyin fluids in motion (statin in Chapte 4), but fist thee is one cateoy of fluid motion that can be studied

More information

Revision of Lecture Eight

Revision of Lecture Eight Revision of Lectue Eight Baseband equivalent system and equiements of optimal tansmit and eceive filteing: (1) achieve zeo ISI, and () maximise the eceive SNR Thee detection schemes: Theshold detection

More information

High-Impedance Surfaces with Graphene Patches as Absorbing. Electromagnetic Materials in Microwaves and Optics London, United Kingdom

High-Impedance Surfaces with Graphene Patches as Absorbing. Electromagnetic Materials in Microwaves and Optics London, United Kingdom Hih-Impedance Sufaces with Gaphene Patches as Absobin Stuctues at Micowaves A. B. Yakovlev, G. W. Hanson, and A. Mafi Thid Intenational Coness on Advanced Electomanetic Mateials in Micowaves and Optics

More information

Relativity and Astrophysics Lecture 38 Terry Herter. Rain fall source to distance observer Distance source to rain fall frame

Relativity and Astrophysics Lecture 38 Terry Herter. Rain fall source to distance observer Distance source to rain fall frame Light and Tides Relativity and Astophysics Lectue 38 Tey Hete Outline etic in the Rain Fame Inside the hoizon One-way motion Rain Fall Light Cones Photon Exchange Rain all souce to distance obseve Distance

More information

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIERS PEATINAL AMPLIFIES Why do we study them at ths pont???. pamps are ery useful electronc components. We hae already the tools to analyze practcal crcuts usng pamps 3. The lnear models for pamps nclude dependent

More information

5.1 Moment of a Force Scalar Formation

5.1 Moment of a Force Scalar Formation Outline ment f a Cuple Equivalent System Resultants f a Fce and Cuple System ment f a fce abut a pint axis a measue f the tendency f the fce t cause a bdy t tate abut the pint axis Case 1 Cnside hizntal

More information

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r 1. Shw that if the angula entu f a bb is deteined with espect t an abita pint, then H can be epessed b H = ρ / v + H. This equies substituting ρ = ρ + ρ / int H = ρ d v + ρ ( ω ρ ) d and epanding, nte

More information

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre Ch. : Invee Kinemati Ch. : Velity Kinemati The Inteventinal Cente eap: kinemati eupling Apppiate f ytem that have an am a wit Suh that the wit jint ae ae aligne at a pint F uh ytem, we an plit the invee

More information

A Novel Method for Modeling Magnetic Saturation in the Main Flux of Induction Machine

A Novel Method for Modeling Magnetic Saturation in the Main Flux of Induction Machine Poceeding of the 5th WSEAS Int. Conf. on Syte Science and Siulation in Engineeing, Teneife, Canay Ilan, Spain, Decebe 16-18, 2006 150 A Novel Method fo Modeling Magnetic Satuation in the Main Flux of Induction

More information

Chapter 10 Transistor amplifier design

Chapter 10 Transistor amplifier design hapter 0 Tranitor amplifier dein 0. tability conideration unconditionally table conditionally table tability factor ource tability circle load tability circle 0. mplifier dein for maximum ain unilateral

More information

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 1 Q1. A ht bject and a cld bject ae placed in themal cntact and the cmbinatin is islated. They tansfe enegy until they each a final equilibium

More information

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin technical poof TP A.4 Pot-impact cue ball tajectoy fo any cut anle, peed, and pin uppotin: The Illutated Pinciple of Pool and Billiad http://billiad.colotate.edu by Daid G. Alciatoe, PhD, PE ("D. Dae")

More information

6. The squirrel cage induction machine

6. The squirrel cage induction machine 6. The quiel cage induction achine TECHSCHE VERSTÄT Pof. A. Binde : Electical Machine and Dive 6/1 ntitut f Eletiche Enegieandlung FB 18 Squiel cage induction achine Coe quiel cage: fo big oe achine >

More information

Non-linear Analytical Extended Poincare's Model of Phase Saturated Self Excited Series Connected Synchronous Generators

Non-linear Analytical Extended Poincare's Model of Phase Saturated Self Excited Series Connected Synchronous Generators Seye Mhaa SHARIAMADAR 1, Jalal NAZARZADEH 2, Meha ABEDI 3 Science an Reeach Banch, Ilaic Aza Univeity (1), Shahe Univeity (2), Ai-Kabi Univeity f echnlgy (3) Nn-linea Analytical Extene Pincae' Mel f Phae

More information

CHE CHAPTER 11 Spring 2005 GENERAL 2ND ORDER REACTION IN TURBULENT TUBULAR REACTORS

CHE CHAPTER 11 Spring 2005 GENERAL 2ND ORDER REACTION IN TURBULENT TUBULAR REACTORS CHE 52 - CHPTE Sping 2005 GENEL 2ND ODE ECTION IN TUULENT TUUL ECTOS Vassilats & T, IChEJ. (4), 666 (965) Cnside the fllwing stichiety: a + b = P The ass cnsevatin law f species i yields Ci + vci =. Di

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 32 Electomagnetic Waves PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified P. Lam 8_11_2008 Topics fo Chapte 32 Maxwell s equations

More information

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating: Summa chapte 4. In chapte 4 dielectics ae discussed. In thse mateials the electns ae nded t the atms mlecules and cannt am fee thugh the mateial: the electns in insulats ae n a tight leash and all the

More information

A Modified Approach to Induction Motor Stator Voltage and Frequency Control.

A Modified Approach to Induction Motor Stator Voltage and Frequency Control. A Modiied Appoach to nduction Moto Stato oltage and Fequency Contol. C.U. Ogbuka, M.Eng. and M.U. Agu, Ph.D. Depatent o Electical Engineeing, Unieity o Nigeia, Nukka, Enugu State. E-ail: ucogbuka@yahoo.co

More information

Disclaimer: This lab write-up is not

Disclaimer: This lab write-up is not Diclaier: Thi lab write-up i nt t be cpied, in whle r in part, unle a prper reference i ade a t the urce. (It i trngly recended that yu ue thi dcuent nly t generate idea, r a a reference t explain cplex

More information

Combustion Chamber. (0.1 MPa)

Combustion Chamber. (0.1 MPa) ME 354 Tutial #10 Winte 001 Reacting Mixtues Pblem 1: Detemine the mle actins the pducts cmbustin when ctane, C 8 18, is buned with 00% theetical ai. Als, detemine the dew-pint tempeatue the pducts i the

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

A) N B) 0.0 N C) N D) N E) N

A) N B) 0.0 N C) N D) N E) N Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

More information

EECE488: Analog CMOS Integrated Circuit Design. 3. Single-Stage Amplifiers

EECE488: Analog CMOS Integrated Circuit Design. 3. Single-Stage Amplifiers EECE488: Analo CM Inteated Cicuit esin 3. inle-tae Aplifies hahia Miabbasi epatent of Electical and Copute Enineein Uniesity of Bitish Colubia shahia@ece.ubc.ca Technical contibutions of Peda Lajeadi in

More information

Lecture 17: Frequency Response of Amplifiers

Lecture 17: Frequency Response of Amplifiers ecture 7: Frequency epone of Aplifier Gu-Yeon Wei Diiion of Engineering and Applied Science Harard Unierity guyeon@eec.harard.edu Wei Oeriew eading S&S: Chapter 7 Ski ection ince otly decribed uing BJT

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

Per Unit Analysis. Single-Phase systems

Per Unit Analysis. Single-Phase systems Per Unit Analyi The per unit method of power ytem analyi eliminate the need for converion of voltae, current and impedance acro every tranformer in the circuit. n addition, the need to tranform from 3-

More information

ANALYSIS OF FILL FACTOR LOSSES IN THIN FILM CdS/CdTe PHOTOVOLTAIC DEVICES

ANALYSIS OF FILL FACTOR LOSSES IN THIN FILM CdS/CdTe PHOTOVOLTAIC DEVICES ANALYSIS OF FILL FACTOR LOSSES IN THIN FILM CdS/CdTe PHOTOVOLTAIC DEVICES T. Ptlg, N. Spalatu, V. Cibanu,. Hiie *, A. Mere *, V. Mikli *, V. Valdna * Department Physics, Mldva State University, 60, A.

More information

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων «Low Noie Aplifier» Φώτης Πλέσσας fplea@e-ce.uth.r F eceiver Antenna BPF LNA BPF Mixer BPF3 IF Ap Deodulator F front end LO LNA De Conideration

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Detailed solution of IES 2014 (ECE) Conventional Paper II. solve I 0 and use same formula again. Saturation region

Detailed solution of IES 2014 (ECE) Conventional Paper II. solve I 0 and use same formula again. Saturation region etailed olution of IS 4 (C) Conventional Pape II qv qv Sol. (a) IC I e Ie K K 4 I =.7 Fo I C = m olve I and ue ame fomula again K IC V ln 5ln 4 q I.7 =.8576 Volt Sol. (b) VGS VS Vupply 5V N MOS channel,

More information

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC LEAP FOG TEHNQUE Opeatnal Smulatn f L Ladde Fltes L pttype lw senstvty One fm f ths technque s called Leapf Technque Fundamental Buldn Blcks ae - nteats - Secnd-de ealzatns Fltes cnsdeed - LP - BP - HP

More information

Surface and Interface Science Physics 627; Chemistry 542. Lecture 10 March 1, 2013

Surface and Interface Science Physics 627; Chemistry 542. Lecture 10 March 1, 2013 Suface and Inteface Science Physics 67; Chemisty 54 Lectue 0 Mach, 03 Int t Electnic Ppeties: Wk Functin,Theminic Electn Emissin, Field Emissin Refeences: ) Wduff & Delcha, Pp. 40-4; 46-484 ) Zangwill

More information

ECEG 351 Electronics II Spring 2017

ECEG 351 Electronics II Spring 2017 ECEG 351 Electronics Sprin 017 Review Topics for Exa #3 Please review the Exa Policies section of the Exas pae at the course web site. You should especially note the followin: 1. You will be allowed to

More information

VIII. Further Aspects of Edge Diffraction

VIII. Further Aspects of Edge Diffraction VIII. Futhe Aspects f Edge Diffactin Othe Diffactin Cefficients Oblique Incidence Spheical Wave Diffactin by an Edge Path Gain Diffactin by Tw Edges Numeical Examples Septembe 3 3 by H.L. Betni Othe Diffactin

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVEITY OF CAIFONIA Collee of Enineerin Departent of Electrical Enineerin and Coputer cience E. Alon Hoework # olution EEC 40 P. Nuzzo Ue the EEC40 90n CMO proce in all hoework and project unle noted

More information

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12 CTU 4 ] NWTON W O GVITY -The gavity law i foulated fo two point paticle with ae and at a ditance between the. Hee ae the fou tep that bing to univeal law of gavitation dicoveed by NWTON. a Baed on expeiental

More information

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

Solution: (a) C 4 1 AI IC 4. (b) IBC 4 C A C C R A C R C R C sin 9 sin. A cuent f is maintaine in a single cicula lp f cicumfeence C. A magnetic fiel f is iecte paallel t the plane f the lp. (a) Calculate the magnetic mment f the lp. (b) What

More information

Chapter 19 Webassign Help Problems

Chapter 19 Webassign Help Problems Chapte 9 Webaign Help Poblem 4 5 6 7 8 9 0 Poblem 4: The pictue fo thi poblem i a bit mileading. They eally jut give you the pictue fo Pat b. So let fix that. Hee i the pictue fo Pat (a): Pat (a) imply

More information

Dr. Ali M Eltamaly. Increasing. Fig.1 Speed-torque characteristic for separately excited or shunt DC motors at different external armature resistance

Dr. Ali M Eltamaly. Increasing. Fig.1 Speed-torque characteristic for separately excited or shunt DC motors at different external armature resistance King Su Univeity t Seete 47-48H Cllege f Engineeing Finl Ex Electicl Engineeing Deptent ie: 3.0 h. EE435-Electic Dive.. Anwe All Quetin: Quetin () Explin with the i f equtin, cuve n tte the wbck f the

More information

Summary 7. ELECTROMAGNETIC JOINT. ROTATING MAGNETIC FIELD. SPACE-PHASOR THEORY... 2

Summary 7. ELECTROMAGNETIC JOINT. ROTATING MAGNETIC FIELD. SPACE-PHASOR THEORY... 2 uay 7. ELECTROMAGETIC JOIT. ROTATIG MAGETIC FIELD. PACE-PHAOR THEORY... 7.1 ELECTROMAGETIC JOIT... 7. UMER OF POLE... 4 7. DITRIUTED WIDIG... 5 7.4 TORQUE EXPREIO... 6 7.5 PACE PHAOR... 7 7.6 THREE-PHAE

More information

EE8412 Advanced AC Drive Systems. Topic 6 Field Oriented control (FOC)

EE8412 Advanced AC Drive Systems. Topic 6 Field Oriented control (FOC) Advanced AC Dive Syte Topic 6 Field Oiented contol (FOC) Souce: ABB 1 Advanced AC Dive Syte Field Oiented Contol (FOC) ectue Topi Geneal Block Diaga of FOC Diect Field Oiented Contol Diect FOC with Cuent

More information