Decision Networks. CS 188: Artificial Intelligence. Decision Networks. Decision Networks. Decision Networks and Value of Information

Size: px
Start display at page:

Download "Decision Networks. CS 188: Artificial Intelligence. Decision Networks. Decision Networks. Decision Networks and Value of Information"

Transcription

1 CS 188: Artificil Intelligence nd Vlue of Informtion Instructors: Dn Klein nd Pieter Abbeel niversity of Cliforni, Berkeley [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t C Berkeley. All CS188 mterils re vilble t ME: choose the ction which mximizes the expected utility given the evidence Cn directly opertionlize this with decision networks Byes nets with nodes for utility nd ctions Lets us clculte the expected utility for ech ction New node types: Chnce nodes (just like BNs) Actions (rectngles, cnnot hve prents, ct s observed evidence) tility node (dimond, depends on ction nd chnce nodes)

2 Action selection = leve Instntite ll evidence Set ction node(s) ech possible wy Clculte posterior for ll prents of utility node, given the evidence Clculte expected utility for ech ction Choose mximizing ction = tke Optiml decision = leve W P(W) sun 0.7 rin 0.3 A W (A,W) leve sun 100 leve rin 0 tke sun 20 tke rin 70 Decisions s Outcome Trees Exmple: {} {} {} = leve A W (A,W) leve sun 100 leve rin 0 tke sun 20 tke rin 70 = tke (t,s) (t,r) (l,s) (l,r) W P(W F=bd) sun 0.34 rin 0.66 Almost exctly like expectimx / MDPs Wht s chnged? Optiml decision = tke =bd

3 Decisions s Outcome Trees Ghostbusters Decision Network Demo: Ghostbusters with probbility {b} Bust W {b} W {b} Ghost Loction =bd (t,s) (t,r) (l,s) (l,r) Sensor (1,1) Sensor (2,1) Sensor (1,2) Sensor (1,3) Sensor (1,n) Sensor (m,1) Sensor (m,n) Video of Demo Ghostbusters with Probbility Vlue of Informtion

4 Vlue of Informtion VPI Exmple: Ide: compute vlue of cquiring evidence Cn be done directly from decision network Exmple: buying oil drilling rights Two blocks A nd B, exctly one hs oil, worth k You cn drill in one loction Prior probbilities 0.5 ech, & mutully exclusive Drilling in either A or B hs E = k/2, ME = k/2 Question: wht s the vlue of informtion of O? Vlue of knowing which of A or B hs oil Vlue is expected gin in ME from new info Survey my sy oil in or oil in b, prob 0.5 ech If we know OilLoc, ME is k (either wy) Gin in ME from knowing OilLoc? VPI(OilLoc) = k/2 Fir price of informtion: k/2 O P 1/2 b 1/2 DrillLoc OilLoc D O k b 0 b 0 b b k ME with no evidence ME if forecst is bd ME if forecst is good distribution F P(F) good 0.59 bd 0.41 A W leve sun 100 leve rin 0 tke sun 20 tke rin 70 Vlue of Informtion VPI Properties Assume we hve evidence E=e. Vlue if we ct now: {+e} Nonnegtive Assume we see tht E = e. Vlue if we ct then: P(s +e) BT E is rndom vrible whose vlue is unknown, so we don t know wht e will be Expected vlue if E is reveled nd then we ct: Vlue of informtion: how much ME goes up by reveling E first then cting, over cting now: P(s +e, +e ) {+e, +e } {+e} P(+e +e) {+e, +e } P(-e +e) {+e, -e } Nondditive (think of observing E j twice) Order-independent

5 Quick VPI Questions Vlue of Imperfect Informtion? The soup of the dy is either clm chowder or split pe, but you wouldn t order either one. Wht s the vlue of knowing which it is? There re two kinds of plstic forks t picnic. One kind is slightly sturdier. Wht s the vlue of knowing which? You re plying the lottery. The prize will be $0 or $100. You cn ply ny number between 1 nd 100 (chnce of winning is 1%). Wht is the vlue of knowing the winning number? No such thing (s we formulte it) Informtion corresponds to the observtion of node in the decision network If dt is noisy tht just mens we don t observe the originl vrible, but nother vrible which is noisy version of the originl one VPI Question POMDPs VPI(OilLoc)? VPI(ScoutingReport)? Scout DrillLoc OilLoc VPI(Scout)? VPI(Scout ScoutingReport)? Scouting Report Generlly: If Prents() Z CurrentEvidence Then VPI( Z CurrentEvidence) = 0

6 POMDPs Exmple: Ghostbusters Demo: Ghostbusters with VPI MDPs hve: Sttes S Actions A Trnsition function P(s s,) (or T(s,,s )) Rewrds R(s,,s ) POMDPs dd: Observtions O Observtion function P(o s) (or O(s,o)) POMDPs re MDPs over belief sttes b (distributions over S) We ll be ble to sy more in few lectures s s, s,,s s' b b, o b' In (sttic) Ghostbusters: Belief stte determined by evidence to dte {e} Tree relly over evidence sets Probbilistic resoning needed to predict new evidence given pst evidence Solving POMDPs One wy: use truncted expectimx to compute pproximte vlue of ctions Wht if you only considered busting or one sense followed by bust? You get VPI-bsed gent! bust b b, e b {e} ( bust, {e}) e bust ( bust, {e, e }) {e} e, e {e, e } sense {e}, sense {e, e } Video of Demo Ghostbusters with VPI More Generlly* Generl solutions mp belief functions to ctions Cn divide regions of belief spce (set of belief functions) into policy regions (gets complex quickly) Cn build pproximte policies using discretiztion methods Cn fctor belief functions in vrious wys Overll, POMDPs re very (ctully PSPACE-) hrd Most rel problems re POMDPs, nd we cn rrely solve then in their full generlity

7 Next Time: Dynmic Models

CS 188: Artificial Intelligence Fall 2010

CS 188: Artificial Intelligence Fall 2010 CS 188: Artificil Intelligence Fll 2010 Lecture 18: Decision Digrms 10/28/2010 Dn Klein C Berkeley Vlue of Informtion 1 Decision Networks ME: choose the ction which mximizes the expected utility given

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificil Intelligence Lecture 19: Decision Digrms Pieter Abbeel --- C Berkeley Mny slides over this course dpted from Dn Klein, Sturt Russell, Andrew Moore Decision Networks ME: choose the ction

More information

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees CS 188: Artificil Intelligence Fll 2011 Decision Networks ME: choose the ction which mximizes the expected utility given the evidence mbrell Lecture 17: Decision Digrms 10/27/2011 Cn directly opertionlize

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Decision Networks and Value of Perfect Information Prof. Scott Niekum The niversity of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188

More information

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 7

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 7 CS 188 Introduction to Artificil Intelligence Fll 2018 Note 7 These lecture notes re hevily bsed on notes originlly written by Nikhil Shrm. Decision Networks In the third note, we lerned bout gme trees

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificil Intelligence Spring 2007 Lecture 3: Queue-Bsed Serch 1/23/2007 Srini Nrynn UC Berkeley Mny slides over the course dpted from Dn Klein, Sturt Russell or Andrew Moore Announcements Assignment

More information

Bellman Optimality Equation for V*

Bellman Optimality Equation for V* Bellmn Optimlity Eqution for V* The vlue of stte under n optiml policy must equl the expected return for the best ction from tht stte: V (s) mx Q (s,) A(s) mx A(s) mx A(s) Er t 1 V (s t 1 ) s t s, t s

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificil Intelligence Fll 2009 Lecture 20: Prticle Filtering 11/5/2009 Dn Klein UC Berkeley Announcements Written 3 out: due 10/12 Project 4 out: due 10/19 Written 4 proly xed, Project 5 moving

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

19 Optimal behavior: Game theory

19 Optimal behavior: Game theory Intro. to Artificil Intelligence: Dle Schuurmns, Relu Ptrscu 1 19 Optiml behvior: Gme theory Adversril stte dynmics hve to ccount for worst cse Compute policy π : S A tht mximizes minimum rewrd Let S (,

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Chapter 4: Dynamic Programming

Chapter 4: Dynamic Programming Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,

More information

Reinforcement learning II

Reinforcement learning II CS 1675 Introduction to Mchine Lerning Lecture 26 Reinforcement lerning II Milos Huskrecht milos@cs.pitt.edu 5329 Sennott Squre Reinforcement lerning Bsics: Input x Lerner Output Reinforcement r Critic

More information

{ } = E! & $ " k r t +k +1

{ } = E! & $  k r t +k +1 Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,

More information

Administrivia CSE 190: Reinforcement Learning: An Introduction

Administrivia CSE 190: Reinforcement Learning: An Introduction Administrivi CSE 190: Reinforcement Lerning: An Introduction Any emil sent to me bout the course should hve CSE 190 in the subject line! Chpter 4: Dynmic Progrmming Acknowledgment: A good number of these

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Lerning Tom Mitchell, Mchine Lerning, chpter 13 Outline Introduction Comprison with inductive lerning Mrkov Decision Processes: the model Optiml policy: The tsk Q Lerning: Q function Algorithm

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

1 Error Analysis of Simple Rules for Numerical Integration

1 Error Analysis of Simple Rules for Numerical Integration cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

More information

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning Solution for Assignment 1 : Intro to Probbility nd Sttistics, PAC lerning 10-701/15-781: Mchine Lerning (Fll 004) Due: Sept. 30th 004, Thursdy, Strt of clss Question 1. Bsic Probbility ( 18 pts) 1.1 (

More information

Cf. Linn Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems, Wiley Series in Probability & Statistics, 1999.

Cf. Linn Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems, Wiley Series in Probability & Statistics, 1999. Cf. Linn Sennott, Stochstic Dynmic Progrmming nd the Control of Queueing Systems, Wiley Series in Probbility & Sttistics, 1999. D.L.Bricker, 2001 Dept of Industril Engineering The University of Iow MDP

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

CS 188: Artificial Intelligence Fall Recap: Inference Example

CS 188: Artificial Intelligence Fall Recap: Inference Example CS 188: Artificial Intelligence Fall 2007 Lecture 19: Decision Diagrams 11/01/2007 Dan Klein UC Berkeley Recap: Inference Example Find P( F=bad) Restrict all factors P() P(F=bad ) P() 0.7 0.3 eather 0.7

More information

Is there an easy way to find examples of such triples? Why yes! Just look at an ordinary multiplication table to find them!

Is there an easy way to find examples of such triples? Why yes! Just look at an ordinary multiplication table to find them! PUSHING PYTHAGORAS 009 Jmes Tnton A triple of integers ( bc,, ) is clled Pythgoren triple if exmple, some clssic triples re ( 3,4,5 ), ( 5,1,13 ), ( ) fond of ( 0,1,9 ) nd ( 119,10,169 ). + b = c. For

More information

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve Dte: 3/14/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: Use your clcultor to solve 4 7x =250; 5 3x =500; HW Requests: Properties of Log Equtions

More information

Lecture 20: Numerical Integration III

Lecture 20: Numerical Integration III cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed

More information

Artificial Intelligence Markov Decision Problems

Artificial Intelligence Markov Decision Problems rtificil Intelligence Mrkov eciion Problem ilon - briefly mentioned in hpter Ruell nd orvig - hpter 7 Mrkov eciion Problem; pge of Mrkov eciion Problem; pge of exmple: probbilitic blockworld ction outcome

More information

DATA Search I 魏忠钰. 复旦大学大数据学院 School of Data Science, Fudan University. March 7 th, 2018

DATA Search I 魏忠钰. 复旦大学大数据学院 School of Data Science, Fudan University. March 7 th, 2018 DATA620006 魏忠钰 Serch I Mrch 7 th, 2018 Outline Serch Problems Uninformed Serch Depth-First Serch Bredth-First Serch Uniform-Cost Serch Rel world tsk - Pc-mn Serch problems A serch problem consists of:

More information

2D1431 Machine Learning Lab 3: Reinforcement Learning

2D1431 Machine Learning Lab 3: Reinforcement Learning 2D1431 Mchine Lerning Lb 3: Reinforcement Lerning Frnk Hoffmnn modified by Örjn Ekeberg December 7, 2004 1 Introduction In this lb you will lern bout dynmic progrmming nd reinforcement lerning. It is ssumed

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information

Read section 3.3, 3.4 Announcements:

Read section 3.3, 3.4 Announcements: Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata CS103B ndout 18 Winter 2007 Ferury 28, 2007 Finite Automt Initil text y Mggie Johnson. Introduction Severl childrens gmes fit the following description: Pieces re set up on plying ord; dice re thrown or

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Line and Surface Integrals: An Intuitive Understanding

Line and Surface Integrals: An Intuitive Understanding Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of

More information

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below. Dulity #. Second itertion for HW problem Recll our LP emple problem we hve been working on, in equlity form, is given below.,,,, 8 m F which, when written in slightly different form, is 8 F Recll tht we

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

Today. Recap: Reasoning Over Time. Demo Bonanza! CS 188: Artificial Intelligence. Advanced HMMs. Speech recognition. HMMs. Start machine learning

Today. Recap: Reasoning Over Time. Demo Bonanza! CS 188: Artificial Intelligence. Advanced HMMs. Speech recognition. HMMs. Start machine learning CS 188: Artificil Intelligence Advnced HMMs Dn Klein, Pieter Aeel University of Cliforni, Berkeley Demo Bonnz! Tody HMMs Demo onnz! Most likely explntion queries Speech recognition A mssive HMM! Detils

More information

Infinite Geometric Series

Infinite Geometric Series Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

A recursive construction of efficiently decodable list-disjunct matrices

A recursive construction of efficiently decodable list-disjunct matrices CSE 709: Compressed Sensing nd Group Testing. Prt I Lecturers: Hung Q. Ngo nd Atri Rudr SUNY t Bufflo, Fll 2011 Lst updte: October 13, 2011 A recursive construction of efficiently decodble list-disjunct

More information

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations. Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one

More information

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution Norml Distribution Lecture 6: More Binomil Distribution If X is rndom vrible with norml distribution with men µ nd vrince σ 2, X N (µ, σ 2, then P(X = x = f (x = 1 e 1 (x µ 2 2 σ 2 σ Sttistics 104 Colin

More information

Uninformed Search Lecture 4

Uninformed Search Lecture 4 Lecture 4 Wht re common serch strtegies tht operte given only serch problem? How do they compre? 1 Agend A quick refresher DFS, BFS, ID-DFS, UCS Unifiction! 2 Serch Problem Formlism Defined vi the following

More information

Expectation and Variance

Expectation and Variance Expecttion nd Vrince : sum of two die rolls P(= P(= = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 P(=2) = 1/36 P(=3) = 1/18 P(=4) = 1/12 P(=5) = 1/9 P(=7) = 1/6 P(=13) =? 2 1/36 3 1/18 4 1/12 5 1/9 6 5/36 7 1/6

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Equations and Inequalities

Equations and Inequalities Equtions nd Inequlities Equtions nd Inequlities Curriculum Redy ACMNA: 4, 5, 6, 7, 40 www.mthletics.com Equtions EQUATIONS & Inequlities & INEQUALITIES Sometimes just writing vribles or pronumerls in

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Introduction Lecture 3 Gussin Probbility Distribution Gussin probbility distribution is perhps the most used distribution in ll of science. lso clled bell shped curve or norml distribution Unlike the binomil

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 22 September 2017 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

More information

1 Probability Density Functions

1 Probability Density Functions Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

More information

Hidden Markov Models

Hidden Markov Models Hidden Mrkov Models Huptseminr Mchine Lerning 18.11.2003 Referent: Nikols Dörfler 1 Overview Mrkov Models Hidden Mrkov Models Types of Hidden Mrkov Models Applictions using HMMs Three centrl problems:

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes

38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes The Uniform Distribution 8. Introduction This Section introduces the simplest type of continuous probbility distribution which fetures continuous rndom vrible X with probbility density function f(x) which

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Joint distribution. Joint distribution. Marginal distributions. Joint distribution

Joint distribution. Joint distribution. Marginal distributions. Joint distribution Joint distribution To specify the joint distribution of n rndom vribles X 1,...,X n tht tke vlues in the smple spces E 1,...,E n we need probbility mesure, P, on E 1... E n = {(x 1,...,x n ) x i E i, i

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014 Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method

More information

Module 6 Value Iteration. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo

Module 6 Value Iteration. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Module 6 Vlue Itertion CS 886 Sequentil Decision Mking nd Reinforcement Lerning University of Wterloo Mrkov Decision Process Definition Set of sttes: S Set of ctions (i.e., decisions): A Trnsition model:

More information

Math Lecture 23

Math Lecture 23 Mth 8 - Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of

More information

Extended nonlocal games from quantum-classical games

Extended nonlocal games from quantum-classical games Extended nonlocl gmes from quntum-clssicl gmes Theory Seminr incent Russo niversity of Wterloo October 17, 2016 Outline Extended nonlocl gmes nd quntum-clssicl gmes Entngled vlues nd the dimension of entnglement

More information

HW3, Math 307. CSUF. Spring 2007.

HW3, Math 307. CSUF. Spring 2007. HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem

More information

For the percentage of full time students at RCC the symbols would be:

For the percentage of full time students at RCC the symbols would be: Mth 17/171 Chpter 7- ypothesis Testing with One Smple This chpter is s simple s the previous one, except it is more interesting In this chpter we will test clims concerning the sme prmeters tht we worked

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory Grph Theory Gibson, Ngel, Stnley, Zle Specil Types of Bckground Motivtion Grph Theory Dniel Gibson, Concordi University Jckelyn Ngel, Dominicn University Benjmin Stnley, New Mexico Stte University Allison

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

We will see what is meant by standard form very shortly

We will see what is meant by standard form very shortly THEOREM: For fesible liner progrm in its stndrd form, the optimum vlue of the objective over its nonempty fesible region is () either unbounded or (b) is chievble t lest t one extreme point of the fesible

More information

CS188 Outline. We re done with Part I: Search and Planning! Part II: Probabilistic Reasoning. Part III: Machine Learning

CS188 Outline. We re done with Part I: Search and Planning! Part II: Probabilistic Reasoning. Part III: Machine Learning CS188 Outline We re done with Part I: Search and Planning! Part II: Probabilistic Reasoning Diagnosis Speech recognition Tracking objects Robot mapping Genetics Error correcting codes lots more! Part III:

More information

Chapter 5 : Continuous Random Variables

Chapter 5 : Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) Anton Setzer (Bsed on book drft by J. V. Tucker nd K. Stephenson)

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

Lecture 7 notes Nodal Analysis

Lecture 7 notes Nodal Analysis Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions

More information

How do you know you have SLE?

How do you know you have SLE? Simultneous Liner Equtions Simultneous Liner Equtions nd Liner Algebr Simultneous liner equtions (SLE s) occur frequently in Sttics, Dynmics, Circuits nd other engineering clsses Need to be ble to, nd

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 36 Dr Jen M Stndrd Problem Set 3 Solutions 1 Verify for the prticle in one-dimensionl box by explicit integrtion tht the wvefunction ψ ( x) π x is normlized To verify tht ψ ( x) is normlized,

More information

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh Finite Automt Informtics 2A: Lecture 3 Mry Cryn School of Informtics University of Edinburgh mcryn@inf.ed.c.uk 21 September 2018 1 / 30 Lnguges nd Automt Wht is lnguge? Finite utomt: recp Some forml definitions

More information

Lesson 25: Adding and Subtracting Rational Expressions

Lesson 25: Adding and Subtracting Rational Expressions Lesson 2: Adding nd Subtrcting Rtionl Expressions Student Outcomes Students perform ddition nd subtrction of rtionl expressions. Lesson Notes This lesson reviews ddition nd subtrction of frctions using

More information

CSE 473: Artificial Intelligence Probability Review à Markov Models. Outline

CSE 473: Artificial Intelligence Probability Review à Markov Models. Outline CSE 473: Artificial Intelligence Probability Review à Markov Models Daniel Weld University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

p(t) dt + i 1 re it ireit dt =

p(t) dt + i 1 re it ireit dt = Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

Data Structures and Algorithms CMPSC 465

Data Structures and Algorithms CMPSC 465 Dt Structures nd Algorithms CMPSC 465 LECTURE 10 Solving recurrences Mster theorem Adm Smith S. Rskhodnikov nd A. Smith; bsed on slides by E. Demine nd C. Leiserson Review questions Guess the solution

More information

Lesson 1: Quadratic Equations

Lesson 1: Quadratic Equations Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

MATH362 Fundamentals of Mathematical Finance

MATH362 Fundamentals of Mathematical Finance MATH362 Fundmentls of Mthemticl Finnce Solution to Homework Three Fll, 2007 Course Instructor: Prof. Y.K. Kwok. If outcome j occurs, then the gin is given by G j = g ij α i, + d where α i = i + d i We

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Exponentials - Grade 10 [CAPS] *

Exponentials - Grade 10 [CAPS] * OpenStx-CNX module: m859 Exponentils - Grde 0 [CAPS] * Free High School Science Texts Project Bsed on Exponentils by Rory Adms Free High School Science Texts Project Mrk Horner Hether Willims This work

More information

ELE B7 Power System Engineering. Unbalanced Fault Analysis

ELE B7 Power System Engineering. Unbalanced Fault Analysis Power System Engineering Unblnced Fult Anlysis Anlysis of Unblnced Systems Except for the blnced three-phse fult, fults result in n unblnced system. The most common types of fults re single lineground

More information

Lecture 2: January 27

Lecture 2: January 27 CS 684: Algorithmic Gme Theory Spring 217 Lecturer: Év Trdos Lecture 2: Jnury 27 Scrie: Alert Julius Liu 2.1 Logistics Scrie notes must e sumitted within 24 hours of the corresponding lecture for full

More information

Natural examples of rings are the ring of integers, a ring of polynomials in one variable, the ring

Natural examples of rings are the ring of integers, a ring of polynomials in one variable, the ring More generlly, we define ring to be non-empty set R hving two binry opertions (we ll think of these s ddition nd multipliction) which is n Abelin group under + (we ll denote the dditive identity by 0),

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information