Markov Decision Processes

Size: px
Start display at page:

Download "Markov Decision Processes"

Transcription

1 Mrkov Deciion Procee A Brief Introduction nd Overview Jck L. King Ph.D. Geno UK Limited

2 Preenttion Outline Introduction to MDP Motivtion for Study Definition Key Point of Interet Solution Technique Prtilly Oervle MDP Motivtion Solution Technique Grphicl Model Decription Appliction Technique

3 Introduction to Mrkov Deciion Procee

4 Sequentil Deciion Proce Sequentil Deciion Proce A erie of deciion re mde ech reulting in rewrd nd new itution. The hitory of the itution i ued in mking the deciion. Mrkov Deciion Proce At ech time period t the ytem tte provide the deciion mker with ll the informtion necery for chooing n ction. A reult of chooing n ction the deciion mker receive rewrd r nd the ytem evolve to poily different tte ` with proility p.

5 Appliction Inventory Mintennce Service Queuing Pricing Root Guidnce Rik Mngement

6 Key Point of Interet 1. I there policy tht deciion mker cn ue to chooe ction tht yield the mximum rewrd ville? 2. Cn uch policy if it exit e computed in finite time i it computtionlly feile? 3. Are there certin choice for optimlity or tructure for the ic model tht ignificntly impct 1. nd 2.?

7 Definition S A et of poile world tte et of poile ction R rel-vlued rewrd function T π decription of ech ction effect in tte. T: SXA->ProS. Ech tte nd ction pecifie new trnition proility ditriution for the next tte. policy mpping from S to A {d t =}

8 How to evlute policy? Expected totl rewrd Led to infinite vlue Set finite horizon Somewht ritrry Dicount rewrd Mot tudied nd implemented Give weighting to erlier rewrd Interprettion in economic i cler nd lo cn e ued generl topping criteri.

9 Dicounted Vlue Function Rewrd re dicounted for ech period. V 0 = < R ρ 0 < + 1 ρr 1 + ρ 2 R ρ T RT Vlue function prtilly order the policy o t let one optiml policy exit. We re generlly intereted in ttionry policie where the deciion rule d t re the me for ll time period.

10 Solving MDP Enumerted Vlue Function 1 V d d r V t S t t t + = + π τ ρ π Dynmic Progrmming 1 V d d r V S n n n n + = π τ ρ π 0 0 = V π nd for ll where trting tte i with n tep remining.

11 Optiml Vlue Function for MDP Optiml Vlue function cn e ued to find the mximum rewrd policy. + = mx * 1 * V r V S n A n τ ρ Policy itertion lterntive. rg mx * * V d n A n =

12 MDP Summry Importnt cl of equentil deciion procee. Well known lgorithm for olution Bellmn eqution with dynmic progrmming. Solution re t et polynomil in ction nd tte O 3 when converted to LP. Require detiled expoition of ction nd tte. Become intrctle nd unmngele very quickly for intereting prolem.

13 MDP Reference Bellmn Dynmic Progrmming 1957 Seminl work in dynmic progrmming nd vlue function Bellmn eqution. Cormen et.l. Introduction to Algorithm 1990 Good decription of lgorithm for dynmic progrmming nd greedy erch policy itertion. Ro Applied Proility Model with Appliction to Optimiztion Introduction to optimiztion nd MDP well written with good exmple.

14 Exmple MDP Should I refreh the rower when the network i up/down? 100 Don t Refreh Don t Refreh 0 Up Down Refreh Refreh 70

15 Exmple Clcultion 100 Don t Refreh Don t Refreh 0 Stte Action Up Down Utility Up Refreh Up Down Up Don t Refreh Refreh Refreh 70 Down Refreh Down Don t Refreh Q Up refreh = V * Up +.1V Down Q Up don' t = V * Up +.1V * Down Q Down refreh = V * Down +.7V * Up Q Down don' t = 0 +.8V * Down +.2V * Up * V * Up = don' t V * Down = refreh Policy i to refreh when the Network i down.

16 Prtilly Oervle MDP POMDP ddreed the prolem of You don t normlly know if the network i functioning well e.g. up or down. You only oerve the repone you ee text nd picture pper nd the ttu r diply.

17 Solving POMDP Convert to MDP Add et of oervtion O. Add proility ditriution Uo for ech tte. Add n initil tte ditriution I. Stte now re clled Belief tte nd re updted uing Bye Rule. Then olve the POMDP you would n MDP over the elief tte proility ditriution.

18 POMPD Eqution { } Z z B r z R z O r z S S Z z = = = ψ ω τ Relte tte to n oervtion Z uing proility ditriution O. Rewrd function Succeor Stte Trnition Mtrix

19 DP Eqution for POMDP + = * 1 * mx B n A n V V ψ ρ ω Explicit form of DP eqution for POMDP mx * 1 * + = S S Z z z n S A n V z o r V τ ρ Optiml vlue function for POMDP

20 Solving MDP POMDP olution pproche mut e le to del with continuou pce of elief tte. Exct olution LP-ed On x Enumertion Pruning Witne Approximte Solution Heuritic Grid-ed Stochtic Simultion

21 POMDP Summry Vrition of MDP when tte informtion i not explicitly known. Convert to MDP uing elief tte nd olve n MDP over elief tte. Prolem i now continuou nd olution lgorithm for MDP no longer work. Exct olution re t et exponentil in ction nd tte O when converted to LP. Require detiled expoition of ction nd elief tte long with trting vlue. Become intrctle nd unmngele very quickly for intereting prolem.

22 POMDP Reference Cndr Tony POMDP weite t Brown tutoril exmple ee hi PhD thei for nice urvey of POMDP lgorithm. Sondik 1971 Optiml Control of Prtilly Oervle Mrkov Procee PhD thei Stnford. Erly pper on exct olution to POMDP. Ro Applied Proility Model with Appliction to Optimiztion Introduction to optimiztion MDP nd POMDP well written with good exmple.

23 Grphicl Model Min ide Node repreent vrile nd rc re conditionl dependencie. Joint proility for model i fctored uing conditionl proilitie etween vrile. Model i tructured directed cyclic grph DAG. Advntge Fctoriztion correpond to dt vilility nd proilitie cn e uilt uing hitoricl frequency. Independence etween vrile i exploited reulting in more compct repreenttion. Efficient mege-ping lgorithm cn e ued reulting in trctility for intereting prolem.

24 Grphicl Model Node repreent the vrile in the model nd the link how which vrile depend on other. Sunny Cloudy Riny Forect No Rin Rin Wether Decide_Umrell Tke It Leve At Home Stifction

25 Grphicl Model Reference Perl 1987 Proilitic Reoning in Expert Sytem. Erly work on uilding grphicl model. Luritzen 1996 Grphicl Model generl decription of grphicl model reltionhip to Mrkov model very thorough. King 2001 Opertionl Rik Meurement nd Modelling. Exmple of ppliction of grphicl model to rik mngement.

26 Summry Mrkov Deciion Proce An effective wy to ddre complex prolem tht del with uncertinty. POMDP ddre the prolem of oerving the tte of the proce. Grphicl Model ddre the prolem of repreenttion nd trctility of the model.

Non-Myopic Multi-Aspect Sensing with Partially Observable Markov Decision Processes

Non-Myopic Multi-Aspect Sensing with Partially Observable Markov Decision Processes Non-Myopic Multi-Apect Sening with Prtilly Oervle Mrkov Deciion Procee Shiho Ji 2 Ronld Prr nd Lwrence Crin Deprtment of Electricl & Computer Engineering 2 Deprtment of Computer Engineering Duke Univerity

More information

Module 6 Value Iteration. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo

Module 6 Value Iteration. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Module 6 Vlue Itertion CS 886 Sequentil Decision Mking nd Reinforcement Lerning University of Wterloo Mrkov Decision Process Definition Set of sttes: S Set of ctions (i.e., decisions): A Trnsition model:

More information

Reinforcement learning

Reinforcement learning Reinforcement lerning Regulr MDP Given: Trnition model P Rewrd function R Find: Policy π Reinforcement lerning Trnition model nd rewrd function initilly unknown Still need to find the right policy Lern

More information

Reinforcement Learning and Policy Reuse

Reinforcement Learning and Policy Reuse Reinforcement Lerning nd Policy Reue Mnuel M. Veloo PEL Fll 206 Reding: Reinforcement Lerning: An Introduction R. Sutton nd A. Brto Probbilitic policy reue in reinforcement lerning gent Fernndo Fernndez

More information

Artificial Intelligence Markov Decision Problems

Artificial Intelligence Markov Decision Problems rtificil Intelligence Mrkov eciion Problem ilon - briefly mentioned in hpter Ruell nd orvig - hpter 7 Mrkov eciion Problem; pge of Mrkov eciion Problem; pge of exmple: probbilitic blockworld ction outcome

More information

Bellman Optimality Equation for V*

Bellman Optimality Equation for V* Bellmn Optimlity Eqution for V* The vlue of stte under n optiml policy must equl the expected return for the best ction from tht stte: V (s) mx Q (s,) A(s) mx A(s) mx A(s) Er t 1 V (s t 1 ) s t s, t s

More information

19 Optimal behavior: Game theory

19 Optimal behavior: Game theory Intro. to Artificil Intelligence: Dle Schuurmns, Relu Ptrscu 1 19 Optiml behvior: Gme theory Adversril stte dynmics hve to ccount for worst cse Compute policy π : S A tht mximizes minimum rewrd Let S (,

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees CS 188: Artificil Intelligence Fll 2011 Decision Networks ME: choose the ction which mximizes the expected utility given the evidence mbrell Lecture 17: Decision Digrms 10/27/2011 Cn directly opertionlize

More information

{ } = E! & $ " k r t +k +1

{ } = E! & $  k r t +k +1 Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,

More information

Chapter 4: Dynamic Programming

Chapter 4: Dynamic Programming Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Lerning Tom Mitchell, Mchine Lerning, chpter 13 Outline Introduction Comprison with inductive lerning Mrkov Decision Processes: the model Optiml policy: The tsk Q Lerning: Q function Algorithm

More information

TP 10:Importance Sampling-The Metropolis Algorithm-The Ising Model-The Jackknife Method

TP 10:Importance Sampling-The Metropolis Algorithm-The Ising Model-The Jackknife Method TP 0:Importnce Smpling-The Metropoli Algorithm-The Iing Model-The Jckknife Method June, 200 The Cnonicl Enemble We conider phyicl ytem which re in therml contct with n environment. The environment i uully

More information

Reinforcement learning II

Reinforcement learning II CS 1675 Introduction to Mchine Lerning Lecture 26 Reinforcement lerning II Milos Huskrecht milos@cs.pitt.edu 5329 Sennott Squre Reinforcement lerning Bsics: Input x Lerner Output Reinforcement r Critic

More information

Administrivia CSE 190: Reinforcement Learning: An Introduction

Administrivia CSE 190: Reinforcement Learning: An Introduction Administrivi CSE 190: Reinforcement Lerning: An Introduction Any emil sent to me bout the course should hve CSE 190 in the subject line! Chpter 4: Dynmic Progrmming Acknowledgment: A good number of these

More information

2D1431 Machine Learning Lab 3: Reinforcement Learning

2D1431 Machine Learning Lab 3: Reinforcement Learning 2D1431 Mchine Lerning Lb 3: Reinforcement Lerning Frnk Hoffmnn modified by Örjn Ekeberg December 7, 2004 1 Introduction In this lb you will lern bout dynmic progrmming nd reinforcement lerning. It is ssumed

More information

We will see what is meant by standard form very shortly

We will see what is meant by standard form very shortly THEOREM: For fesible liner progrm in its stndrd form, the optimum vlue of the objective over its nonempty fesible region is () either unbounded or (b) is chievble t lest t one extreme point of the fesible

More information

Bayesian Networks: Approximate Inference

Bayesian Networks: Approximate Inference pproches to inference yesin Networks: pproximte Inference xct inference Vrillimintion Join tree lgorithm pproximte inference Simplify the structure of the network to mkxct inferencfficient (vritionl methods,

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificil Intelligence Lecture 19: Decision Digrms Pieter Abbeel --- C Berkeley Mny slides over this course dpted from Dn Klein, Sturt Russell, Andrew Moore Decision Networks ME: choose the ction

More information

CS 188: Artificial Intelligence Fall 2010

CS 188: Artificial Intelligence Fall 2010 CS 188: Artificil Intelligence Fll 2010 Lecture 18: Decision Digrms 10/28/2010 Dn Klein C Berkeley Vlue of Informtion 1 Decision Networks ME: choose the ction which mximizes the expected utility given

More information

Decision Networks. CS 188: Artificial Intelligence. Decision Networks. Decision Networks. Decision Networks and Value of Information

Decision Networks. CS 188: Artificial Intelligence. Decision Networks. Decision Networks. Decision Networks and Value of Information CS 188: Artificil Intelligence nd Vlue of Informtion Instructors: Dn Klein nd Pieter Abbeel niversity of Cliforni, Berkeley [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI

More information

STOCHASTIC REGULAR LANGUAGE: A MATHEMATICAL MODEL FOR THE LANGUAGE OF SEQUENTIAL ACTIONS FOR DECISION MAKING UNDER UNCERTAINTY

STOCHASTIC REGULAR LANGUAGE: A MATHEMATICAL MODEL FOR THE LANGUAGE OF SEQUENTIAL ACTIONS FOR DECISION MAKING UNDER UNCERTAINTY Interntionl Journl of Mthemtic nd Computer Appliction Reerch (IJMCAR) ISSN 49-6955 Vol. 3, Iue, Mr 3, -8 TJPRC Pvt. Ltd. STOCHASTIC REGULAR LANGUAGE: A MATHEMATICAL MODEL FOR THE LANGUAGE OF SEQUENTIAL

More information

Reasoning over Time or Space. CS 188: Artificial Intelligence. Outline. Markov Models. Conditional Independence. Query: P(X 4 )

Reasoning over Time or Space. CS 188: Artificial Intelligence. Outline. Markov Models. Conditional Independence. Query: P(X 4 ) CS 88: Artificil Intelligence Lecture 7: HMMs nd Prticle Filtering Resoning over Time or Spce Often, we wnt to reson out sequence of oservtions Speech recognition Root locliztion User ttention Medicl monitoring

More information

2. The Laplace Transform

2. The Laplace Transform . The Lplce Trnform. Review of Lplce Trnform Theory Pierre Simon Mrqui de Lplce (749-87 French tronomer, mthemticin nd politicin, Miniter of Interior for 6 wee under Npoleon, Preident of Acdemie Frncie

More information

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM Interntionl Crpthin Control Conference ICCC 00 ALENOVICE, CZEC REPUBLIC y 7-30, 00 COOSING TE NUBER OF ODELS OF TE REFERENCE ODEL USING ULTIPLE ODELS ADAPTIVE CONTROL SYSTE rin BICĂ, Victor-Vleriu PATRICIU

More information

Oracular Partially Observable Markov Decision Processes: A Very Special Case

Oracular Partially Observable Markov Decision Processes: A Very Special Case Orculr Prtilly Obervble Mrkov Deciion Procee: A Very Specil Ce Nichol Armtrong-Crew nd Mnuel Veloo Robotic Intitute, Crnegie Mellon Univerity {nrmtro,veloo}@c.cmu.edu Abtrct We introduce the Orculr Prtilly

More information

Randomized decentralized broadcasting algorithms

Randomized decentralized broadcasting algorithms Rndomized decentrlized rodcting lgorithm Lurent Moulie, Andy Twigg, Chrito Gkntidi, nd Plo Rodriguez Thomon Reerch, Pri. lurent.moulie@thomon.net, ndrew.twigg@cl.cm.c.uk Microoft Reerch, Cmridge, UK. chrigk@microoft.com

More information

Robot Planning in Partially Observable Continuous Domains

Robot Planning in Partially Observable Continuous Domains Robot Plnning in Prtilly Obervble Continuou Domin Joep M. Port Intitut de Robòtic i Informàtic Indutril (UPC-CSIC) Lloren i Artig 4-6, 828, Brcelon Spin Emil: port@iri.upc.edu Mtthij T. J. Spn Informtic

More information

Policy Gradient Methods for Reinforcement Learning with Function Approximation

Policy Gradient Methods for Reinforcement Learning with Function Approximation Policy Grdient Method for Reinforcement Lerning with Function Approximtion Richrd S. Sutton, Dvid McAlleter, Stinder Singh, Yihy Mnour AT&T Lb Reerch, 180 Prk Avenue, Florhm Prk, NJ 07932 Abtrct Function

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificil Intelligence Fll 2009 Lecture 20: Prticle Filtering 11/5/2009 Dn Klein UC Berkeley Announcements Written 3 out: due 10/12 Project 4 out: due 10/19 Written 4 proly xed, Project 5 moving

More information

Robot Planning in Partially Observable Continuous Domains

Robot Planning in Partially Observable Continuous Domains Robot Plnning in Prtilly Obervble Continuou Domin Joep M. Port Intitut de Robòtic i Informàtic Indutril (UPC-CSIC) Lloren i Artig 4-6, 828, Brcelon Spin Emil: port@iri.upc.edu Mtthij T. J. Spn Informtic

More information

Reinforcement Learning for Robotic Locomotions

Reinforcement Learning for Robotic Locomotions Reinforcement Lerning for Robotic Locomotion Bo Liu Stnford Univerity 121 Cmpu Drive Stnford, CA 94305, USA bliuxix@tnford.edu Hunzhong Xu Stnford Univerity 121 Cmpu Drive Stnford, CA 94305, USA xuhunvc@tnford.edu

More information

An Analytic Solution to Discrete Bayesian Reinforcement Learning

An Analytic Solution to Discrete Bayesian Reinforcement Learning An Anlytic Solution to Discrete Byesin Reinforcement Lerning Pscl Pouprt ppouprt@cs.uwterloo.c Cheriton School of Computer Science, University of Wterloo, Wterloo, Ontrio, Cnd Nikos Vlssis vlssis@science.uv.nl

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

Week 10: Riemann integral and its properties

Week 10: Riemann integral and its properties Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

More information

Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties

Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwth-chen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:

More information

Hidden Markov Models

Hidden Markov Models Hidden Mrkov Models Huptseminr Mchine Lerning 18.11.2003 Referent: Nikols Dörfler 1 Overview Mrkov Models Hidden Mrkov Models Types of Hidden Mrkov Models Applictions using HMMs Three centrl problems:

More information

Excerpted Section. Consider the stochastic diffusion without Poisson jumps governed by the stochastic differential equation (SDE)

Excerpted Section. Consider the stochastic diffusion without Poisson jumps governed by the stochastic differential equation (SDE) ? > ) 1 Technique in Computtionl Stochtic Dynmic Progrmming Floyd B. Hnon niverity of Illinoi t Chicgo Chicgo, Illinoi 60607-705 Excerpted Section A. MARKOV CHAI APPROXIMATIO Another pproch to finite difference

More information

Genetic Programming. Outline. Evolutionary Strategies. Evolutionary strategies Genetic programming Summary

Genetic Programming. Outline. Evolutionary Strategies. Evolutionary strategies Genetic programming Summary Outline Genetic Progrmming Evolutionry strtegies Genetic progrmming Summry Bsed on the mteril provided y Professor Michel Negnevitsky Evolutionry Strtegies An pproch simulting nturl evolution ws proposed

More information

Preview 11/1/2017. Greedy Algorithms. Coin Change. Coin Change. Coin Change. Coin Change. Greedy algorithms. Greedy Algorithms

Preview 11/1/2017. Greedy Algorithms. Coin Change. Coin Change. Coin Change. Coin Change. Greedy algorithms. Greedy Algorithms Preview Greed Algorithms Greed Algorithms Coin Chnge Huffmn Code Greed lgorithms end to e simple nd strightforwrd. Are often used to solve optimiztion prolems. Alws mke the choice tht looks est t the moment,

More information

Compact, Convex Upper Bound Iteration for Approximate POMDP Planning

Compact, Convex Upper Bound Iteration for Approximate POMDP Planning Compct, Convex Upper Bound Itertion for Approximte POMDP Plnning To Wng University of Alert trysi@cs.ulert.c Pscl Pouprt University of Wterloo ppouprt@cs.uwterloo.c Michel Bowling nd Dle Schuurmns University

More information

Resources. Introduction: Binding. Resource Types. Resource Sharing. The type of a resource denotes its ability to perform different operations

Resources. Introduction: Binding. Resource Types. Resource Sharing. The type of a resource denotes its ability to perform different operations Introduction: Binding Prt of 4-lecture introduction Scheduling Resource inding Are nd performnce estimtion Control unit synthesis This lecture covers Resources nd resource types Resource shring nd inding

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

An Optimal Best-First Search Algorithm for Solving Infinite Horizon DEC-POMDPs

An Optimal Best-First Search Algorithm for Solving Infinite Horizon DEC-POMDPs An Optiml Best-First Serch Algorithm for Solving Infinite Horizon DEC-POMDPs Dniel Szer nd Frnçois Chrpillet INRIA Lorrine - LORIA, MAIA Group, 54506 Vndœuvre-lès-Nncy, Frnce {szer, chrp}@lori.fr http://mi.lori.fr

More information

A Critical Path Problem Using Intuitionistic. Trapezoidal Fuzzy Number

A Critical Path Problem Using Intuitionistic. Trapezoidal Fuzzy Number pplied Mthemticl Sciences, Vol. 8, 0, no. 5, 555-56 HIKRI Ltd, www.m-hikri.com http://dx.doi.org/0.988/ms.0.9 Criticl Pth Prolem Using Intuitionistic Trpezoidl Fuzzy Numer P. Jygowri Deprtment of Mthemtics

More information

Efficient Planning in R-max

Efficient Planning in R-max Efficient Plnning in R-mx Mrek Grześ nd Jee Hoey Dvid R. Cheriton School of Computer Science, Univerity of Wterloo 200 Univerity Avenue Wet, Wterloo, ON, N2L 3G1, Cnd {mgrze, jhoey}@c.uwterloo.c ABSTRACT

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Cf. Linn Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems, Wiley Series in Probability & Statistics, 1999.

Cf. Linn Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems, Wiley Series in Probability & Statistics, 1999. Cf. Linn Sennott, Stochstic Dynmic Progrmming nd the Control of Queueing Systems, Wiley Series in Probbility & Sttistics, 1999. D.L.Bricker, 2001 Dept of Industril Engineering The University of Iow MDP

More information

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 7

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 7 CS 188 Introduction to Artificil Intelligence Fll 2018 Note 7 These lecture notes re hevily bsed on notes originlly written by Nikhil Shrm. Decision Networks In the third note, we lerned bout gme trees

More information

Ordinary Differential Equations- Boundary Value Problem

Ordinary Differential Equations- Boundary Value Problem Ordinry Differentil Equtions- Boundry Vlue Problem Shooting method Runge Kutt method Computer-bsed solutions o BVPFD subroutine (Fortrn IMSL subroutine tht Solves (prmeterized) system of differentil equtions

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Monte-Carlo-Based Partially Observable Markov Decision Process Approximations for Adaptive Sensing

Monte-Carlo-Based Partially Observable Markov Decision Process Approximations for Adaptive Sensing Proceedings of the 9th Interntionl Workshop on Discrete Event Systems Göteborg, Sweden, My 28-30, 2008 WeE1.5 Monte-Crlo-Bsed Prtilly Observble Mrkov Decision Process Approximtions for Adptive Sensing

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

Chapter 3 Polynomials

Chapter 3 Polynomials Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling

More information

Hybrid Control and Switched Systems. Lecture #2 How to describe a hybrid system? Formal models for hybrid system

Hybrid Control and Switched Systems. Lecture #2 How to describe a hybrid system? Formal models for hybrid system Hyrid Control nd Switched Systems Lecture #2 How to descrie hyrid system? Forml models for hyrid system João P. Hespnh University of Cliforni t Snt Brr Summry. Forml models for hyrid systems: Finite utomt

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Linear Systems with Constant Coefficients

Linear Systems with Constant Coefficients Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

Applicability of Matrix Inverse in Simple Model of Economics An Analysis

Applicability of Matrix Inverse in Simple Model of Economics An Analysis IOSR Journl of Mthemtic IOSR-JM e-issn: 78-578, p-issn: 39-765X. Volume, Iue 5 Ver. VI Sep-Oct. 4, PP 7-34 pplicility of Mtrix Invere in Simple Moel of Economic n nlyi Mr. nupm Srm Deprtment of Economic

More information

Learning Moore Machines from Input-Output Traces

Learning Moore Machines from Input-Output Traces Lerning Moore Mchines from Input-Output Trces Georgios Gintmidis 1 nd Stvros Tripkis 1,2 1 Alto University, Finlnd 2 UC Berkeley, USA Motivtion: lerning models from blck boxes Inputs? Lerner Forml Model

More information

MOMDPs: a Solution for Modelling Adaptive Management Problems

MOMDPs: a Solution for Modelling Adaptive Management Problems MOMDPs: Solution for Modelling Adptive Mngement Problems Idine Chdès nd Josie Crwrdine nd Tr G. Mrtin CSIRO Ecosystem Sciences {idine.chdes, josie.crwrdine, tr.mrtin}@csiro.u Smuel Nicol University of

More information

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below. Dulity #. Second itertion for HW problem Recll our LP emple problem we hve been working on, in equlity form, is given below.,,,, 8 m F which, when written in slightly different form, is 8 F Recll tht we

More information

DATA Search I 魏忠钰. 复旦大学大数据学院 School of Data Science, Fudan University. March 7 th, 2018

DATA Search I 魏忠钰. 复旦大学大数据学院 School of Data Science, Fudan University. March 7 th, 2018 DATA620006 魏忠钰 Serch I Mrch 7 th, 2018 Outline Serch Problems Uninformed Serch Depth-First Serch Bredth-First Serch Uniform-Cost Serch Rel world tsk - Pc-mn Serch problems A serch problem consists of:

More information

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

STABILITY and Routh-Hurwitz Stability Criterion

STABILITY and Routh-Hurwitz Stability Criterion Krdeniz Technicl Univerity Deprtment of Electricl nd Electronic Engineering 6080 Trbzon, Turkey Chpter 8- nd Routh-Hurwitz Stbility Criterion Bu der notlrı dece bu deri ln öğrencilerin kullnımın çık olup,

More information

The Quest for Perfect and Compact Symmetry Breaking for Graph Problems

The Quest for Perfect and Compact Symmetry Breaking for Graph Problems The Quest for Perfect nd Compct Symmetry Breking for Grph Prolems Mrijn J.H. Heule SYNASC Septemer 25, 2016 1/19 Stisfiility (SAT) solving hs mny pplictions... forml verifiction grph theory ioinformtics

More information

4.1. Probability Density Functions

4.1. Probability Density Functions STT 1 4.1-4. 4.1. Proility Density Functions Ojectives. Continuous rndom vrile - vers - discrete rndom vrile. Proility density function. Uniform distriution nd its properties. Expected vlue nd vrince of

More information

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 22 September 2017 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

More information

Math 31S. Rumbos Fall Solutions to Assignment #16

Math 31S. Rumbos Fall Solutions to Assignment #16 Mth 31S. Rumbos Fll 2016 1 Solutions to Assignment #16 1. Logistic Growth 1. Suppose tht the growth of certin niml popultion is governed by the differentil eqution 1000 dn N dt = 100 N, (1) where N(t)

More information

An Optimal Best-first Search Algorithm for Solving Infinite Horizon DEC-POMDPs

An Optimal Best-first Search Algorithm for Solving Infinite Horizon DEC-POMDPs An Optiml Best-first Serch Algorithm for Solving Infinite Horizon DEC-POMDPs Dniel Szer, Frnçois Chrpillet To cite this version: Dniel Szer, Frnçois Chrpillet. An Optiml Best-first Serch Algorithm for

More information

Taylor Polynomial Inequalities

Taylor Polynomial Inequalities Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás

ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás ARCHIVUM MAHEMAICUM (BRNO) omu 47 (20), 23 33 MINIMAL AND MAXIMAL SOLUIONS OF FOURH ORDER IERAED DIFFERENIAL EQUAIONS WIH SINGULAR NONLINEARIY Kritín Rotá Abtrct. In thi pper we re concerned with ufficient

More information

Lecture 20: Numerical Integration III

Lecture 20: Numerical Integration III cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

Search: The Core of Planning

Search: The Core of Planning Serch: The Core of Plnning Dr. Neil T. Dntm CSCI-498/598 RPM, Colordo School of Mines Spring 208 Dntm (Mines CSCI, RPM) Serch Spring 208 / 75 Outline Plnning nd Serch Problems Bsic Serch Depth-First Serch

More information

A ROLLOUT CONTROL ALGORITHM FOR DISCRETE-TIME STOCHASTIC SYSTEMS

A ROLLOUT CONTROL ALGORITHM FOR DISCRETE-TIME STOCHASTIC SYSTEMS Proceedings of the ASE 2 Dynmic Systems nd Control Conference DSCC2 September 2-5, 2, Cmbridge, sschusetts, USA DSCC2- A ROLLOUT CONTROL ALGORITH FOR DISCRETE-TIE STOCHASTIC SYSTES Andres A. liopoulos

More information

New data structures to reduce data size and search time

New data structures to reduce data size and search time New dt structures to reduce dt size nd serch time Tsuneo Kuwbr Deprtment of Informtion Sciences, Fculty of Science, Kngw University, Hirtsuk-shi, Jpn FIT2018 1D-1, No2, pp1-4 Copyright (c)2018 by The Institute

More information

Probabilistic Reasoning in Bayesian Networks: A Relational Database Approach

Probabilistic Reasoning in Bayesian Networks: A Relational Database Approach Probbilistic Resoning in Byesin Networks: A Reltionl Dtbse Approch S.K.M. Wong, D. Wu nd C.J. Butz Deprtment of Computer Science, University of Regin Regin Ssktchewn, Cnd S4S 0A2 Abstrct. Probbilistic

More information

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3d-Vritionl Method

More information

Transfer Functions. Chapter 5. Transfer Functions. Derivation of a Transfer Function. Transfer Functions

Transfer Functions. Chapter 5. Transfer Functions. Derivation of a Transfer Function. Transfer Functions 5/4/6 PM : Trnfer Function Chpter 5 Trnfer Function Defined G() = Y()/U() preent normlized model of proce, i.e., cn be ued with n input. Y() nd U() re both written in devition vrible form. The form of

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

Matrix Solution to Linear Equations and Markov Chains

Matrix Solution to Linear Equations and Markov Chains Trding Systems nd Methods, Fifth Edition By Perry J. Kufmn Copyright 2005, 2013 by Perry J. Kufmn APPENDIX 2 Mtrix Solution to Liner Equtions nd Mrkov Chins DIRECT SOLUTION AND CONVERGENCE METHOD Before

More information

Point-Based POMDP Algorithms: Improved Analysis and Implementation

Point-Based POMDP Algorithms: Improved Analysis and Implementation Point-Bsed POMDP Algorithms: Improved Anlysis nd Implementtion Trey Smith nd Reid Simmons Rootics Institute, Crnegie Mellon University Pittsurgh, PA 15213 Astrct Existing complexity ounds for point-sed

More information

The Minimum Label Spanning Tree Problem: Illustrating the Utility of Genetic Algorithms

The Minimum Label Spanning Tree Problem: Illustrating the Utility of Genetic Algorithms The Minimum Lel Spnning Tree Prolem: Illustrting the Utility of Genetic Algorithms Yupei Xiong, Univ. of Mrylnd Bruce Golden, Univ. of Mrylnd Edwrd Wsil, Americn Univ. Presented t BAE Systems Distinguished

More information

The ifs Package. December 28, 2005

The ifs Package. December 28, 2005 The if Pckge December 28, 2005 Verion 0.1-1 Title Iterted Function Sytem Author S. M. Icu Mintiner S. M. Icu Iterted Function Sytem Licene GPL Verion 2 or lter. R topic documented:

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

More information

Linear Inequalities. Work Sheet 1

Linear Inequalities. Work Sheet 1 Work Sheet 1 Liner Inequlities Rent--Hep, cr rentl compny,chrges $ 15 per week plus $ 0.0 per mile to rent one of their crs. Suppose you re limited y how much money you cn spend for the week : You cn spend

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III - Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting

More information

Overview of Today s Lecture:

Overview of Today s Lecture: CPS 4 Computer Orgniztion nd Progrmming Lecture : Boolen Alger & gtes. Roert Wgner CPS4 BA. RW Fll 2 Overview of Tody s Lecture: Truth tles, Boolen functions, Gtes nd Circuits Krnugh mps for simplifying

More information

CHAPTER 4a. ROOTS OF EQUATIONS

CHAPTER 4a. ROOTS OF EQUATIONS CHAPTER 4. ROOTS OF EQUATIONS A. J. Clrk School o Engineering Deprtment o Civil nd Environmentl Engineering by Dr. Ibrhim A. Asskk Spring 00 ENCE 03 - Computtion Methods in Civil Engineering II Deprtment

More information