For the percentage of full time students at RCC the symbols would be:


 Randall Lewis
 4 years ago
 Views:
Transcription
1 Mth 17/171 Chpter 7 ypothesis Testing with One Smple This chpter is s simple s the previous one, except it is more interesting In this chpter we will test clims concerning the sme prmeters tht we worked with in the previous chpter We will test clims such s: The verge monthly rin in Dectur is 35 inches ( μ =3 5), more thn 3% of students t RCC re full time students ( p f 3), or the stndrd devition of the ges of students t RCC is less thn or equl to 5 yers ( σ 5) 71Introduction to ypothesis Testing ypothesis testing is done when someone mkes clim Our gol, in this course, is to try to reject the clim or to support it (bsed on the wording of the problem) In order to ccomplish tht gol we hve to be systemtic (follow n order) The steps re s follows: 1 Determine wht (prmeter) you re testing nd then write the clim symboliclly For exmple, for the verge monthly rin in Dectur the symbols would be: : μ = 35 ( clim) : μ 35 Is clled the null hypothesis nd is clled the lterntive hypothesis For the percentge of full time students t RCC the symbols would be: : p 3 : p f3 ( clim) With these two exmples you note tht the clim could be for either the null or lterntive hypothesis; it depends on how it is stted in the text of the problem Step one is very crucil The other steps re dependent on step one Determine the test sttistics I will explin this in section 7 Before I cn tlk bout step 3, I must explin Type I & Type II errors Wht you hve to remember is tht when you mke judgment bout something you might be wrong This is clled n error We hve two types of errors (Let s concentrte on the clim tht the verge monthly rin in Dectur is 35 inches) There re two cses: Either this clim is true or flse Suppose tht the clim is true nd you erroneously cme to conclusion tht it is flse This is clled Type I Error Sttisticlly, Type I Error is rejecting when is true The probbility of committing Type I Error is nmed α So, α = p(re jecting is true) α is clled the level of significnce Note: If you put n innocent mn in jil, then you hve committed Type I Error On the other hnd, suppose the verge monthly rin in Dectur is not 35 inches, but you ccept it You re ccepting something, tht is flse This is clled Type II Error By definition, Type II Error is ccepting when is flse The probbility of committing Type II Error is nmed β So, β = p ( ccepting is flse) Note: If you set guilty person free, then you hve committed Type II Error Now tht you know wht α is, you cn find the criticl vlue(s) A test is either twosided (twotiled) or onetiled test In the cse of monthly rin in Dectur, we hve twotiled test If we let α = 5, then the criticl vlues will be ± z = 1 96 (I m sure you remember this from the previous sections) The intervl between 5 ± ± is clled noncriticl (nonrejection) region The z α tils beyond the criticl vlues re clled criticl (rejection) regions If it is onetiled test,
2 Pge 1/7/6 Chpter 7 Lecture then the criticl vlue will be z α if : μ p # This is clled lefttiled test The intervl to the left of this criticl vlue is clled the criticl (rejection) region The intervl to the right of this number is clled noncriticl (nonrejection) region On the other hnd, if : μ f #, then the criticl vlue will be z α This is clled righttiled test The intervl to the right of the criticl vlue is clled the rejection (criticl) region The intervl to the left of this criticl vlue is clled noncriticl (nonrejection) region The percentge of full time students is righttiled test (look t the direction of the inequlity for the lterntive hypothesis) Suppose α = 5, then the criticl vlue is: z 5 = 1645 Exmples: Pges Question 7 : p= 84 ( Clim) : p 84 Question 5 : σ 1 ( clim) : σ f 1 Question 3 : μ 75 : μ f 75 ( clim) Note: The equlity sign lwys stys with But, the clim could be with or Question 41 : μ : μ f ( Clim) If you reject, then you re in fvor of Your conclusion should be something like this: We reject the clim tht the men number of pictures developed for stndrd roll of 4 exposures is t lest Note: You must lwys ply the role of prosecutor; your gol is to reject the null hypothesis b If you cn t reject the null hypothesis, then you should write your conclusion something like this: Bsed on this test, we don t hve enough evidence to reject the clim tht the men number of pictures developed for stndrd roll of 4 exposures is t lest Note: We did not use the word ccept Do not use the word ccept for your conclusion Suppose you re testing the below hypothesis : p 4 : p f4 ( clim) If you reject the null hypothesis, then your conclusion should be something like this: We support the clim tht the proportion of hourly workers erning over $1 per hour is greter thn 4% b If you cn t reject, then your conclusion should be something like this: Bsed on this test, we do not hve enough evidence to support the clim tht the proportion of hourly workers erning over $1 per hour is greter thn 4%
3 Pge 3 1/7/6 Chpter 7 Lecture 7ypothesis Testing for μ ( n 3 OR σ is known) The sequence in this chpter is like the previous chpter In this section we like to test clims regrding the men of popultion when the smple size is lrge or the stndrd devition of the popultion is known For this sitution, we used the ztble; we will do the sme thing here too As I explined in the previous section, for the hypothesis testing we must follow steps These steps must be pplied throughout ll the hypothesis testing sections Exmple: Suppose Mr X clims tht the men ge of students t RCC is less thn 3 yers You think he is wrong To prove your point, you rndomly sk the ges of 36 students t RCC You find: x = 9 5 nd s = 3 3 yers Before you perform the test, you determine the level of significnce (you like α =5 ) Perform complete test for this sitution Solution: I like to summrize the text of the problem: n = 36, x = 95, s = 33, α = 5 Step 1 Write the null nd the lterntive hypothesis: : μ 3 : μ p3 ( clim) Step Find the criticl vlue(s): This is lefttiled test (look t the direction of the inequlity sign for ) You hve to find z 5 You hve seen this mny times so fr, z 5 = The criticl vlue here is 1645 (since we hve lefttiled test) Step 3 Find the test sttistics (vlue of the test): In this cse the vlue of the test is obtined by x μ 95 3 using the following formul: z, z = = 91 σ 33 n 36 Step 4 Compre z with  zα If z is less thn or equl  zα, then reject In our cse 91 is not less thn At this point you mke decision Your decision must be: We cnnot reject Step 5 Write conclusion bout your test It should be something like this: Bsed on this test, I cnnot support the clim tht the men ge of students t RCC is less thn 3 yers NOTE: Never use the word ccept The method tht we used to do this test is clled the clssicl pproch (method) There is nother method (probbility vlue pproch) tht you cn implement for hypothesis testing I will show you the steps for the sme question bove Step 1 is the sme Step Find: p ( x p 95), which you re fmilir with (section 54) From step 3 bove we got the vlue of z So, find p( z < 91) = 1814 This is the P = 1814 Step 3 Compre the pvlue with α If the Note: For twosided test compre the pvlue with vl P pα, then reject nd write conclusion vl α 73 ypothesis Testing for the μ ( n p 3 nd σ is unknown)
4 Pge 4 1/7/6 Chpter 7 Lecture In this section we will do exctly wht we did in the previous section When the smple size is smll nd the popultion stndrd devition is not known you must use the tdistribution to test μ The steps re exctly the sme too The only things, which re different, re: 1 You will use this formul (note the similrity of this formul with the one you used in the x μ previous section): t = s n You will use the ttble to find the criticl vlue(s) Exmple: Suppose Ali Moshgi clims tht the men height of students t RCC is 18 cm Jmes, who hs been here for some time, thinks tht I m wrong Jmes took rndom smple of 16 from RCC students nd found the men nd stndrd devition of his smple to be 175cm nd 7 cm respectively Test Mr Moshgi s clim Let α = 5 Solution: n = 16, x = 175, s = 7 : μ = 18 ( clim) Step 1: : μ 18 x μ Step : find the vlue of the test: t = = = = 857 s 7 7 n 16 Step 3: Find the criticl vlues: t = ± c 131 int: df = n1 = 16 1 = 15 (like the previous chpter) Look t the row, which sys (Two tils,α ) nd select 5 Step 4: Mke decision: Since the vlue of the test is less thn the criticl vlue ( 857 p 131) reject Note tht if the vlue of the test were greter thn the criticl vlue +131, you would reject the null hypothesis too Step 5: Write conclusion for this test: Bsed on this test, we must reject MR Moshgi s clim tht the men height of RCC students is 18 cm Note: You see the close similrities of this section with section 74 ypothesis Testing for Proportions In this section we like to test clims such s: Less thn 1% of RCC students smoke, $4% of RCC students re fulltime, or t lest % of RCC students tke sttistics course As you see, ll of these sttements del with proportions Exmple: The clening crew t RCC believes tht t lest 15% of RCC students smoke cigrettes A security gurd who hs been t Richlnd for some time thinks tht the clening crew is wrong e rndomly took smple of size 6 nd found out tht 6 of these students smoke Test the clim of the clening crew Suppose tht the level of significnce is 5 Solution: : p 15 ( clim) : p p15 p p x The formul is: z =, p = = = 1, z = = 1 8 pq n 6 (15)(85) n 6 The criticl vlue is 1645 (this is lefttiled test with α = 5 ) Decision: We cnnot reject
5 Pge 5 1/7/6 Chpter 7 Lecture Conclusion: Bsed on this test, the security gurd cnnot reject the clim of the clening crew Note gin tht we never ccept the null hypothesis Note: You could lso use the pvl pproch 75 ypothesis Testing for the Vrince nd Stndrd Devition In this section we lern how to test clims regrding the stndrd devition of popultion The ( n 1) s formul for finding the test sttistic is χ = You lerned this distribution in the σ previous chpter when we creted confidence intervls for σ The procedure for testing the stndrd devition ( σ ) nd vrince ( σ ) is the sme Exmple 1: Ms X clims tht the stndrd devition of the height of students t RCC is more thn 1 cm Mr Y believes tht she is wrong e took rndom smple of 5 RCC students nd found out tht the stndrd devition of his smple is 8 cm Test this clim Suppose the level of significnce is 1 Solution: : σ 1 Step 1: : σ f1 ( clim) ( n 1) s ( 5 ) 1 (8 ) Step : Find the test sttistic: χ = = = 1536 σ 1 Step 3: Find the criticl vlue: Look t the λ tble for df = 4, α = 1 You will find χ c =33196 Step 4: Mke decision: Fil to reject (since χ p χ c ) Step 5: Wright conclusion: Bsed on this test, we cn not support the clim tht the stndrd devition of the height of RCC students is more thn 1 cm ow do we find the criticl vlues for twosided test? The criticl vlues re found exctly the sme s section 64 Exmple : Suppose we hve twotiled test with n = 9, α = 1 Find the criticl vlues df = 9 1 = 8 α 1 First divide α by : = = 5 To find the right criticl vlue look under 5 for α with df = 8, χ (8,5) = 5993 This is nice nottion for this criticl vlue For the left criticl vlue look under 995 for α with the sme df, χ (8,995) = 1461 Note tht the first number inside the prenthesis is the degrees of freedom nd the second number is the re to the right of the criticl vlue Now, for twosided test the intervl between these two numbers is clled the noncriticl region If the test vlue flls between these numbers, then you cnnot reject the null hypothesis
Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses
Chpter 9: Inferences bsed on Two smples: Confidence intervls nd tests of hypotheses 9.1 The trget prmeter : difference between two popultion mens : difference between two popultion proportions : rtio of
More informationStudent Activity 3: Single Factor ANOVA
MATH 40 Student Activity 3: Single Fctor ANOVA Some Bsic Concepts In designed experiment, two or more tretments, or combintions of tretments, is pplied to experimentl units The number of tretments, whether
More informationThe steps of the hypothesis test
ttisticl Methods I (EXT 7005) Pge 78 Mosquito species Time of dy A B C Mid morning 0.0088 5.4900 5.5000 Mid Afternoon.3400 0.0300 0.8700 Dusk 0.600 5.400 3.000 The Chi squre test sttistic is the sum of
More informationSection 11.5 Estimation of difference of two proportions
ection.5 Estimtion of difference of two proportions As seen in estimtion of difference of two mens for nonnorml popultion bsed on lrge smple sizes, one cn use CLT in the pproximtion of the distribution
More informationTests for the Ratio of Two Poisson Rates
Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson
More information1 Probability Density Functions
Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our
More informationLecture 3 Gaussian Probability Distribution
Introduction Lecture 3 Gussin Probbility Distribution Gussin probbility distribution is perhps the most used distribution in ll of science. lso clled bell shped curve or norml distribution Unlike the binomil
More informationComparison Procedures
Comprison Procedures Single Fctor, BetweenSubects Cse /8/ Comprison Procedures, OneFctor ANOVA, Between Subects Two Comprison Strtegies post hoc (fterthefct) pproch You re interested in discovering
More informationContinuous Random Variable X:
Continuous Rndom Vrile : The continuous rndom vrile hs its vlues in n intervl, nd it hs proility distriution unction or proility density unction p.d. stisies:, 0 & d Which does men tht the totl re under
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationExpectation and Variance
Expecttion nd Vrince : sum of two die rolls P(= P(= = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 P(=2) = 1/36 P(=3) = 1/18 P(=4) = 1/12 P(=5) = 1/9 P(=7) = 1/6 P(=13) =? 2 1/36 3 1/18 4 1/12 5 1/9 6 5/36 7 1/6
More informationThe area under the graph of f and above the xaxis between a and b is denoted by. f(x) dx. π O
1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the xxis etween nd is denoted y f(x) dx nd clled the
More informationLecture 1: Introduction to integration theory and bounded variation
Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You
More informationNormal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution
Norml Distribution Lecture 6: More Binomil Distribution If X is rndom vrible with norml distribution with men µ nd vrince σ 2, X N (µ, σ 2, then P(X = x = f (x = 1 e 1 (x µ 2 2 σ 2 σ Sttistics 104 Colin
More informationLecture 21: Order statistics
Lecture : Order sttistics Suppose we hve N mesurements of sclr, x i =, N Tke ll mesurements nd sort them into scending order x x x 3 x N Define the mesured running integrl S N (x) = 0 for x < x = i/n for
More informationSolution for Assignment 1 : Intro to Probability and Statistics, PAC learning
Solution for Assignment 1 : Intro to Probbility nd Sttistics, PAC lerning 10701/15781: Mchine Lerning (Fll 004) Due: Sept. 30th 004, Thursdy, Strt of clss Question 1. Bsic Probbility ( 18 pts) 1.1 (
More informationChapter 5 : Continuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll
More informationand that at t = 0 the object is at position 5. Find the position of the object at t = 2.
7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we
More informationDuality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.
Dulity #. Second itertion for HW problem Recll our LP emple problem we hve been working on, in equlity form, is given below.,,,, 8 m F which, when written in slightly different form, is 8 F Recll tht we
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4
More informationEquations and Inequalities
Equtions nd Inequlities Equtions nd Inequlities Curriculum Redy ACMNA: 4, 5, 6, 7, 40 www.mthletics.com Equtions EQUATIONS & Inequlities & INEQUALITIES Sometimes just writing vribles or pronumerls in
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties
More informationCS667 Lecture 6: Monte Carlo Integration 02/10/05
CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of
More information38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes
The Uniform Distribution 8. Introduction This Section introduces the simplest type of continuous probbility distribution which fetures continuous rndom vrible X with probbility density function f(x) which
More information14.3 comparing two populations: based on independent samples
Chpter4 Nonprmetric Sttistics Introduction: : methods for mking inferences bout popultion prmeters (confidence intervl nd hypothesis testing) rely on the ssumptions bout probbility distribution of smpled
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct
More informationAQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system
Complex Numbers Section 1: Introduction to Complex Numbers Notes nd Exmples These notes contin subsections on The number system Adding nd subtrcting complex numbers Multiplying complex numbers Complex
More informationapproaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below
. Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.
More informationProperties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives
Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums  1 Riemnn
More informationpadic Egyptian Fractions
padic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Setup 3 4 pgreedy Algorithm 5 5 pegyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction
More informationChapter 6 Continuous Random Variables and Distributions
Chpter 6 Continuous Rndom Vriles nd Distriutions Mny economic nd usiness mesures such s sles investment consumption nd cost cn hve the continuous numericl vlues so tht they cn not e represented y discrete
More information11 An introduction to Riemann Integration
11 An introduction to Riemnn Integrtion The PROOFS of the stndrd lemms nd theorems concerning the Riemnn Integrl re NEB, nd you will not be sked to reproduce proofs of these in full in the exmintion in
More informationIs there an easy way to find examples of such triples? Why yes! Just look at an ordinary multiplication table to find them!
PUSHING PYTHAGORAS 009 Jmes Tnton A triple of integers ( bc,, ) is clled Pythgoren triple if exmple, some clssic triples re ( 3,4,5 ), ( 5,1,13 ), ( ) fond of ( 0,1,9 ) nd ( 119,10,169 ). + b = c. For
More informationMath Lecture 23
Mth 8  Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of
More informationImproper Integrals, and Differential Equations
Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted
More information7.2 The Definite Integral
7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where
More informationExponentials  Grade 10 [CAPS] *
OpenStxCNX module: m859 Exponentils  Grde 0 [CAPS] * Free High School Science Texts Project Bsed on Exponentils by Rory Adms Free High School Science Texts Project Mrk Horner Hether Willims This work
More informationArithmetic & Algebra. NCTM National Conference, 2017
NCTM Ntionl Conference, 2017 Arithmetic & Algebr Hether Dlls, UCLA Mthemtics & The Curtis Center Roger Howe, Yle Mthemtics & Texs A & M School of Eduction Relted Common Core Stndrds First instnce of vrible
More informationSUMMER KNOWHOW STUDY AND LEARNING CENTRE
SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18
More informationInfinite Geometric Series
Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to
More informationThe graphs of Rational Functions
Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior
More informationLecture 3. Limits of Functions and Continuity
Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live
More informationLecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)
Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of
More informationReview of Calculus, cont d
Jim Lmbers MAT 460 Fll Semester 200910 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some
More informationTheoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
More informationSection 6.1 INTRO to LAPLACE TRANSFORMS
Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform
More informationMonte Carlo method in solving numerical integration and differential equation
Monte Crlo method in solving numericl integrtion nd differentil eqution Ye Jin Chemistry Deprtment Duke University yj66@duke.edu Abstrct: Monte Crlo method is commonly used in rel physics problem. The
More informationProblem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:
(x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one
More informationSection 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40
Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since
More informationChapter 0. What is the Lebesgue integral about?
Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous
More informationUNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3
UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,
More informationCredibility Hypothesis Testing of Fuzzy Triangular Distributions
666663 Journl of Uncertin Systems Vol.9, No., pp.674, 5 Online t: www.jus.org.uk Credibility Hypothesis Testing of Fuzzy Tringulr Distributions S. Smpth, B. Rmy Received April 3; Revised 4 April 4 Abstrct
More informationImproper Integrals. Type I Improper Integrals How do we evaluate an integral such as
Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph
More informationHandout: Natural deduction for first order logic
MATH 457 Introduction to Mthemticl Logic Spring 2016 Dr Json Rute Hndout: Nturl deduction for first order logic We will extend our nturl deduction rules for sententil logic to first order logic These notes
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More information2.4 Linear Inequalities and Interval Notation
.4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationVyacheslav Telnin. Search for New Numbers.
Vycheslv Telnin Serch for New Numbers. 1 CHAPTER I 2 I.1 Introduction. In 1984, in the first issue for tht yer of the Science nd Life mgzine, I red the rticle "NonStndrd Anlysis" by V. Uspensky, in which
More informationMathematics Extension 1
04 Bored of Studies Tril Emintions Mthemtics Etension Written by Crrotsticks & Trebl. Generl Instructions Totl Mrks 70 Reding time 5 minutes. Working time hours. Write using blck or blue pen. Blck pen
More informationGoals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite
Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite
More informationAcceptance Sampling by Attributes
Introduction Acceptnce Smpling by Attributes Acceptnce smpling is concerned with inspection nd decision mking regrding products. Three spects of smpling re importnt: o Involves rndom smpling of n entire
More informationBases for Vector Spaces
Bses for Vector Spces 22625 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything
More informationEuler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )
Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s
More informationChapter 2 Organizing and Summarizing Data. Chapter 3 Numerically Summarizing Data. Chapter 4 Describing the Relation between Two Variables
Copyright 013 Peron Eduction, Inc. Tble nd Formul for Sullivn, Sttitic: Informed Deciion Uing Dt 013 Peron Eduction, Inc Chpter Orgnizing nd Summrizing Dt Reltive frequency = frequency um of ll frequencie
More information1 Linear Least Squares
Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving
More informationIntermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4
Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one
More informationWe will see what is meant by standard form very shortly
THEOREM: For fesible liner progrm in its stndrd form, the optimum vlue of the objective over its nonempty fesible region is () either unbounded or (b) is chievble t lest t one extreme point of the fesible
More informationChapter 1: Fundamentals
Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,
More informationW. We shall do so one by one, starting with I 1, and we shall do it greedily, trying
Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)
More informationNonLinear & Logistic Regression
NonLiner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find
More informationOverview of Calculus I
Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,
More informationCMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature
CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy
More informationChapter 14. Matrix Representations of Linear Transformations
Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn
More informationMIXED MODELS (Sections ) I) In the unrestricted model, interactions are treated as in the random effects model:
1 2 MIXED MODELS (Sections 17.7 17.8) Exmple: Suppose tht in the fiber breking strength exmple, the four mchines used were the only ones of interest, but the interest ws over wide rnge of opertors, nd
More informationCH 9 INTRO TO EQUATIONS
CH 9 INTRO TO EQUATIONS INTRODUCTION I m thinking of number. If I dd 10 to the number, the result is 5. Wht number ws I thinking of? R emember this question from Chpter 1? Now we re redy to formlize the
More informationLesson 1: Quadratic Equations
Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring
More informationThe First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).
The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples
More informationc n φ n (x), 0 < x < L, (1) n=1
SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry
More informationExam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH1105 Instructor: Attila Máté 1
Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixedpoint itertion to converge when solving the eqution
More informationMath 231E, Lecture 33. Parametric Calculus
Mth 31E, Lecture 33. Prmetric Clculus 1 Derivtives 1.1 First derivtive Now, let us sy tht we wnt the slope t point on prmetric curve. Recll the chin rule: which exists s long s /. = / / Exmple 1.1. Reconsider
More informationPurpose of the experiment
Newton s Lws II PES 6 Advnced Physics Lb I Purpose of the experiment Exmine two cses using Newton s Lws. Sttic ( = 0) Dynmic ( 0) fyi fyi Did you know tht the longest recorded flight of chicken is thirteen
More informationMain topics for the First Midterm
Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 23, Sections 4.14.8, nd Sections 5.15.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the
More informationElementary Linear Algebra
Elementry Liner Algebr Anton & Rorres, 1 th Edition Lecture Set 5 Chpter 4: Prt II Generl Vector Spces 163 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 163 คณตศาสตรวศวกรรม 3 สาขาวชาวศวกรรมคอมพวเตอร
More informationChapter 6 Notes, Larson/Hostetler 3e
Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn
More informationMAA 4212 Improper Integrals
Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly welldefined, is too restrictive for mny purposes; there re functions which
More informationARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac
REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b
More informationTheorems Solutions. Multiple Choice Solutions
Solutions We hve intentionlly included more mteril thn cn be covered in most Student Study Sessions to ccount for groups tht re ble to nswer the questions t fster rte. Use your own judgment, bsed on the
More informationDiscrete Mathematics and Probability Theory Summer 2014 James Cook Note 17
CS 70 Discrete Mthemtics nd Proility Theory Summer 2014 Jmes Cook Note 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion, y tking
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=
More informationList all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1.
Mth Anlysis CP WS 4.X Section 4.4.4 Review Complete ech question without the use of grphing clcultor.. Compre the mening of the words: roots, zeros nd fctors.. Determine whether  is root of 0. Show
More informationChapters 4 & 5 Integrals & Applications
Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO  Ares Under Functions............................................ 3.2 VIDEO  Applictions
More informationHybrid Group Acceptance Sampling Plan Based on Size Biased Lomax Model
Mthemtics nd Sttistics 2(3): 137141, 2014 DOI: 10.13189/ms.2014.020305 http://www.hrpub.org Hybrid Group Acceptnce Smpling Pln Bsed on Size Bised Lomx Model R. Subb Ro 1,*, A. Ng Durgmmb 2, R.R.L. Kntm
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationAdvanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004
Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when
More informationBefore we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!
Nme: Algebr II Honors PreChpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble
More informationMath 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8
Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite
More informationfractions Let s Learn to
5 simple lgebric frctions corne lens pupil retin Norml vision light focused on the retin concve lens Shortsightedness (myopi) light focused in front of the retin Corrected myopi light focused on the retin
More information10. AREAS BETWEEN CURVES
. AREAS BETWEEN CURVES.. Ares etween curves So res ove the xxis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in
More informationInference on One Population Mean Hypothesis Testing
Iferece o Oe Popultio Me ypothesis Testig Scerio 1. Whe the popultio is orml, d the popultio vrice is kow i. i. d. Dt : X 1, X,, X ~ N(, ypothesis test, for istce: Exmple: : : : : : 5'7" (ull hypothesis:
More information