Evaluation of Force Standard Machines by using Build-up System

Size: px
Start display at page:

Download "Evaluation of Force Standard Machines by using Build-up System"

Transcription

1 Evaluation of Force Standard Machines by using Build-up System TC3 Round Table Nov. 24, 2010 Y.-K. Park and D.-I. Kang

2 Contents Introduction Basic theory Application examples Dynamic behavior of deadweight force standard machines Side force components of a deadweight force standard machine Future works Summary & Discussion 2

3 Keycomparison of Deadweight Force Machine Relative deviation in the recent keycomparison: < Declared uncertainty of deadweight force machine : Uncertainty of deadweight force standard machine:

4 Uncertainty of Deadweight Force Machine Uncertainty evaluation Analytically evaluated uncertainty < Unconsidered uncertainty components Interaction between transducer and force machine Parasitic force components, Dynamic behavior, etc. Present key comparison Use of single force transducer Response comparison of force transducer No measure of parasitic force component and dynamic behavior Other methods are necessary Force working group meeting (March, 2004) Discussion of future KC method Replacement of using a single transducer 4

5 Parasitic Component Measurement Dynamometer Proposed by InRIM(Dr. Ferrero) Advantage Possible to measure whole parasitic components Disadvantage Complex structure Difficult to handle Only InRIM can make the dynamometer Build-up system Advantage Simple structure Easy to handle Disadvantage Possible only for side force components 5

6 Build-up System F y 120 o FT B FT C Load button Middle platen Force transducer (FT) x Base platen Build-up system 3 force transducers Efficient method for large force (3 times of individual transducer) Build-up system set in a force machine Easy to measure disturbance signal components due to lever mechanism FT A 120 o Parasitic force component of force machine Dynamic behavior of force machine 6

7 Force and Momentum Equilibrium Load button Middle platen H Force h z F X Reactions F Z Position of F/T y B(- 3 2 a, a 2 ) C( 3 2 a, a 2 ) H r α ξ h x x A( 0, -a ) Force equilibrium + Geometrical consideration Analysis 7

8 Overall Procedure Signal from Build-up System Oscillating Component Static Component Dynamic Behavior Side Force 8

9 Example of Dynamic Motion Analysis PTB 100 kn and 1 MN force standard machines 100 kn DFM 1 MN DFM 9

10 Example of Dynamic Motion Analysis PTB 100 kn force standard machine, Load = 20 kn Y Tilt Angle, β (x o ) X Tilt Angle, α (x o ) Direction ( o ) Rotation Indicator Time (s) Time (s) +1 : Counter clockwise -1 : Clockwise Tilt Angle (x o ) Histogram Time (s) Direction ( o ) * Rotational direction changes with time 10

11 Example of Dynamic Motion Analysis PTB 1 MN force standard machine, Load = 300 kn Y Tilt Angle, β (x o ) X Tilt Angle, α (x o ) Direction ( o ) Time (s) Rotation Indicator Time (s) +1 : Counter clockwise -1 : Clockwise Tilt Angle (x o ) Histogram Time (s) Direction ( o ) * Rotational direction doesn t change with time 11

12 Example for Side Force Measurement KRISS 500 kn deadweight force standard machine Force range 13.3 kn ~ 498 kn Weights 1360 kg : Tare weight 9 x 450 kg 10 x 4500 kg Dimension Height : 15.4 m Width : 2 m Total weight : 78,600 kg Relative uncertainty : 2 x 10-5 Lifting Frame Loading Frame Hydraulic Jack Third Floor Calibration Device Second Floor 9 x kg 10 x 4536 kg 12

13 Experimental Set-up Measuring quantities 3 force signals Measurement position 0 o, 90 o, 180 o, 270 o, 360 o Force step 200, 300, 400, 500 kn Measurement procedure 3 pre-loading 2 measurements at 0 o 1 measurement at 90 o, 180 o, 270 o, 360 o Time interval 6 minutes for pre-loading and unloading 3 minutes for measurement B A C Loading frame Deadweight set Build-up system HBM MGCplus LAN 13

14 Reproducibility Difference : 2.2x x10-3 Side Force / Normal Force 1.0x x x x10-3 Fx/Fz Fy/Fz Good Reproducibility Angle (Degree) Difference : 1.6x

15 Side Force Components Average of 90 o, 180 o, 270 o and 360 o Unsymmetrical factors of a build-up system Geometrical asymmetry Sensitivity difference between F/T Etc Fy / Fz -5.0x10-4 Averaging unsymmetrical effects can be reduced -1.0x x x Fx / Fz 500 kn 400 kn 300 kn 200 kn 15

16 Future Works Verification of the method Comparison with a multi-component force sensor Dynamometer proposed by InRIM Effect analysis of build-up system structure Curvature of load button Hardness of load button Height of build-up system Etc Measurement of additional parasitic components Parasitic moment components Development and verification of measurement protocol Estimation of force machines in Korea Estimation of force standard machines of other NMIs 16

17 Summary & Discussion Summary Evaluation of deadweight force machine by using build-up system Static analysis Estimation of Side force components Dynamic analysis Pendulum motion of deadweights Discussion Should we measure parasitic components for accurate uncertainty evaluation of deadweight force machine? Is it possible to use multi-component measurement for the next force key comparison? Which parasitic component? Which method? 17

XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 2009, Lisbon, Portugal

XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 2009, Lisbon, Portugal XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 9, Lisbon, Portugal IMPROVEMENT OF METROLOGICAL CHARACTERISTICS OF INTI S 11 kn FORCE STANDARD MACHINE BY USING THE CENAM S SIX-COMPONENT

More information

EVALUATION OF STATIC AND DYNAMIC PARASSITIC COMPONENTS ON THE INRIM 1 MN PRIMARY FORCE STANDARD MACHINE BY MEANS THE 500 kn SIX-COMPONENT DYNAMOMETER

EVALUATION OF STATIC AND DYNAMIC PARASSITIC COMPONENTS ON THE INRIM 1 MN PRIMARY FORCE STANDARD MACHINE BY MEANS THE 500 kn SIX-COMPONENT DYNAMOMETER XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 2009, Lisbon, Portugal EVALUATION OF STATIC AND DYNAMIC PARASSITIC COMPONENTS ON THE INRIM 1 MN PRIMARY FORCE STANDARD MACHINE

More information

Comparison between the CENAM (Mexico) 150 kn and the INRiM (Italy) 1 MN force standard machines

Comparison between the CENAM (Mexico) 150 kn and the INRiM (Italy) 1 MN force standard machines IMEKO 20 th TC3, 3 rd TC16 and 1 st TC22 International Conference Cultivating metrological knowledge 27 th to 30 th November, 2007. Merida, Mexico. Comparison between the CENAM (Mexico) 150 kn and the

More information

THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY

THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY D. Peschel 1, D. Mauersberger 1, D. Schwind 2, U. Kolwinski 2 1 Solid mechanics department, PTB, Germany 2 Gassmann Theiss Messtechnik

More information

PTB S 16.5 MN HYDRAULIC AMPLIFICATION MACHINE AFTER MODERNIZATION

PTB S 16.5 MN HYDRAULIC AMPLIFICATION MACHINE AFTER MODERNIZATION IMEKO 22 nd TC3, 15 th TC5 and 3 rd TC22 International Conferences 3 to 5 February, 2014, Cape Town, Republic of South Africa PTB S 16.5 MN HYDRAULIC AMPLIFICATION MACHINE AFTER MODERNIZATION R. Kumme

More information

UNCERTAINTY IN TORQUE CALIBRATION USING VERTICAL TORQUE AXIS ARRANGEMENT AND SYMMETRICAL TWO FORCE MEASUREMENT

UNCERTAINTY IN TORQUE CALIBRATION USING VERTICAL TORQUE AXIS ARRANGEMENT AND SYMMETRICAL TWO FORCE MEASUREMENT UNCERTAINTY IN TORQUE CALIBRATION USING VERTICAL TORQUE AXIS ARRANGEMENT AND SYMMETRICAL TWO FORCE MEASUREMENT Dieter Kenzler 1, Jörg Oblasser 2, Andreas Subaric-Leitis 2 and Christian Ullner 2 1 ) SCHATZ

More information

Force Key Comparison APMP.M.F-K2.a and APMP.M.F-K2.b (50 kn and 100 kn) Final Report 6 August Pilot: KRISS, Republic of Korea Yon-Kyu Park

Force Key Comparison APMP.M.F-K2.a and APMP.M.F-K2.b (50 kn and 100 kn) Final Report 6 August Pilot: KRISS, Republic of Korea Yon-Kyu Park Force Key Comparison APMP.M.F-K2.a and APMP.M.F-K2.b (50 kn and 100 kn) Final Report 6 August 2018 Pilot: KRISS, Republic of Korea Yon-Kyu Park Muktar Sawi (NMIM) Seif M. Osman (NIS) S.S.K.Titus (NPLI)

More information

Force Key Comparison CCM.F-K1.a and CCM.F-K1.b 5 kn and 10 kn. Aimo Pusa MIKES Finland

Force Key Comparison CCM.F-K1.a and CCM.F-K1.b 5 kn and 10 kn. Aimo Pusa MIKES Finland Force Key Comparison CCM.F-K1.a and CCM.F-K1.b 5 kn and 10 kn Aimo Pusa 09.02.2009 MIKES Finland 2 Content Page Content 3 Foreword 4 Chapter 1 1.1 General 6 1.2 Characteristics of the transducers 8 1.3

More information

INVESTIGATION OF TRANSFER STANDARDS IN THE HIGHEST RANGE UP TO 50 MN WITHIN EMRP PROJECT SIB 63 Falk Tegtmeier 1, Michael Wagner 2, Rolf Kumme 3

INVESTIGATION OF TRANSFER STANDARDS IN THE HIGHEST RANGE UP TO 50 MN WITHIN EMRP PROJECT SIB 63 Falk Tegtmeier 1, Michael Wagner 2, Rolf Kumme 3 XXI IMEKO World Congress Measurement in Research and Industry August 30 September 4, 2015, Prague, Czech Republic INVESTIGATION OF TRANSFER STANDARDS IN THE HIGHEST RANGE UP TO 50 MN WITHIN EMRP PROJECT

More information

Force/Torque measuring facility for friction coefficient and multicomponent

Force/Torque measuring facility for friction coefficient and multicomponent DOI 10.516/sensor013/A1. Force/Torque measuring facility for friction coefficient and multicomponent sensors S. Baumgarten 1, D. Röske 1, H. Kahmann 1, D. Mauersberger 1 and R. Kumme 1 1 Physikalisch-Technische

More information

Certification of a High Capacity Force Machine for Testing of Load Cells According to OIML R60

Certification of a High Capacity Force Machine for Testing of Load Cells According to OIML R60 Certification of a High Capacity Force Machine for Testing of Load Cells According to OIML R60 Bernd Meißner Physikalisch-Technische Bundesanstalt Weighing Instruments Laboratory Braunschweig Abstract

More information

Force Key Comparison CCM.F-K4.a and CCM.F-K4.b for 4 MN and 2 MN Forces. Final Report. T.W. Bartel NIST Mass and Force Group U.S.A.

Force Key Comparison CCM.F-K4.a and CCM.F-K4.b for 4 MN and 2 MN Forces. Final Report. T.W. Bartel NIST Mass and Force Group U.S.A. Force Key Comparison CCM.F-K4.a and CCM.F-K4.b for 4 MN and 2 MN Forces Final Report T.W. Bartel NIST Mass and Force Group U.S.A. March 6, 212 Abstract This report gives the results for the Comité International

More information

COMPLETION AND MEASUREMENT UNCERTAINTY BUDGET OF THE MULTI-COMPONENT MEASURING DEVISE FOR FORCE UP TO 1 MN AND TORQUE UP TO 2 KN M

COMPLETION AND MEASUREMENT UNCERTAINTY BUDGET OF THE MULTI-COMPONENT MEASURING DEVISE FOR FORCE UP TO 1 MN AND TORQUE UP TO 2 KN M XXI IMEKO World Congress Measurement in Research and Industry August 30 September 4, 2015, Prague, Czech Republic COMPLETION AND MEASUREMENT UNCERTAINTY BUDGET OF THE MULTI-COMPONENT MEASURING DEVISE FOR

More information

THE UNCERTAINTY OF MEASUREMENT IN CALIBRATION USING A COMPARISON FORCE STANDARD MACHINE

THE UNCERTAINTY OF MEASUREMENT IN CALIBRATION USING A COMPARISON FORCE STANDARD MACHINE THE UNCERTAINTY OF MEASUREMENT IN CALIBRATION USING A COMPARISON FORCE STANDARD MACHINE Adrian Gherasimov 1, Eugen Ghita 1 Romanian Bureau of Legal Metrology, Force Laboratory Timisoara, Romania POLITEHICA

More information

FEEDBACK CONTROLLED DEADWEIGHT MACHINE

FEEDBACK CONTROLLED DEADWEIGHT MACHINE FEEDBACK CONTROLLED DEADWEIGHT MACHINE G. Barbato 1, S. Desogus 2, A. Germak 2 and M. Vattasso 3 1 DSPEA, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy 2 Istituto di Metrologia

More information

ISO 376 Calibration Uncertainty C. Ferrero

ISO 376 Calibration Uncertainty C. Ferrero ISO 376 Calibration Uncertainty C. Ferrero For instruments classified for interpolation, the calibration uncertainty is the uncertainty associated with using the interpolation equation to calculate a single

More information

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α =

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α = Unit 1 1. The subjects Engineering Mechanics deals with (a) Static (b) kinematics (c) Kinetics (d) All of the above 2. If the resultant of two forces P and Q is acting at an angle α with P, then (a) tan

More information

6.5 Cables: Concentrated Loads

6.5 Cables: Concentrated Loads 6.5 ables: oncentrated Loads 6.5 ables: oncentrated Loads Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving ables With oncentrated Loads 1. Pass sections through

More information

< Final report > Report on the APMP.M.F-S1 supplementary comparison for 2 MN Force

< Final report > Report on the APMP.M.F-S1 supplementary comparison for 2 MN Force < Final report > Report on the APMP.M.F-S1 supplementary comparison for 2 MN Force Kazunaga Ueda*, Toshiyuki Hayashi*, Hiroshi Maejima*, Rolf Kumme**, Dirk Röske**, Mark Seidel** * National Metrology of

More information

INVESTIGATION OF THE CALIBRATION CAPABILITIES OF A 1 KN M AND 10 KN M REFERENCE CALIBRATION MACHINE

INVESTIGATION OF THE CALIBRATION CAPABILITIES OF A 1 KN M AND 10 KN M REFERENCE CALIBRATION MACHINE IMEKO 23 rd TC3, 13 th TC5 and 4 th TC22 International Conference 30 May to 1 June, 2017, Helsinki, Finland INVESTIGATION OF THE CALIBRATION CAPABILITIES OF A 1 KN M AND 10 KN M REFERENCE CALIBRATION MACHINE

More information

INTERLABORATORY COMPARISON BETWEEN TUBITAK-UME TURKEY AND INM ROMANIA IN THE FIELD OF FORCE MEASUREMENTS

INTERLABORATORY COMPARISON BETWEEN TUBITAK-UME TURKEY AND INM ROMANIA IN THE FIELD OF FORCE MEASUREMENTS TEHNICA MĂ SURĂ RII INTERLABORATORY COMPARISON BETWEEN TUBITAK- TURKEY AND INM ROMANIA IN THE FIELD OF FORCE MEASUREMENTS Adrian GHERASIMOV*, Sinan FANK**, Bülent AYDEMIR** *BUREAU OF LEGAL METROLOGY,

More information

Optical Method for Micro Force Measurement. Yusaku FUJII Gunma University

Optical Method for Micro Force Measurement. Yusaku FUJII Gunma University Optical Method for Micro Force Measurement Yusaku FUJII Gunma University Small Force (1mN to 1N ) It is difficult to generate and evaluate small force, properly. The causes of the Difficulties in measuring

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

Investigation of Piezoelectric Force Measuring Devices in Force Calibration and Force. Standard Machines

Investigation of Piezoelectric Force Measuring Devices in Force Calibration and Force. Standard Machines Proceedings of the 17 th International Conference on Force, Mass, Torque and Pressure Measurements, Investigation of Piezoelectric Force Measuring Devices in Force Calibration and Force Standard Machines

More information

MEASUREMENT UNCERTAINTY OF ROTATING TORQUE TRANSDUCERS WHEN USED IN PARTIAL LOAD RANGES

MEASUREMENT UNCERTAINTY OF ROTATING TORQUE TRANSDUCERS WHEN USED IN PARTIAL LOAD RANGES XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17, 006, Rio de Janeiro, Brazil MEASUREMENT UNCERTAINTY OF ROTATING TORQUE TRANSDUCERS WHEN USED IN PARTIAL LOAD RANGES Georg

More information

1. Attempt any ten of the following : 20

1. Attempt any ten of the following : 20 *17204* 17204 21314 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Answer each next main question on a new page. (3) Illustrate your answers with neat sketches wherever

More information

UNCERTAINTY SCOPE OF THE FORCE CALIBRATION MACHINES. A. Sawla Physikalisch-Technische Bundesanstalt Bundesallee 100, D Braunschweig, Germany

UNCERTAINTY SCOPE OF THE FORCE CALIBRATION MACHINES. A. Sawla Physikalisch-Technische Bundesanstalt Bundesallee 100, D Braunschweig, Germany Measurement - Supports Science - Improves Technology - Protects Environment... and Provides Employment - No and in the Future Vienna, AUSTRIA, 000, September 5-8 UNCERTAINTY SCOPE OF THE FORCE CALIBRATION

More information

MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS

MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today s Objectives : Students will be able to: a) understand and define moment, and, b)

More information

Force Key Comparison EUROMET.M.F-K2. (50 kn and 100 kn) EURAMET Project No 518. Final Report. 14 July Pilot: NPL, United Kingdom

Force Key Comparison EUROMET.M.F-K2. (50 kn and 100 kn) EURAMET Project No 518. Final Report. 14 July Pilot: NPL, United Kingdom Force Key Comparison EUROMET.M.F-K2 (50 kn and 100 kn) EURAMET Project No 518 Final Report 14 July 2014 Pilot: NPL, United Kingdom Co-authors: Renato Reis Machado (INMETRO, Brazil), Petr Kašpar (CMI, Czech

More information

Turning Forces and Levers. Junior Science

Turning Forces and Levers. Junior Science Turning Forces and Levers Junior Science Lesson Objectives Understand the terms - Lever, Fulcrum, Turning effect, Moment Recall the formula M= Fd and be able to calculate the moment of a force Be able

More information

Concept and setup of a multi-component facility for force and torque in the range of 1 MN and 2 kn m

Concept and setup of a multi-component facility for force and torque in the range of 1 MN and 2 kn m CT IMEKO June 2014, Volume 3, Number 2, 39 43 www.imeko.org Concept and setup of a multi-component facility for force and torque in the range of 1 MN and 2 kn m Sebastian aumgarten, Dirk Röske, Holger

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Eleven Instantaneous Centre and General Motion Part A (Introductory) 1. (Problem 5/93 from Meriam and Kraige - Dynamics) For the instant

More information

MEE224: Engineering Mechanics Lecture 4

MEE224: Engineering Mechanics Lecture 4 Lecture 4: Structural Analysis Part 1: Trusses So far we have only analysed forces and moments on a single rigid body, i.e. bars. Remember that a structure is a formed by and this lecture will investigate

More information

+ + ( indicator ) + (display, printer, memory)

+ + ( indicator ) + (display, printer, memory) CERTIFICATION OF STRAIN GAUGE LOAD CELL FAMILIES B. Meissner Physikalisch-Technische Bundesanstalt Weighing Instruments Laboratory 38116 Braunschweig, Germany Abstract: Testing and certification of load

More information

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES SPH4C Findlay What do you think of when you hear the word machine? Simple Machines Machines created

More information

Uncertainty of Calibration. Results in Force Measurements

Uncertainty of Calibration. Results in Force Measurements Publication Reference EAL-G Uncertainty of Calibration Results in Force Measurements PURPOSE This document has been produced to improve the harmonization in determination of uncertainties in force measurements.

More information

Engineering Mechanics

Engineering Mechanics F.Y. Diploma : Sem. II [AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS] Engineering Mechanics Time : 3 Hrs.] Prelim Question Paper Solution [Marks : 00 Q. Attempt any TEN of the following : [20] Q.(a) Difference

More information

The activities of micro-force measurement below 10 mn in Center for Measurement Standards

The activities of micro-force measurement below 10 mn in Center for Measurement Standards The activities of micro-force measurement below 10 mn in Center for Measurement Standards Sheng-Jui Chen and Sheau-Shi Pan With contribution from : Ya-Ko Chih, Chung-Lin Wu, Fu-Lung Pan, Chin-Fen Tuan

More information

Micro- and Nanoforce Metrology at PTB

Micro- and Nanoforce Metrology at PTB 1 IMEKO 2010, TC3, Small Force Workshop Micro- and Nanoforce Metrology at PTB Uwe Brand, Lutz Doering, Vladimir Nesterov and Febo Menelao PTB (Germany) 2 Overview 1. Mass balance based devices a) 400 mn

More information

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM 3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM Consider rigid body fixed in the x, y and z reference and is either at rest or moves with reference at constant velocity Two types of forces that act on it, the

More information

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK Sub. Code: CE1151 Sub. Name: Engg. Mechanics UNIT I - PART-A Sem / Year II / I 1.Distinguish the following system of forces with a suitable

More information

ENG202 Statics Lecture 16, Section 7.1

ENG202 Statics Lecture 16, Section 7.1 ENG202 Statics Lecture 16, Section 7.1 Internal Forces Developed in Structural Members - Design of any structural member requires an investigation of the loading acting within the member in order to be

More information

CHAPTER 24 SIMPLE MACHINES

CHAPTER 24 SIMPLE MACHINES CHAPTER 24 SIMPLE MACHINES EXERCISE 106, Page 240 1. A simple machine raises a load of 825 N through a distance of 0.3 m. The effort is 250 N and moves through a distance of 3.3 m. Determine: (a) the,

More information

8.1 Internal Forces in Structural Members

8.1 Internal Forces in Structural Members 8.1 Internal Forces in Structural Members 8.1 Internal Forces in Structural Members xample 1, page 1 of 4 1. etermine the normal force, shear force, and moment at sections passing through a) and b). 4

More information

Guide to the Uncertainty of Force Measurement

Guide to the Uncertainty of Force Measurement April 1999 Guide to the Uncertainty of Force Measurement Liam Maybank, Andy Knott, and David Elkington Centre for Mechanical and Acoustical Metrology National Physical Laboratory Queens Road Teddington

More information

METHODS TO CONFIRM THE MEASUREMENT CAPABILITY OF THE FORCE STANDARD MACHINES AFTER REINSTALLATION

METHODS TO CONFIRM THE MEASUREMENT CAPABILITY OF THE FORCE STANDARD MACHINES AFTER REINSTALLATION IMEKO 22 nd TC3, 12 th TC5 and 3 rd TC22 International Conferences 3 to 5 February, 2014, Cape Town, Republic of South Africa METHODS TO CONFIRM THE MEASUREMENT CAPABILITY OF THE FORCE STANDARD MACHINES

More information

Lecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction

Lecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction Introduction In this class we will focus on the structural analysis of framed structures. We will learn about the flexibility method first, and then learn how to use the primary analytical tools associated

More information

Modelling of a dynamic torque calibration device and determination of model parameters

Modelling of a dynamic torque calibration device and determination of model parameters ACTA IMEKO June 2014, Volume 3, Number 2, 14 18 www.imeko.org Modelling of a dynamic torque calibration device and determination of model parameters Leonard Klaus, Thomas Bruns, Michael Kobusch Physikalisch-Technische

More information

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved.

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved. STATICS FE Review 1. Resultants of force systems VECTOR OPERATIONS (Section 2.2) Scalar Multiplication and Division VECTOR ADDITION USING EITHER THE PARALLELOGRAM LAW OR TRIANGLE Parallelogram Law: Triangle

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF MECHANICAL ENGINEERING BRANCH: MECHANICAL YEAR / SEMESTER: I / II UNIT 1 PART- A 1. State Newton's three laws of motion? 2.

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of the free-body diagram for a rigid body. To show how to solve rigid-body equilibrium problems using

More information

Morehouse. Edward Lane, Morehouse Instrument Company 1742 Sixth Ave York, PA PH: web: sales:

Morehouse. Edward Lane, Morehouse Instrument Company 1742 Sixth Ave York, PA PH: web:  sales: Morehouse 1 Morehouse Edward Lane, Morehouse Instrument Company 1742 Sixth Ave York, PA 17403 PH: 717-843-0081 web: www.mhforce.com sales: edlane@mhforce.com 2 This presentation will cover the calibration

More information

Instrument types and performance characteristics

Instrument types and performance characteristics 2 Instrument types and performance characteristics 2.1 Review of instrument types Instruments can be subdivided into separate classes according to several criteria. These subclassifications are useful

More information

PRELIMINARY DRAFT INDIAN STANDARD METHOD FOR CALIBRATION AND CLASSIFICATION OF TORQUE MEASURING DEVICES INCLUDING TORQUE WRENCH TESTER

PRELIMINARY DRAFT INDIAN STANDARD METHOD FOR CALIBRATION AND CLASSIFICATION OF TORQUE MEASURING DEVICES INCLUDING TORQUE WRENCH TESTER For BIS Use Only Doc: PGD 34(1203)P PRELIMINARY DRAFT INDIAN STANDARD METHOD FOR CALIBRATION AND CLASSIFICATION OF TORQUE MEASURING DEVICES INCLUDING TORQUE WRENCH TESTER Not to be reproduced without the

More information

MEASUREMENT UNCERTAINTY EVALUATION OF TORQUE MEASUREMENTS IN NACELLE TEST BENCHES

MEASUREMENT UNCERTAINTY EVALUATION OF TORQUE MEASUREMENTS IN NACELLE TEST BENCHES IMEKO 23 rd TC3, 13 th TC5 and 4 th TC22 International Conference 30 May to 1 June, 2017, Helsinki, Finland MEASUREMENT UNCERTAINTY EVALUATION OF TORQUE MEASUREMENTS IN NACELLE TEST BENCHES G. Foyer, S.

More information

MATHEMATICAL SKILLS MOMENTS OF FORCE (RATIOS) AND EQUILIBRIUM AND ASSOCIATED EXAMINATION QUESTIONS.

MATHEMATICAL SKILLS MOMENTS OF FORCE (RATIOS) AND EQUILIBRIUM AND ASSOCIATED EXAMINATION QUESTIONS. MATHEMATICAL SKILLS MOMENTS OF FORCE (RATIOS) AND EQUILIBRIUM AND ASSOCIATED EXAMINATION QUESTIONS DESIGN AND TECHNOLOGY NOT FOR SALE OR REDISTRIBUTION THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER

More information

Portal Frame Calculations Lateral Loads

Portal Frame Calculations Lateral Loads Portal Frame Calculations Lateral Loads Consider the following multi-story frame: The portal method makes several assumptions about the internal forces of the columns and beams in a rigid frame: 1) Inflection

More information

Types of Structures & Loads

Types of Structures & Loads Structure Analysis I Chapter 4 1 Types of Structures & Loads 1Chapter Chapter 4 Internal lloading Developed in Structural Members Internal loading at a specified Point In General The loading for coplanar

More information

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies Contents Introduction

More information

Moments. Question Paper. Save My Exams! The Home of Revision. Exam Board. Page 1. Score: /67. Percentage: /100

Moments. Question Paper. Save My Exams! The Home of Revision. Exam Board. Page 1. Score: /67. Percentage: /100 Moments Question Paper Level Subject Exam Board Unit Topic Difficulty Level Booklet GCSE Physics AQA P3 Moments Gold Level Question Paper Time Allowed: 67 minutes Score: /67 Percentage: /100 Page 1 Q1.The

More information

Chapter 11 Rotational Dynamics and Static Equilibrium. Copyright 2010 Pearson Education, Inc.

Chapter 11 Rotational Dynamics and Static Equilibrium. Copyright 2010 Pearson Education, Inc. Chapter 11 Rotational Dynamics and Static Equilibrium Units of Chapter 11 Torque Torque and Angular Acceleration Zero Torque and Static Equilibrium Center of Mass and Balance Dynamic Applications of Torque

More information

ENGR 1100 Introduction to Mechanical Engineering

ENGR 1100 Introduction to Mechanical Engineering ENGR 1100 Introduction to Mechanical Engineering Mech. Engineering Objectives Newton s Laws of Motion Free Body Diagram Transmissibility Forces and Moments as vectors Parallel Vectors (addition/subtraction)

More information

Project 887 Force Uncertainty Guide. Andy Knott, NPL EUROMET TC-M Lensbury, Teddington, United Kingdom 1 March 2007

Project 887 Force Uncertainty Guide. Andy Knott, NPL EUROMET TC-M Lensbury, Teddington, United Kingdom 1 March 2007 Project 887 Force Uncertainty Guide Andy Knott, NPL EUROMET TC-M Lensbury, Teddington, United Kingdom 1 March 2007 Background EA-10/04 (EAL-G22) EUROMET Calibration Guide EM/cg/04.01/p Participants SMD

More information

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6A Torque is what causes angular acceleration (just like a force causes linear acceleration) Torque is what causes angular acceleration (just like a force causes linear acceleration) For a torque

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

SPH 4C Unit 2 Mechanical Systems

SPH 4C Unit 2 Mechanical Systems SPH 4C Unit 2 Mechanical Systems Forces and Free Body Diagrams Learning Goal: I can consistently identify and draw Free Body Diagrams for given real world situations. There are 4 fundamental forces Gravity

More information

Increased Requirements for Higher Nominal Forces, Necessities and Possibilities to Measure Them

Increased Requirements for Higher Nominal Forces, Necessities and Possibilities to Measure Them B 3.1 Increased Requirements for Higher Nominal Forces, Necessities and Possibilities to Measure Them Dr. Schäfer, André Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45, 64293 Darmstadt andre.schaefer@hbm.com

More information

Model Answers Attempt any TEN of the following :

Model Answers Attempt any TEN of the following : (ISO/IEC - 70-005 Certified) Model Answer: Winter 7 Sub. Code: 17 Important Instructions to Examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

Final Examination Study Set 1. (Solutions will be in the Solutions Manual of Textbook)

Final Examination Study Set 1. (Solutions will be in the Solutions Manual of Textbook) Final Examination Study Set 1 (Solutions will be in the Solutions Manual of Textbook) Final Examination Study Set 2 (Solutions will be in the Solutions Manual of Textbook) 3/86 The shaft, lever,

More information

Comparative Study of Strain-Gauge Balance Calibration Procedures Using the Balance Calibration Machine

Comparative Study of Strain-Gauge Balance Calibration Procedures Using the Balance Calibration Machine Comparative Study of Strain-Gauge Balance Calibration Procedures Using the Balance Calibration Machine I. Philipsen German-Dutch Wind Tunnels (DNW), 83 AD Emmeloord, The Netherlands and J. Zhai 2 German-Dutch

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your

More information

Chapter 8 Rotational Motion

Chapter 8 Rotational Motion Chapter 8 Rotational Motion Chapter 8 Rotational Motion In this chapter you will: Learn how to describe and measure rotational motion. Learn how torque changes rotational velocity. Explore factors that

More information

Chapter 04 Equilibrium of Rigid Bodies

Chapter 04 Equilibrium of Rigid Bodies Chapter 04 Equilibrium of Rigid Bodies Application Engineers designing this crane will need to determine the forces that act on this body under various conditions. 4-2 Introduction For a rigid body, the

More information

Vidyalanakar F.Y. Diploma : Sem. II [AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS] Engineering Mechanics

Vidyalanakar F.Y. Diploma : Sem. II [AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS] Engineering Mechanics Vidyalanakar F.Y. Diploma : Sem. II [AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS] Engineering Mechanics Time : 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1 Attempt any TEN of the following

More information

Chapter 6: Structural Analysis

Chapter 6: Structural Analysis Chapter 6: Structural Analysis Chapter Objectives To show how to determine the forces in the members of a truss using the method of joints and the method of sections. To analyze the forces acting on the

More information

Science Olympiad. Machines. Roger Demos

Science Olympiad. Machines. Roger Demos Science Olympiad Machines. Roger Demos Some Basic Physics Concepts What do Machines do? Do they allow one to do more work? Not really, at best they make completing a task easier. So then what do Machines

More information

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability

More information

Conversion Formulas Potential Measurement Errors What is involved in building a Primary Torque Standard Proper Handling techniques

Conversion Formulas Potential Measurement Errors What is involved in building a Primary Torque Standard Proper Handling techniques FUNDEMENTALS OF TORQUE CALIBRATION 1 Lesson Objectives Introduction Definition and Examples of Torque Conversion Formulas Torque Calibration Traceability Standard Types of Torque Standards ASTM E2428 BS7882

More information

T e c h n i c a l L e x i c o n

T e c h n i c a l L e x i c o n T e c h n i c a l L e x i c o n T e r m s f r o m F o r c e a n d t o r q u e m e a s u r e m e n t t e c h n o l o g y a n d G T M d a t a s h e e t s Technisches Lexikon (eng.) 16/10/14 Introduction

More information

Check Homework. Reading Quiz Applications Equations of Equilibrium Example Problems Concept Questions Group Problem Solving Attention Quiz

Check Homework. Reading Quiz Applications Equations of Equilibrium Example Problems Concept Questions Group Problem Solving Attention Quiz THREE-DIMENSIONAL FORCE SYSTEMS Today s Objectives: Students will be able to solve 3-D particle equilibrium problems by a) Drawing a 3-D free body diagram, and, b) Applying the three scalar equations (based

More information

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations:

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations: 2004- v 10/16 2. The resultant external torque (the vector sum of all external torques) acting on the body must be zero about any origin. These conditions can be written as equations: F = 0 = 0 where the

More information

ELG4112. Electromechanical Systems and Mechatronics

ELG4112. Electromechanical Systems and Mechatronics ELG4112 Electromechanical Systems and Mechatronics 1 Introduction Based on Electromechanical Systems, Electric Machines, and Applied Mechatronics Electromechanical systems integrate the following: Electromechanical

More information

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2 Lecture 8 Torque and Equilibrium Pre-reading: KJF 8.1 and 8.2 Archimedes Lever Rule At equilibrium (and with forces 90 to lever): r 1 F 1 = r 2 F 2 2 General Lever Rule For general angles r 1 F 1 sin θ

More information

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 1 PRINCIPLES OF STATICS

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 1 PRINCIPLES OF STATICS PRINCIPLES OF STTICS Statics is the study of how forces act and react on rigid bodies which are at rest or not in motion. This study is the basis for the engineering principles, which guide the design

More information

Investigations for the model based dynamic calibration of force transducers by using shock excitation

Investigations for the model based dynamic calibration of force transducers by using shock excitation ACTA IMEKO ISSN: 2221 870X June 2015, Volume 4, Number 2, 45 51 Investigations for the model based dynamic calibration of force transducers by using shock excitation Michael Kobusch 1, Sascha Eichstädt

More information

SPECIFIC CRITERIA for CALIBRATION LABORATORIES IN MECHANICAL DISCIPLINE : Force Proving Instruments

SPECIFIC CRITERIA for CALIBRATION LABORATORIES IN MECHANICAL DISCIPLINE : Force Proving Instruments NABL 122-06 NATIONAL ACCREDITATION BOARD FOR TESTING AND CALIBRATION LABORATORIES SPECIFIC CRITERIA for CALIBRATION LABORATORIES IN MECHANICAL DISCIPLINE : Force Proving Instruments Reviewed by MASTER

More information

Incline Plane Activity

Incline Plane Activity Purpose Incline Plane Activity During the activity, students will become familiar with solving static and dynamic incline plane problems. The students will use standard component methods and free body

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z540-1-1994 MTS FIELD SERVICE 14000 Technology Drive Eden Prairie, MN 55344 Hugh Casper Phone: 518 852 3977 CALIBRATION Valid To: September 30,

More information

The calibration system of force measurement devices - conceptions and principles

The calibration system of force measurement devices - conceptions and principles The calibration system of force measurement devices - conceptions and principles ABSTACT Eng. Boris Katz, Liron Anavy, Itamar Nehary Quality Control Center Hazorea (QCC Hazorea), Israel Developed, put

More information

MODEL-BASED ANALYSIS OF THE DYNAMIC BEHAVIOUR OF A 250 KN SHOCK FORCE CALIBRATION DEVICE

MODEL-BASED ANALYSIS OF THE DYNAMIC BEHAVIOUR OF A 250 KN SHOCK FORCE CALIBRATION DEVICE XX IMEKO World Congress Metrology for Green Growth September 9 14, 212, Busan, Republic of Korea MODEL-BASED ANALYSIS OF THE DYNAMIC BEHAVIOUR OF A 25 KN SHOCK FORCE CALIBRATION DEVICE Michael Kobusch,

More information

Chapter 4.1: Shear and Moment Diagram

Chapter 4.1: Shear and Moment Diagram Chapter 4.1: Shear and Moment Diagram Chapter 5: Stresses in Beams Chapter 6: Classical Methods Beam Types Generally, beams are classified according to how the beam is supported and according to crosssection

More information

FORCE NATIONAL STANDARDS COMPARISON BETWEEN CENAM/MEXICO AND NIM/CHINA

FORCE NATIONAL STANDARDS COMPARISON BETWEEN CENAM/MEXICO AND NIM/CHINA FORCE NATIONAL STANDARDS COMPARISON BETWEEN CENAM/MEXICO AND NIM/CHINA Qingzhong Li *, Jorge C. Torres G.**, Daniel A. Ramírez A.** *National Institute of Metrology (NIM) Beijing, 100013, China Tel/fax:

More information

Multi-Capacity Load Cell Concept

Multi-Capacity Load Cell Concept Sensors & Transducers 4 by IFSA Publishing, S. L. http://www.sensorsportal.com Multi-Capacity Load Cell Concept Seif. M. OSMAN, Ebtisam H. HASAN, H. M. EL-HAKEEM, R. M. RASHAD, F. KOUTA National Institute

More information

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 11 Physics, 4 th Edition James S. Walker Chapter 11 Rotational Dynamics and Static Equilibrium Units of Chapter 11 Torque Torque and Angular Acceleration Zero Torque and Static

More information

UNIT D: MECHANICAL SYSTEMS

UNIT D: MECHANICAL SYSTEMS 1 UNIT D: MECHANICAL SYSTEMS Science 8 2 Section 2.0 AN UNDERSTANDING OF MECHANICAL ADVANTAGE AND WORK HELPS IN DETERMINING THE EFFICIENCY OF MACHINES. 1 3 MACHINES MAKE WORK EASIER Topic 2.1 4 WHAT WOULD

More information

EQUILIBRIUM OF RIGID BODIES

EQUILIBRIUM OF RIGID BODIES EQUILIBRIUM OF RIGID BODIES Equilibrium A body in equilibrium is at rest or can translate with constant velocity F = 0 M = 0 EQUILIBRIUM IN TWO DIMENSIONS Case where the force system acting on a rigid

More information

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14 Final Review: Chapters 1-11, 13-14 These are selected problems that you are to solve independently or in a team of 2-3 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This

More information

Physics. Chapter 8 Rotational Motion

Physics. Chapter 8 Rotational Motion Physics Chapter 8 Rotational Motion Circular Motion Tangential Speed The linear speed of something moving along a circular path. Symbol is the usual v and units are m/s Rotational Speed Number of revolutions

More information

Lesson Plan. Name of the Faculty : SANDEEP (VTF in CIVIL ENGG.) Lesson plan duration : 15 Weeks(July 2018 to Nov 2018)

Lesson Plan. Name of the Faculty : SANDEEP (VTF in CIVIL ENGG.) Lesson plan duration : 15 Weeks(July 2018 to Nov 2018) Lesson Plan Name of the Faculty : SANDEEP (VTF in CIVIL ENGG.) Discipline : CIVIL Engg. Semester : 3 rd Subject : Applied Mechanics Lesson plan duration : 15 s(july 2018 to Nov 2018) - 1 2 3 Theory Practical

More information

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

More information